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Abs t rac t 

In a recent paper, Konolige has introduced a 
new version of autoepistemic logic ( A E L ) , 
wh ich is based on a s t r o n g n o t i o n of 
groundedness. We show that it is well-suited 
for formalizing the concept of just i f ied belief in 
a non-monotonic t ru th maintenance system 
(TMS). If we consider the just i f icat ions of a 
TMS as formulae of the form it 
computes the set of non-modal atoms of a 
strongly grounded AEL-extension. It is shown 
that a variant of Dressler's encoding of non
monotonic just i f icat ions in an assumption-
based TMS is correct, and thus also inherits 
the AEL semantics We argue that more work 
is needed to come to a better understanding of 
backtracking routines and so-called nogood 
inferences, which are identified as sources of 
ungrounded conc lus ions . These r e s u l t s 
contribute to bridging the gap between theory 
and imp lemen ta t i on in the f ie ld of non
monotonic reasoning 

1 In t roduc t i on 

1.1 The Prob lem 

Despite their importance in AI problem solving, 
non-monotonic t ru th maintenance systems st i l l lack 
suff iciently well-understood logical foundations 
E x i s t i n g log ica l c h a r a c t e r i z a t i o n s o f t r u t h 
maintenance suffer f rom one or several of the 
following problems: 

they do not correspond exactly to what a TMS 
a c t u a l l y does, a s fo r e x a m p l e N M L - I 
[McDermott, 1980]. 
they only consider the "easy" monotonic case, as 
for example Re i te r and de K lee r ' s p r ime 
implicant theory for assumption-based t ru th 

maintenance (ATMS) [Rei ter and de K lee r , 
1987 ] . Recent w o r k on n o n - m o n o t o n i c 
justi f ications for the ATMS, (de Kleer, 1986b] 
and [Dressier, 19881, underl ines the need for 
non-monotonicity in t ru th maintenance, 
they are based on new, spec ia l i zed non
monotonic logics whose sole purpose is to 
characterize a TMS, as for example Brown's 
logic of just i f ied belief [Brown, 1988]. This is an 
in terest ing path to pursue, but i t y ie lds no 
i n s i g h t s i n to the r e l a t i o n be tween t r u t h 
maintenance and the existing famil ies of non
monotonic logics. 

The problem addressed in the present paper is to 
establ ish a l i nk between non-monotonic t r u t h 
maintenance and autoepistemic logic, that is, a 
"standard" non monotonic logic. 

L2 Ana lys is o f the Prob lem 

An analysis of the problem shows that a logical 
theory of non-monotonic t ru th maintenance is hard 
to design because of the following characteristics of 
a TMS: 

it is finite and logically incomplete 
it is "brave" in the sense that it may adopt one of 
mult ip le, mutual ly incompatible belief states, 
i t has a very s t rong and , in p a r t i c u l a r , 
inherently global notion of a belief state being 
grounded 
nonmonotonic just i f icat ions are asymmetr ic : 
disbelief in the nonmonotonic antecedents can 
just i fy belief in the consequent, but disbelief in 
the consequent cannot just i fy belief in the non
monotonic antecedents. 

1.3 The A p p r o a c h 

We pursue a two-step bottom-up approach. First , we 
specify non-monotonic t r u t h main tenance in a 
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direct , non-logical theory. Then, the speci f icat ion, 
together w i t h the corresponding formal f ramework , 
is used to draw a connection to autoepistemic logic 
The theory is a der iva t ive of Jon Doyle's reasoned 
assumpt ions LDoyle, 19831, and is d iscussed in 
[Reinf rank and F r e i t a g , 1988]. I t is b u i l t on the 
concept of a non-c i rcu lar proof being va l id re lat ive to 
a cu r ren t coherent be l ie f s ta te . To th i s end , a 
j u s t i f i c a t i o n is considered as a ru le of the f o rm 

, where a is a monotonic antecedent and b 
a nonmonoton ic antecedent for the conclusion c (In 
g e n e r a l , we cons ide r sets of a n t e c e d e n t s ) . A 
jus t i f i ca t ion is va l id in a given set S if a€S and bεS 
A set of such jus t i f i ca t ions is cal led a non-monotonic 
fo rmal system (NMFS) . An extension of an N M F S is 
a set S such tha t everv e lement of S has a non-
c i rcu lar proof us ing only val id j u s t i f i ca t i ons , and 
where the conclusion of every va l i d j u s t i f i c a t i o n 
belongs to S. 

One can easily ver i fy that extensions correspond 
exact ly to the I N / O U T label l ings of a non-monotonic 
j us t i f i ca t i on -based T M S [Doy le , 1979, G o o d w i n , 
19871. W i t h some minor extensions, NMFS-theorv is 
also suff ic ient to describe an assumption-based TMS 
(deK leer , 1986a). 

1.4 T h e S o l u t i o n 

The key to a logical theory of t r u t h main tenance 
now is to relate a jus t i f i ca t ion to a self-
re ferent ia l f o rmu la in autoepistemic logic ( A E L ) , 

where L is an in t rospect ive modal 
operator , and La reads as "a is be l ieved" . T h i s 
f o r m u l a i s e s s e n t i a l l y i n A E L n o r m a l f o r m 
[Konol ige, 1988a), and therefore the AEL- t rans fo rm 
of a set of jus t i f i ca t ions can be used as a basis for so-
cal led strongly grounded AEL-ex tens ions . Not ice 
that the scope of modal operators and the r ight -hand 
side of the imp l i ca t ion are restr ic ted to non-modal 
atoms. Given an N M F S J , the s t rong ly grounded 
AEL-extensions of i ts t rans form J A E L correspond to 
the extensions of J, and hence to TMS- label l ings, in 
the sense that a T M S labels exact ly the non-modal 
atoms of a s t rongly grounded AEL-extens ion I N . 

We show tha t a va r ian t of Dressler's encoding of 
non-monotonic jus t i f i ca t ions in an A T M S [Dressier, 
19881 is correct. Therefore it also inher i ts the A E L 
semantics. Dependency-directed back t rack ing and 
so-called nogood inferences are ident i f ied as a source 
of ungrounded conclusions. 

2 A D i r e c t T h e o r y o f T r u t h 
Maintenance 

We consider a countab le set V of p r o p o s i t i o n a l 
atoms. A T M S works w i t h f i n i t e subsets of V. A 

justification is a ru le p = where A and B 
are finite sets of atoms, and c is a single a tom. (We 
usual ly omi t the set parentheses when enumera t i ng 
the members of A and B.) p is valid in a set (or 
S-valid) i f f a n d N o t e t h a t a 
j us t i f i ca t i on o f the f o r m is va l i d in 
every set S. It is cal led a premise justification, and c 
a premise. A non-monotonic formal system (NMFS) 
is a finite set of jus t i f icat ions. 

Def. 2 .1 : Let J be an N M F S , and A J-
proof for q valid in S is a sequence (q1,q2,- qn) vvith 
the fo l lowing propert ies: 

Def. 2.3: Let J be an N M F S , . S is J-grounded 
i f f every has a J proof va l id in S. 

Sometimes we need to consider sets that are only 
grounded in a substant ia l ly weaker sense. 

De f 2.4 Let J be an N M F S , S is locally J-
grounded i f fevery has an S-val id jus t i f i ca t ion . 

Def. 2.5: Let J be an N M F S , . S is a J -extension 
iff 

(1) S is J-grounded and 
(2) S is J-closed 

An extension thus has the property tha t i t contains 
an atom i f and on l y i f a p roo f - v a l i d in t h a t 
extension - can be found for the a tom. As we have 
shown in IRe in f rank, 19871, a j us t i f i ca t i on -based 
T M S compu tes e x a c t l y t he e x t e n s i o n s o f i t s 
just i f icat ions. We can easily ver i fy tha t N M F S have 
the fo l lowing propert ies: 

f i n i t eness : g iven t ha t J is f i n i t e , so are i ts 
extensions. 
l o g i c a l i n c o m p l e t e n e s s : c o n s i d e r a 
proposit ional language L ra ther than a set V of 
c o n s t a n t s a s t h e d o m a i n f r o m w h i c h 
j u s t i f i c a t i o n s a r e f o r m u l a t e d . 

has the ex tens ion 
{p,r}, since a T M S fai ls to make the l og i ca l l y 
val id inference pVq f rom p. 
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In other words, a J-proof is a non-c i rcu lar sequence 
o f a p p l i c a t i o n s o f S - v a l i d j u s t i f i c a t i o n s t o 
intermediate conclusions. 



braveness: has two 
extensions: {p}, {q}. 
s t r o n g , g l o b a l n o t i o n o f g r o u n d e d n e s s : 

has e x a c t l y one 
extension {q} Notice that {p} is closed, local ly 
grounded, that is, p is the consequence of a {p}-
val id jus t i f i ca t ion , and i t is m i n i m a l in that 
respect. But it is not grounded. 
a s y m m e t r y o f j u s t i f i c a t i o n s : t h e o n l y 
admissible extension of is {p}. It 
does not y ie ld an extension {q}, where p is 
disbelieved and q believed, "backward" just i f ied 
by disbelief in p. 

The usual approach to achieving a higher degree of 
logical completeness, unless fu l l responsibi l i ty for 
logical inferences is left to the problem solver, is to 
use sets of jus t i f i ca t ions to pa r t i a l l y encode the 
meaning of connectives, as, e.g., in [McA l les te r 
1980, de Kleer 1986b, Dressier 1988]. We do not 
consider such techniques in the present paper. 

NMF'S theory provides a direct yet implementat ion 
independent speci f icat ion of j u s t i f i c a t i o n - b a s e d 
truth-maintenance. It can be easily extended to non
monotonic rules w i t h var iables [ R e i n f r a n k and 
Frei tag, 1988]. The fol lowing results on NMFS are 
needed in order to formal ly prove their equivalence 
to the part icular subclass of autoepistemic theories 
to be introduced later. 

Lemma 2.6: Let J be an NMFS, E be a .J-extension, 
E-valid just i f icat ions. Then 

Lemma 2.7: Let J be an NMFS, E a J-extension. 
There is no proper subset such that E' is a J-
extension. 

3 A u t o e p i s t e m i c L o g i c a n d T r u t h 
Maintenance 

3.1 S t rong l y G r o u n d e d A E L - E x t e n s i o n s 

A E L IMoore, 1985] is a c leaned-up ve rs ion of 
McDermott and Doyle's first shot at a modal non
monotonic logic [McDermott and Doyle, 1980] In 
this section, we consider an A E L language based on 
a propositional logic. In [1988a], Konolige develops 
the concept of a strongly grounded AEL-extension of 
a given base set. It is meant to formal ize A E L -
extensions in wh ich a f o r m u l a p a lways has a 
derivat ion independent of Lp. That is, Lp i tsel f can 
only be derived from p, and hence strongly grounded 
AEL-extens ions are a cand idate for a logic of 
j u s t i f i e d as opposed to simple belief. The def in i t ion 
of strong groundedness is par t ly syntact ical, since 
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the base set is assumed to be in a par t icu lar norma l 
form. 

Def. 3.1 (Konolige): An A E L formula p is in normal 
form iff a l l of α,β i, 
and y are non-modal formulae. Any of the disjuncts, 
except for y, rnay be absent. 

For a set S of f o r m u l a e , l e t LS = { L p : 
and So be the set of non-modal 

formulae contained in S. 

Def. 3.2 (Konolige): T is an AEL-extension of A i f f 

Def. 3.3 (Konolige): Let A be in normal form, T an 
AEL-extension of A. Let A* be those formulae in A 
for which β i€T, for a l l Lpj. T is strongly grounded i f f 

The sign ╞ss here means that the modal index of 
au toep is temic v a l u a t i o n s , w h i c h cons is t o f an 
ord inary proposit ional in terpre ta t ion and a set of 
beliefs, is restr icted to stable sets. For detai ls, see 
[Kono l ige , 1988al. We use a s l i g h t l y d i f f e r e n t 
def in i t ion of strong groundedness as the one given 
there. Th is m o d i f i c a t i o n is necessary bo th for 
Konolige's results on the relat ion between strongly 
grounded AEL-extensions and default logic, and for 
our purposes here. It is due to Konolige [1988b). 

A weaker notion of groundedness only requires 
m i n i m a l i t v w . r . t . n o n - m o d a l f o r m u l a e . I t i s 
equivalent to 

Def. 3.4 (Konolige): Let T be an AEL-extension of A, 
wh ich is not necessar i ly in n o r m a l f o r m T is 
moderately grounded in A i f f 

Simple AEL-extensions are called weakly grounded. 
AEL-extensions, and hence also strongly grounded 
extensions, are uniquely determined by the set of 
non-modal formulae contained in t hem, the i r so-
called kernel. 

L e m m a 3.5 (Konol ige) : I f two AEL -ex tens i ons 
agree on their non-modal fo rmu lae , they are the 
same. 

3.2 T h e T r a n s l a t i o n f r o m N M F S t o A E L 

We t ransform just i f icat ions into AEL- fo rmu lae as 
follows. 



Since, in A E L , is equ iva len t to 
and us ing the de f in i t ion of the 

AEL- t ransform of a just i f icat ion can be rewr i t ten as 

where al l of ai, bj, and c are non-modal atoms from 
V. For a premise , we get the atom c. Let 
J A E L be the set of transformed just i f icat ions of an 
NMFS J. Given this par t icu lar form of a base set, 
and by view of L e m m a 3.5, the cor responding 
s t rongly grounded AEL-extens ions are uniquely 
determined by the set of non-modal atoms contained 
in them. It is exact ly th is atomic kernel that is 
computed by a TMS. 

For a set S of formulae, let At(S) be the set of 
propositional atoms in S, and Th(S) be the set of 
propositional logic consequences of S. 

T h e o r e m 3.7: Let J be an N M F S w i t h A E L - -
t ransform J A E L 

(1) Suppose T is a s t rongly grounded A E L -
extens ion of J A E L Then At(To) is a J -
extension. 

(2) Conversely, let E be a J-extension. Then 
Th(E) is the kernel of a strongly grounded 
AEL-extension T of J A E L 

3.3 D iscuss ion 

It is important to note that the theorem no longer 
holds if the just i f icat ions are formed f rom a f u l l -
fledged proposit ional language rather than from a 
set of proposit ional atoms. The A E L base set {p, 

has obviously no extension that 
contains r, since f rom p we get and hence 

c a n n o t be assumed . B u t {p , r } is a 
■extension. 

Also, the condit ion of strong groundedness is 
necessary, since has a moderately 
grounded AEL-extension containing p, which is not 
strongly grounded. The corresponding NMFS has 
only {q} as an extension. 

This poses the question as to NMFS-counterparts 
to weakly or moderately grounded AEL-extensions. 
In some independent piece of work and cast in a 
quite dif ferent formal ism, Fu j iwara and Honiden 
[1989] show that weakly grounded AEL-extensions 
cor respond to closed and locally g rounded J 
extensions, in the same sense as in theorem 3.7 In 
N M F S - t h e o r y , i t is easy to show t h a t in the 

monotonic case min ima l i t y of closed sets is suff icient 
to guarantee g lobal groundedness. For a non
monotonic NMFS, however, even m i n i m a l i t y o f 
locally grounded sets is insuff icient, as the example 
above shows. Simi lar lv , the min imizat ion involved 
in the def in i t ion o f moderate ly g rounded A E L -
extensions is too weak to capture the not ion of 
grounded belief used in the TMS-wor ld. 

An addit ional fi lter is required for moderately 
grounded extensions. The d e f i n i t i o n o f s t r o n g 
groundedness provides exactly that fi l ter. (Note that 
it is related to a property of N M F S extensions given 
in Lemma 2.6.) As we elaborate in the long paper, 
this extra condition is s imi lar in spir i t to stability 
conditions in model-preference theories for default 
logic [Ether ington, 1988] and logic p r o g r a m m i n g 
[E lkan, 1989]. 

To our opinion, al l of this may eventual ly shed 
some new l ight on the relat ion between proof theory 
and model theory in non-monotonic reasoning. The 
concept of a finite, non-circular proof which is val id 
relative to an overall coherent state of belief s imply 
has some proof theoretic f lavor which is hard to 
represent independently in the model theory. 

3.4 Semant ica l Cons ide ra t ions 

Suppose we are given two just i f icat ions 
and The corresponding AEL-base set 
is F igu re 1 shows the usua l 
graphical representation of just i f icat ions. A TMS-
labe l l ing procedure proceeds as fo l lows : a is a 
premise, so it is necessarily believed and label led 
I N . In AEL , this corresponds to the K45 [Konol ige, 
1988al inference step a/La. Since there is no val id 
just i f icat ion for b, b is labelled OUT, which reflects 
the AEL-assumption Lb. Now the just i f icat ion for 
c has become val id, so it must be the case tha t c 
holds, and hence it is also label led IN Tha t is, a 

Figure 1: TMS-label ing and AEL-inferences 

j u s t i f i c a t i o n ge ts t h e f o l l o w i n g s e m a n t i c 
interpretat ion, if a is believed ( IN the database) and 
b is not believed (OUT of the database) then it must 
be the case that c is true and, consequently, must 
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also be believed (IN). Note that this in terpretat ion is 
different from the usual reading for a jus t i f i ca t ion, 
where the direct and only conclusion is the self-
bel ief tha t c must be IN the database, w i t h o u t 
referr ing to the world in consideration. 

A proper dist inct ion between ¬La and ¬a is 
crucial to an understanding of t r u t h maintenance. 
Whi le there is no a pr ior i preference for ei ther of a 
and ¬a, and hence it might be the case than none of 
them is believed, ¬La is always preferred to La. I.e., 
a TMS only adopts the self-belief La if it is forced to 
do so because it follows f rom a itself. Otherwise it 
jumps to the assumption ¬La. As we w i l l see in 
chapter 5, a confusion of a proposit ion being OUT 
and its negat ion being IN may lead to pecul iar 
consequences. 

3.5 De fau l t Log ic 

AEL and default logic IReiter, 1980] are essentially 
equivalent [Konolige, 1988a], in that the kernels of 
strongly grounded AEL-extens ions correspond to 
extensions o f de fau l t t heor ies , where an A E L 
formula is t rans la ted to a defau l t 
a: (Since default logic does not preview an 
empty M-part, dummy conditions are introduced if 
needed). Theorem 3.7 thus y ie lds a re la t ionsh ip 
between NMFS and default logic as a corol lary. 

C o r o l l a r y 3.8: Let J be an NMFS and be the 
default theory constructed f rom J A E L 

(1) Suppose T is a default logic extension of 
Then At(T) is a J-extension. 

(2) Conversely, let E be a J-extension. Then 
Th(E) is a default logic extension of 

This relat ionship is of some interest in its own r ight , 
because default logic has been given a semantics 
[Ether ington, 1988] in terms of stable, maximally 
preferred sets of models. We show in the long paper 
[ R e i n f r a n k a n d D r e s s i e r , 1988 ] t h a t t h e 
computations performed by a TMS can be regarded 
as operations on a condensed representation of such 
model sets. 

4 Assumpt ion-Based Systems 

Theorem 3 7 begs the quest ion as to a re la ted 
theorem for a non-monotonic A T M S [Dress ie r , 
1988]. A m ino r ex tens ion to N M F S - t h e o r y is 
sufficient to model an ATMS. We must a l low for 
assumptions f rom a given set to be used in J-
proofs. 

Def. 4 .1 : Same conditions as in Def. 2 .1 , and A 
J-proof relative to a is a J-proof as in Def 2 . 1 . , 
condit ion (3) replaced by: 

The def ini t ions of J-grounded relative to a and J-
extension of a t h e n a r e s t r a i g h t f o r w a r d 
generalizations of Def. 2.3 and 2.5. An ATMS works 
w i t h m o n o t o n i c j u s t i f i c a t i o n s o f t h e 
fo rm . J e x t e n s i o n s for a mono ton ic 
NMFS always exist and are unique. 

L e m m a 4.2: Let J be a monotonic N M F S , 
There is one and only one J-extension of a. We wr i te 
Jext(a). 

Given a d i s t i n g u i s h e d set an A T M S 
s imul taneous ly computes a l l Jext(a)y To 
in tegra te non-monotonic j u s t i f i c a t i o n s in to the 
essential ly monotonic A T M S - w o r l d , exp l ic i t Out-
atoms are introduced. For a given V, let OutV = {Out 

Out-atoms may not occur as the consequent 
of a just i f icat ion. 

De f . 4 .3 : Le t be a n o n - m o n o t o n i c 
jus t i f i ca t ion . Its (monotonic) ATMS- t r ans fo rm is 

Obv ious ly , there is a one-to-one correspondence 
between non-monotonic formal svstems over V and 
those monotonic formal systems over V u O u t V that 
do not pe rm i t Out-atoms as consequents. Non -
monoton ic i ty in an A T M S then is ach ieved by 
man ipu la t ing assumption sets. extension E of 
an assumption set a is an ord inary extension of a 
max imal augmentat ion of a w i t h a set (3 of Out-
atoms. Out x is added to the basis if and only if 
x€E. 

Def. 4.4: Let J be a monotonic NMFS over 

■ 

I t is impor tant to note tha t , un l i ke in [Dress ier , 
1988], J-p-extensions do not involve any so-called 
nogood in ferences. I t is exac t l y these nogood 
inferences that lead to problems of ungroundedness 
in an N M A T M S , cf next section. 

L e m m a 4.5: Let J be a non-monotonic N M F S over 
V, J ATMS its ATMS-t ransform over Let 

be an assumption set. 
(1) Suppose E is a J -ex tens ion of a and le t 

Then is a J A T M S P " 
extension of a, w i th basis 
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(2) Conversely, let S be a J ATMS-extension of 
Then is a J-extension of a. 

It is easy to see that every J-proof relative to a can 
be simulated w i th a JATMS-Peoof relative to 

Conversely, we can construct a J-proof for 
every ordinary atom in a ' extension. Since 
the t rans form is b id i rec t iona l , Lemma 4.2 also 
works in the opposite direct ion (i.e. s tar t ing from a 
monotonic NMFS over V u O u t V ) and yields a one-
to-one correspondence between u-extensions for the 
N M A T M S and strongly grounded AEL-extensions 
in the sense of Theorem 3.7 as a corollary. 

5 B a c k t r a c k i n g and Nogood Inferences 

C o n s i d e r a n e x t e n d e d l a n g u a g e i n c l u d i n g 
jus t i f i ca t ions of the f o r m where 
stands for falsi ty. Let a be a premise. Since there is 
no v\ay to derive b in the basic TMS-machinery, we 
get an inconsistent extension A dependency-
directed backtracking rout ine, which is t r iggered 
whenever becomes I N , w o u l d in t h i s case 
introduce an addi t iona l j us t i f i ca t i on 
Simi lar ly , a nogood inference rule in the N M A T M S 
would i n f e r f r o m Out 
This yields as the atomic kernel of an AEL-
extension. It is strongly grounded in the ex tended 
base set. However, f rom the or ig ina l base set 

we can onlv infer La and 
and hence get the ungrounded assumpt ion Lb, 
independently of b. 

In general, dependency-directed backtracking in 
a TMS and nogood inference rules in an ATMS can 
be considered as j u s t i f i c a t i o n - g e n e r a t i n g ru les of 
the form 

w i th approriate control restrict ions. This leads to 
modified base sets w i th new conclusions that are 
possibly not strongly grounded w.r.t . the o r ig ina l 
base set. A peculiar problem arises in an NMATMS 
due to just i f icat ions of the form 
which are used to prevent x and Out x f rom being 
assumed simultaneously. This technique appears to 
be reasonable for de Kleer's negated assumptions 
fde Kleer, 1988]. However, in the case of genuinely 
non-monotonic Ou t -assumpt ions , together w i t h 
nogood in ferences, i t leads to a con fus ion of 
incons is tency and i n c o h e r e n c e , tha t is , non
existence of any extension. Th is difference also 
suggests to use negated assumptions ra ther than 
Out-assumptions to encode logical connectives wi th 
sets of just i f icat ions. 

Applied to the incoherent set 
for example, a simple nogood inference step yields 

as an extension. The corresponding AEL-base set 
has no extension at a l l , ne i ther cons is ten t nor 
inconsistent. More work is needed to come to a 
b e t t e r u n d e r s t a n d i n g o f t h e p r o p e r t i e s o f 
backtracking and nogood inferences. [Mor r is , 19881 
seems to be a first step in the r igh t direct ion. 

6 Related Work 

Using the same translat ion as we do, but described 
in a qu i te d i f f e ren t f o r m a l i s m , F u j i w a r a a n d 
Honiden 11989] prove a re lat ion, s imi la r to the one 
presented in theorem 3.7, between weakly grounded 
AEL-extensions and what we cal l closed and locally 
grounded NMFS-extensions. 

E lkan 11989] has recently proposed a di f ferent 
t ranslat ion, (a instead of La). For the 
simple form of an AEL-language in consideration, it 
turns out that the weakly grounded extensions of 
the resu l t ing A E L base sets cor respond to the 
strongly grounded extensions using our t ranslat ion. 

I.e., three groups of researchers have come up 
independently of each other w i th related ideas and 
results, though formulated in super f i c ia l l y qu i te 
different formalisms. We consider this as evidence 
that we are on the r i gh t t rack , and tha t i t was 
get t ing to be t ime to put non-mono ton ic t r u t h 
maintenance on a sound logical basis . W h a t is 
unique to our approach, compared to (Fuj iwara and 
H o n i d e n , 1989] and [ E l k a n , 19891, i s t h e 
development of NMFS as a direct theory of t r u t h 
maintenance, as well as the t reatment of ATMSs. 

Our research is s imi lar in sp i r i t to the work by 
Hor ty , Thomason, and Touretzky on logical theories 
of inher i tance, cf. [Thomason and Ho r t y , 1988]. 
They also pursue a bo t tom-up approach us ing 
intermediate direct formalizations. The s i tuat ion in 
inheritance theory is comparable to the one in t r u th 
maintenance in that , in both f ie lds, p rocedura l 
realizations and network-based concepts were the 
s ta r t i ng point. We are c u r r e n t l y w o r k i n g on a 
characterization of t r u t h maintenance in a four-
va lued log ic , wh ich is re la ted to T h o m a s o n ' s 
approach. 

7 Conc lus ions 

We have established a relat ionship between non
monotonic t ru th maintenance and non-monotonic 
logics. This provides the technical fundament for an 
al ternat ive view of t ru th maintenance as inference 
in a non-monotonic calculus, in add i t i on to the 
t rad i t i ona l view as an e f f i c ien t mechan i sm for 
search and caching. We also have developed a direct 
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theory of t ru th maintenance and presented a correct 
encoding of non-monotonic j us t i f i ca t i ons in an 
assumption-based TMS. Our results contr ibute to 
closing an important theory- implementat ion gap, 
after TMSs and non-monotonic logics have been 
coexisting for more than a decade. They open the 
way for further research into the foundations of 
t ru th maintenance. 

8 Proo fs 

Complete proofs, including an independent proof for 
Corollary 3.8, for the claims made in this paper are 
contained in [Reinfrank and Dressier, 1988]. 

A c k n o w l e d g e m e n t s 

Our work benefited from discussions w i th Frank 
Zetsche and the members o f the A d v a n c e d 
Reasoning Methods Group. 
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A b s t r a c t 

Ci rcumscr ip t i on on the one hand and autoepis
temic and defaul t logics on the other seem to 
have qui te different characterist ics as formal 
systems, which makes i t d i f f icu l t to compare 
them as formal iza t ions of defeasible connmon
sense reasoning. In th is paper we accomplish 
two tasks: (1) we extend the or ig ina l semantics 
of autoepistemic logic to a language which in
cludes variables quant i f ied in to the context of 
the autoepistemic operator , and (2) we show 
t h a t a certain class of autoepistemic theories in 
the extended language has a m in ima l -mode l se
mant ics corresponding to c i rcumscr ip t ion . We 
conclude tha t all of the f i rst-order consequences 
of paral le l predicate c i rcumscr ip t ion can be ob
ta ined f r om this class of autoepistemic theories. 
T h e correspondence we construct also sheds 
l i gh t on the prob lemat ic t rea tment of equal i ty 
i n c i rcumscr ip t ion . 

1 I n t r o d u c t i o n 

T h e re lat ions between the ma jo r nonmonoton ic logic for
mal isms of AI — defaul t logic, autoepistemic logic, and 
c i rcumscr ip t ion — is of some impor tance, since all of 
these logics have been proposed as formal isms for vari
ous types of commonsense reasoning. The basic formal 
equivalence of defaul t and autoepistemic logic has al
ready been shown (see [Konol ige, 1987]), but the relat ion 
between c i rcumscr ip t ion and defaul t or autoepistemic 
logic remains obscure. Mos t l y th is is a consequence of 
the dif ferent foundat ions of these logics: c i rcumscr ipt ion 
is based on a m in ima l -mode l semantics (see [Lifschitz, 
1985]), wh i le the others use more proof- theoret ic tech
niques (defau l t logic [Reiter, 1980]) or an epistemic op
erator (autoepistemic logic [Moore, 1985]). 

In t r y i n g to express autoepistemic or default, logic in 
c i r cumscr ip t i on , researchers have found the basic prob
lem to be t ha t a m in ima l -mode l or even prefered-model 

*This research was supported by the Office of Naval 
Research under Contract No. N00014-85-C-0251, by sub
contract f rom Stanford University under the Defense Ad
vanced Research Projects Administrat ion under Contract 
No. N00039-84-C-0211, and by a gift from the System De
velopment Foundation. 

semantics s imply does not have the capabi l i ty of rep
resenting the requisite proof-theoret ic or epistemic con
cepts (see [Shoham, 1987]). We agree w i th this assess
ment, and say noth ing further about it here. 

On the other hand, there have been several results on 
expressing c i rcumscr ipt ion in default logic. These results 
are summarized in [Ether ington, 1986]; they apply to the 
restricted case of predicate c i rcumscr ipt ion w i th no fixed 
predicates and w i th a f in i te, fixed domain . 

From a model-theoretic po in t of v iew, the predicate 
c i rcumscr ipt ion Ci rcum(,4; P; Z) of a f irst-order sentence 
A picks out those models of A in which the extension of 
the predicate P is m in ima l . The comparison is across 
models w i th the same domain and denotat ion func t ion , 
but which might differ in the extensions of the predicates 
Z. A l l predicates other than P and Z are fixed, that is, 
cannot vary in a comparison of models. It was recently 
shown (see [de Kleer and Konol ige, 1989]) tha t fixed 
predicates are inessential in predicate c i rcumscr ip t ion, 
that is, there is a simple t ranslat ion f rom any c i rcum
scr ipt ion w i th fixed predicates to one w i thou t . Hence 
fixed predicates no longer present an obstacle to rep
resenting circumscript ions in default or autoepistemic 
ogic. 

The problem of f in i te domains remains, however. In 
this paper we provide a solut ion to this prob lem, by first 
extending autoepistemic logic to a language which al
lows quant i fy ing in to the epistemic operator, and then 
showing that a certain class of autoepistemic theories, 
the M I N = theories, express all of the f irst-order conse
quences of predicate c i rcumscr ipt ion. 

2 Semant ics of Q u a n t i f y i n g - i n 

Autoepistemic (AE) logic was defined by [Moore, 1985] 
as a formal account of an agent reasoning about her 
own beliefs. The agent's beliefs are assumed to be a 
set of sentences in some logical language augmented by 
a modal operator L. As or ig inal ly defined, and extended 
in [Konol ige, 1987], its language does not permi t var i 
ables quanti f ied outside of a modal operator to appear 
inside. In this section we fur ther extend AE logic to deal 
w i th quant i fy ing- in . 

2 .1 L o g i c a l p r e l i m i n a r i e s 

We begin w i t h a language C for expressing self-belief, 
and introduce valuations of C. The t reatment generally 
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