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A b s t r a c t 

Touretzky (1984) proposed a formal ism for 
nonmonotonic mul t ip le inheritance reasoning 
which is sound in the presence of ambiguit ies 
and redundant l inks. We show that Touret-
zky's inheritance not ion is NP-hard, and thus, 
provided P # N P , computat ional ly intractable. 
Th is result holds even when one only considers 
unambiguous, to ta l ly acyclic inheritance net
works. A direct consequence of this result 
is tha t the condi t ioning strategy proposed by 
Touretzky to allow for fast parallel inference 
is also intractable. Therefore, it follows tha t 
nonmonotonic mul t ip le inheritance hierarchies, 
a l though compact representations, may not al
low for efficient retrieval of in format ion as has 
been suggested in at tempts to use such hierar
chies, e.g., in NETL (Fahlman 1979). We also 
analyze the influence of various design choices 
made by Touretzky. We show that all ver
sions of downward (coupled) inheritance, i.e., 
on-path or off-path preemption and skeptical 
or credulous reasoning, are intractable. How
ever, t rac tab i l i ty can be achieved when using 
upward (decoupled) inheritance. 

1 I n t r o d u c t i o n 

Since the early semantic networks of Qui l l ian (1968), in 
heritance hierarchies have been used to provide a com
pact representation and efficient reasoning mechanism 
for certain kinds of taxonomic in format ion. One prob
lem that has plagued these systems is that of exceptions 
(or cancellation) in non-tree hierarchies. Ear ly at tempts 
to systematically deal w i t h this issue, such as tha t of 
NETL (Fahlman 1979), were later shown to be unsound 
in the presence of redundant l inks and ambiguit ies (Re-
iter and Criscuolo 1983; Touretzky 1984). The f irst com
prehensive definit ion that appeared to solve these prob
lems was that of Touretzky (1984). Since then, other 
equally sound schemes have been proposed (Sandewall 
1986; I l o r t y et ai 1987). Bu t despite a decade of study, 
w i th increasingly subtle examples and counter-examples 
being considered, consensus has yet to emerge regarding 

the proper t reatment of mul t ip le inheritance w i t h can
cellations. 

From a knowledge representation standpoint , par t of 
the problem is tha t there are tremendous subtleties in 
reasoning w i t h proposit ions that admi t exceptions, such 
as "Bi rds fly" (Brachman 1985). Not surprisingly, the 
research on inheritance systems mentioned above has 
not at tempted to settle the larger logical and semanti
cal issues associated w i t h defeasible reasoning. Rather, 
the argument has been tha t inheritance systems need 
to conform to a set of special in tu i t ions involv ing paths 
through hierarchies. We therefore call such systems path-
based inheritance systems and contrast them w i t h the 
more general nonmonotonic reasoning systems (Reiter 
1987). The latter approach at tempts to establish a log
ical account of defeasible reasoning (using, for example, 
autoepistemic, circumscript ive, condi t ional , or default 
logic), and somehow absorb hierarchies and inheritance 
as a special case. Wh i le the nonmonotonic systems tend 
to be more pr incipled and semantical ly mot ivated on the 
whole, they have yet to be applied successfully to prob
lems as intr icate as those considered by the path-based 
approaches. 

Bu t i f there are indeed irreducible in tu i t ions about in 
heritance and paths through hierarchies, these in tu i t ions 
are sometimes in conflict and can give rise to different 
inheritance systems (Touretzky et ai 1987). How then 
to choose among the compet ing systems, especially since 
there is no independent semantic characterization tha t 
adequately covers the phenomena in question? Wh i le 
we do not c la im to have an answer to this question, we 
do propose here a criterion that should be taken into 
account when comparing systems. W h a t we w i l l show 
is that there can be a signif icant difference in the com-
puiational tractability of inheritance depending on fine 
points of the def in i t ion used. In other words, two ac
counts of inheritance tha t cover by and large the same 
terr i tory , differing only in certain complex cases, may 
nonetheless be quite different in their overall computa
t ional demands. 

The main technical result of this paper is tha t the def
in i t ion of inheritance proposed by Touretzky 1 is inher
ent ly NP-hard , and remains so even for to ta l ly acyclic 

* T Fellow of T h e Canad ian I ns t i t u te for Advanced Research. 

1 When speaking of "Touretzky's definition of inheritance" 
or "Touretzky's inheritance system," we are referring to the 
system defined in Touretzky (1984). 
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unambiguous networks. Thus there cannot be an algo
r i t h m that correctly determines if one node is inheritable 
f rom another tha t runs in t ime that is polynomial in the 
size of the network.2 An immediate consequence of this 
is tha t the condi t ioning of a network, which Touretzky 
proposes to allow for fast parallel inference, is itself com
putat iona l ly intractable. Th is suggests that a Touretzky 
inheritance procedure cannot run unsupervised, unless 
the network can be restricted in fo rm or in size. 

Bu t the news is not all bad. We also show that there 
are plausible variants of the Touretzky definit ion that are 
indeed tractable. Among these is the definit ion proposed 
by Hor ty et al. (1987), who first exhibited a polynomial 
a lgor i thm for comput ing inheritance. We extend this 
work and demonstrate which parts of the definit ion are 
responsible for mak ing inheritance tractable. 

Aga in , we do not wish to claim that the t ractabi l i ty of 
inheritance implies the correctness of the def ini t ion; but 
it is certainly one issue among many that needs to be 
taken into account in resolving differences among com
pet ing accounts. 

In the next section, we consider the precise definit ion 
of several forms of path-based inheritance. In the subse
quent section, we examine the complexity of inheritance, 
and which combinat ion of features in the definit ion affect 
the t rac tab i l i ty of the associated reasoning. In the final 
section, we summarize our results and discuss directions 
for future research. 

2 Pa th -Based I nhe r i t ance Systems 

For our purposes, an inheritance network consists of a fi
nite set TV of objects called nodes denoted w i t h lower-case 
letters x, y, z, and a set T of edges, defined as follows: 

D e f i n i t i o n : Edge 
An edge is an element of TV x { 0 , 1 } x TV, that is, any 
ordered pair of nodes and a 0-1 value called its polarity. 
Edges w i th a 0 are called negative and those w i th a 1 
are called positive. We draw posit ive edges as x—>y and 
negative edges as x+y. 

In tu i t ive ly , the nodes of a network are intended to 
stand for concepts or properties such as "b i rd , " "pen
gu in , " "Tweety," or "fl ies." Edges, on the other hand, 
stand for statements: A posit ive edge x—>y stands for 
the statement "an x is normal ly a y," while the corre
sponding negative edge represents the statement "an x is 
normal ly not a y . " 3 Path-based inheritance is concerned 
w i t h the logic of statements of this type only.4 The goal 
is to define what it means for a new edge x—>y to be 

2For the purpose of this paper, and to keep the provisos 
to a minimum, we assume that P#NP. 

3 In the case where x is a property, instead of 'an x," this 
should read "something with property x." This also applies 
to y as a property. When x denotes an individual concept, 
instead of "an x is normally," the phrase "x is" should be 
used. The case wi th y as an individual concept never arises. 

4Touretzky also defines "no-conclusion" edges. Such edges 
are not often used in practice, and therefore we wil l ignore 
them here in order to simplify our definitions. Note that 
these edges cannot decrease the complexity of the inheritance 
reasoning. 

inferrable f rom a given set of edges T. To do so, we use 
the notion of a path. 

D e f i n i t i o n : Path 
A path is a sequence of edges f rom nodes x0 to x1 to . .. 
to where and the first n — 1 edges are 
positive.5 The polarity of a path is the polar i ty of the 
final edge. The nodes x0 and xn are called the start point 
and end point of the path. The edge formed by tak ing 
the start and end points and the polar i ty of a path we 
call the conclusion supported by the path. We wi l l let 
lower-case Greek letters stand for paths and draw them 

It is tempt ing to define the set of edges that are in
ferrable f rom a network T directly as the set of al l con
clusions supported by at least one path formed by edges 
in T. The complication is that a path may be inval i
dated in one of two ways: it may be contradicted by 
other paths ( in which case neither path wins) or it may 
be preempted by a more specific path ( in which case the 
more specific path wins). 

For the fol lowing definitions, we wi l l let be any set 
of paths, be any path and x be any 
node. 

D e f i n i t i o n : Contradict ion 
a is contradicted in $ iff there is path in w i th the same 
start and end points as a, but of opposite polar i ty. 

So for example, the path xo—>x\ —+X2 is contradicted 
by the path since the start and end 
points are the same but the final edge is of opposite 
polarity. 

For preemption, the idea is that a path is preempted 
by an edge of opposite polar i ty f rom an intermediate of 
the path. We wi l l consider two definitions of intermedi
ate. 

D e f i n i t i o n : On-path intermediate 
x is an on-path intermediate of a in $ iff for some 

a positive path 
w i th x = yj for 

some j < m. (Note that a and 7 must be identical up 
to node £ ;_ i . ) 

D e f i n i t i o n : Off-path intermediate 
x is an off-path intermediate of a m <I> iff there is a posi
tive path 7 in $ f rom XQ to x n _ i that contains x. (Note 
that cr and 7 can be completely disjoint except for the 
nodes xo and x „ _ i . ) 

D e f i n i t i o n : Preemption (off-path or on-path) 
a is preempted m _ ifT there is a node x that is an in
termediate of a in , and an edge in of the opposite 
polari ty of a f rom x to x „ . 

For example, consider the set of paths = 
where C , re ,e , and g respec

tively denote "Clyde," "royal elephant," "elephant," and 
"gray." Figure 1(a) gives the underlying inheritance net
work. (The figure contains an addit ional node Ae, which 
wi l l be discussed below.) The path < would 
be on-path preempted in <J> by the since 

5So every edge in a network is a pa th . 
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Figure 1: Examples of preemption and pa th concatena
t ion . Arrows w i t h a cross bar denote negative edges, the 
other arrows denote posit ive edges. 

re is an on-path intermediate of the pa th . 6 I t would 
also be off-path preempted by the same edge. On the 
other hand, the path where At denotes 
"Af r ican elephant," would only be off-path preempted 
in 

Contradic t ion and preemption tel l us how a pa th in a 
network may be inval idated. Bu t once a pa th is inval
idated, other paths that contain i t may be inval idated 
also. So in determining inheri table paths, we must be 
sure to concatenate only those paths tha t have not been 
ruled out . As it turns out , there are two ways to con
catenate paths. 

D e f i n i t i o n : Upward concatenation 
a is an upward concatenation of paths in i ff the last 
edge of a is in and the pa th consisting of al l bu t the 
last edge of a is also in 

D e f i n i t i o n : Downward concatenation 
a is a downward concatenation of paths in <J> iff the pa th 
consisting of al l but the first edge of a is in and the 
path consisting of all bu t the last edge of a is also in ■ . 

The latter fo rm of concatenation was or ig inal ly called 
double chaining in Touretzky (1984). Here we opt for the 
more recent terminology used in Touretzky et al. (1987). 
The def ini t ion of inheritance based on upward concate
nat ion that we w i l l consider leads to so-called decoupled 
inheritance, as opposed to the coupled inheritance when 
using downward path concatenation. 

To i l lustrate the difference between the two forms 
of concatenation, consider the fo l lowing set of paths 

where J , a s , s , a , and 
e respectively denote " J i l l , " "adul t student," "student," 
"adul t , " and "employed." The under ly ing inheri tance 
network is given in f igure 1(b). The pa th 
can now be formed by upward path concatenation. Th is 
path supports the conclusion whi le in 
supports as—e. So, in this case, J i l l and the class of 
adult students differ w. r . t . the property "employed." In 
general, when there is no coupl ing between the proper
ties of a class and the properties of i ts superclasses, one 

Royal elephant is a subclass of elephant; therefore, in
formation associated with it should override information as
sociated with the elephant class. This is precisely what is 
captured by preemption. 

speaks of decoupled inheritance. Bu t w i t h downward 
path concatenation the path , cannot be ob
tained f rom the paths in To do so, one would also 
need as->a—+e which, in fact, is contradicted in by 

So, in this case, there is a coupling between 
the properties that J i l l can inher i t and those inheri ted 
by the class of adul t students. 

We now define the inheri table paths. 

D e f i n i t i o n : Inheri table path (on-path and off-path, 
downward and upward) 

is inheritable in i ff 

In tu i t ive ly , the paths that are inheritable in are 
those tha t are inferrable f rom but not inval idated by 
Bu t where does this set come from? There are different 
ways of choosing a set We first consider Touretzky's 
def ini t ion of so called credulous inheritance reasoning. 
In this approach, is chosen to be the least set of paths 
whose edges are those of T and closed under inheritance. 
We call such sets credulous grounded extensions.7 

D e f i n i t i o n : Credulous grounded extension 
is a credulous grounded extension of a set of edges T 

iff 

Unfortunately, there need not be a unique credulous 
grounded extension for a given set F, that is a network 
can be ambiguous. Inheritance reasoners al lowing for 
mul t ip le extensions, such as Touretzky's, are called cred
ulous reasoners because they explore the various alter
natives in different extensions. Instead of al lowing for 
mul t ip le extensions, Hor ty et al. (1987) propose a fo rm 
of skeptical inheritance in which at most one grounded 
extension is generated. In this fo rm of inheritance a 
unique extension is induct ively constructed by including 
paths that are inheri table only if a path w i th the same 
start and end point but of opposite polar i ty could not 
be inher i ted. The induct ion is based on the degree of a 
pa th : 

D e f i n i t i o n : Degree 
Given a set of edges F, the degree of a path w i t h start 
point x and end point y is the length of the longest pa th 
in T f rom x to y ( ignor ing the polar i ty of the edges). 

Hor ty et al. restrict their def ini t ion of skeptical inher
itance to acyclic networks: 

D e f i n i t i o n : Acycl ic 
A set of edges T is acyclic i ff the graph formed by the 
elements of Y is acyclic.8 

We can now state the def ini t ion of skeptical inheri
tance as follows: 

7These were called grounded expansions in Touretzky 
(1984). 

8Touretzky (1984) speaks of totally acyclic, as d is t in
guished f rom IS-A acyclic networks in which the graph 
formed by only the posit ive edges is required to be acyclic. 
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D e f i n i t i o n : Skeptical grounded extension 
is a skeptical grounded extension of a set of edges T iff 

where  i is defined as follows: 

T; 
contains the paths in ø i and each path a of 

degree i + 1 w i t h the fol lowing properties: 
• a can be obtained by concatenation of two 

paths in 
• there neither exists an edge in øi, nor a path 

inheri table in ø i w i th the same start and end 
point as a but of opposite polari ty. 

W h a t we u l t imate ly care about is the conclusions ( that 
is, the edges defined by the start and end points) sup
ported by the paths in a grounded extension of a net
work. So, we define: 

D e f i n i t i o n : Conclusion set 
A set of edges is a conclusion set for T iff for some 
grounded extension ø, the edges are all the conclusions 
supported by the elements of . 

The inheritance problem, then, is this: 

D e f i n i t i o n : Inheritance problem 
Given an acyclic network T, f ind a conclusion set of T. 

Note that we are really ta lk ing about 8 inheritance 
problems here according to whether we consider off-
path or on-path preemption, upward or downward path 
concatenation, and skeptical or credulous reasoning. 
Touretzky's def in i t ion, for example, would be classified 
as on-path , downward, and credulous, while Horty 's ver
sion is of f -path, upward, and skeptical. 

We now consider the computat ional diff iculty of the 
inheritance problem. 

3 C o m p u t a t i o n a l Comp lex i t y 
The fo l lowing theorem shows that for Touretzky's inheri
tance not ion there is no polynomial a lgor i thm that takes 
as input an acyclic network F and finds a conclusion set 
of T. 
T h e o r e m 1 The inheritance problem for on-path, 
downward, credulous inheritance (Touretzky 1984) is 
NP-hard. 

The proof of this theorem is based on a reduction from 
the NP-complete decision problem "path w i th forbidden 
pairs" (or P W F P ) defined by Gabow, Maheshwari, and 
Osterweil (1976). An instance of P W F P consists of a 
directed graph G = ( V , E ) , specified vertices s,t V, 
and a collection C = { ( a 1 , b 1 ) , . . . , (a n , bn)} of pairs of 
vertices f rom V. The question is: does there exist a path 
f rom s to t in G tha t contains at most one vertex from 
each pair in C? Th is problem remains NP-complete even 
if we only consider acyclic graphs and all pairs in C are 

9The perhaps more natural condition "a is inheritable in 
øi" leads to a different notion of skeptical inheritance. We 
use the condition given above for compatibility with Horty 
et al. (1987). Under this definition, the credulous grounded 
extension of an unambiguous inheritance network need not 
be identical to its skeptical grounded extension (Selrnan and 
Levesque 1989). 

disjoint. Consider an instance of this restricted version 
of PWFP. Wi thou t loss of generality, we may assume 
that each forbidden pair (a,, bi) is such that there does 
not exist a path f rom bi, to ai in C. 

We now construct an acyclic network T f rom this in
stance of PWFP. First , we include every edge of G as 
a positive edge of T. Then for every node a that is the 
first element of a forbidden pair in C, we replace a in T 
by the network shown in figure 2. Figure 2(a) shows a 
node a f rom the forbidden pair (a, b,) w i th all of its its 
neighbors in G, and 2(b) shows the structure in T that 
replaces a: two addit ional nodes (for a to ta l of three) 
and n + 4 addit ional edges must be included, where n is 
the number of edges point ing to a in G. Note that of the 
three new nodes, the middle one a* is l inked to 6 by a 
negative edge. Since G is acyclic and the forbidden pairs 
are such that there is no path f rom bi to ai for any pair 
in C, it follows that T is an acyclic network. Moreover, F 
is such that given an arbi t rary on-path, downward, cred
ulous conclusion set C of T, there is a path in G f rom s 
to t containing at most one vertex f rom each forbidden 
pair iff the conclusion s—>t is in C.1 0 

Now, consider an algor i thm that takes as input an 
instance of PWFP, constructs (in polynomial t ime) an 
acyclic network T as outl ined above, then finds an on-
path, downward, credulous conclusion set C of T, and, 
finally, returns "yes" if s—>tøG, and and "no" other
wise. Such an a lgor i thm returns "yes" iff there exists a 
path f rom s to t in G containing at most one node f rom 
each forbidden pair; but if finding a conclusion set can 
be done in polynomial t ime, the overall a lgor i thm w i l l 
run in polynomial t ime. Since P W F P is NP-hard, the 
inheritance problem for on-path, downward, credulous 
reasoning must be NP-hard too. 

The construction shown in figure 2 exploits var i 
ous properties of inheritance reasoning in general, and 
Touretzky's not ion specifically. First ly, we rely on pre
emption since preemption prevents inheritance of a path 
f rom s to t going through a"and b (corresponding to a 

10We prove this property of T in Selman and Levesque 
(1989). 
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path through a and 6 in G) because of the negative edge 
between a* and 6.11 Secondly, we use quasi-redundant 
edges (Touretzky 1984, p. 10; Hor ty et ai 1987, Techn. 
Report , p. 21). The edge a'→a" is an example of a quasi-
redundant edge, since this edge is s t r ic t ly redundant for 
concluding a ' → a " ; however, to be able to conclude, for 
example, p1 —>a", the edge is essential (so it allows us to 
have a pa th f rom s to t through p1 and a" in a grounded 
extension, corresponding to a pa th f r om s to t v ia p1 
and a in G). Th i rd l y , the reduct ion relies on coupled 
inheri tance; we w i l l see below tha t decoupled (upward) 
reasoning allows for po lynomia l t ime inheritance. 

A direct consequence of theorem 1 is tha t the condi
t ion ing of a network as proposed in Touretzky (1984), to 
enable fast paral lel inference, is also intractable. Con
d i t ion ing is a process of adding edges to an inheritance 
network in such a way that a paral lel marker-passing 
procedure can subsequently be used to draw conclusions 
in t ime propor t iona l to the height of the inheritance net
work. 

We show in Selman and Levesque (1989) that the i n 
heritance network T used in the above reduct ion is unam
biguous. Thus, i t follows that even when we restrict our
selves to unambiguous acyclic networks the inheritance 
problem based on Touretzky's not ion of inheritance is 
intractable. Note that i t also follows that determining 
whether an unambiguous acyclic network supports a par
t icular conclusion is NP-hard. 

Recently, Geffner and Verma (1989) used a var iat ion 
of our reduct ion to show that reasoning based on their 
def ini t ion of defeasible inheritance is NP-hard . Thus, the 
technique given above may prove to be useful in deter
m in ing the complexi ty of fu ture proposals for path-based 
inheritance reasoners. 

We w i l l now consider the influence of the various de
sign choices made in Touretzky (1984; Hor ty et ai 1987) 
on the computat ional complexi ty of the inheritance rea
soning. Our results are summarized in the fo l lowing the
orem: 

T h e o r e m 2 The computational complexity of the inher
itance problem for the various choices between off-path or 
on-path, upward or downward path concatenation, and 
skeptical or credulous reasoning is given in the following 
table (P stands for doable in polynomial time): 

Clearly the choice between off-path or on-path pre
empt ion and between skeptical or credulous inheritance 
does not change the complexi ty of inheri tance reason
ing. However, when we consider upward (decoupled) i n 
heritance, we do obta in t ractabi l i ty . The lat ter f ind ing 
generalizes the t rac tab i l i ty result obtained by Hor ty et 
al. (1987) for their of f -path, upward, skeptical inher i 
tance reasoner. The NP-hardness results are proved by 
showing that the various design choices do not affect the 
correctness of the above reduction when dealing w i t h 

Downward concatenation is also relevant here. 
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downward path concatenation. Details are given in Sel
man and Levesque (1989) which also contains polyno
mia l a lgor i thms for the tractable cases. 

To summarize, theorem 2 clearly shows tha t the type 
of path concatenation (upward or downward) is the de
termin ing factor in the complexi ty of the reasoning. Th is 
d is t inct ion corresponds to the difference between decou
pled and coupled reasoning. It should be noted though, 
that in formalisms w i t h substantial ly different definit ions 
of preempt ion or grounded extension, other factors may 
also influence the complexity of the reasoning. 

A fur ther understanding of the complexi ty issues un
der ly ing inheritance reasoning can be obtained by con
sidering the polynomial algor i thms for upward inheri
tance. These algor i thms i terat ively construct a conclu
sion set. The main dif f iculty in adding a new conclusion 
to the set arises f rom having to determine whether the 
path tha t supports this conclusion is preempted or not . 
So, we have to search for intermediates, which requires 
access to the set of paths in the under ly ing grounded ex
tension. At worst, one would have to keep track of the 
fu l l extension obtained so far (which can be of exponen
t ia l size). Bu t for upward inheritance it is sufficient to 
keep track of the current conclusion set, since one can 
rederive in po lynomia l t ime any part icular path in the 
under ly ing extension, and thus, search for intermediates 
efficiently. 

As a f inal topic, we w i l l consider goal-directed inheri
tance. Note tha t so far we have considered the complex
i ty of finding any arb i t rary conclusion set given an inher
itance hierarchy. In some situat ions, however, i t might 
be wasteful to generate the entire conclusion set, and 
moreover, one might be interested in an extension that 
supports some part icular conclusion (or set of conclu
sions). We therefore define the problem of goal-directed 
inheritance reasoning: given an inheritance network T 
and a conclusion x→y (or x+y), does there exists an 
extension of T support ing x→y (or x-f+y)! 

When a network is unambiguous or when skeptical rea
soning is desired, the computat ional complexi ty of this 
inference task is essentially the same as tha t of search
ing for a conclusion set, since, on the one hand, after 
f inding the unique conclusion set, it a t r i v ia l to deter
mine whether it contains a certain conclusion, and, on 
the other hand, after at most a po lynomia l number of 
queries, one can determine the conclusion set (for a net
work containing n concepts one has to consider at most 
2n (n — 1) possible conclusions). Moreover, our reduc
t ion f rom P W F P shows that goal-directed inheritance 
for on-path and of f -path, credulous, downward inher i
tance is NP-hard , jus t l ike the problem of f inding an 
extension. (Consider the query: does the constructed 
network have an extension that supports the conclusion 
s—>t?) The fo l lowing theorem, however, shows tha t goal-
directed reasoning is s t r ic t ly more di f f icul t than search
ing for an arb i t rary conclusion set:12 

12Kautz and Selman (1989) show that goal-directed rea
soning for default logic is also strictly harder than generating 
an arbitrary extension. 



T h e o r e m 3 Goal-directed, on-path, upward, credulous 
inheritance is NP-hard. 

T h e p roo f of th is theorem is again based on a reduc
t i o n f r o m P W F P (Selman and Levesque 1989). For th is 
reduc t ion , i t is essential for the constructed network to 
be ambiguous. Th i s theorem reveals some of the ex t ra 
di f f icul t ies in inher i tance reasoning due to ambigui t ies, 
a l though these dif f icul t ies do not arise when searching for 
an a rb i t ra ry conclusion set, as shown by theorem 2. The 
complex i ty o f goal-d i rected, o f f -pa th , upward , credulous 
inher i tance remains an open p rob lem. 

4 Conc lus ions 

We have shown tha t path-based inher i tance reasoning 
as defined in Toure tzky (1984) is NP-ha rd , even when 
restr icted to acyclic unambiguous networks. Moreover, 
the versions of th is f o r m of inher i tance t ha t use skeptical 
reasoning and of f -path p reempt ion are also in t ractable. 
Thus , whi le Toure tzky (1984) showed tha t inheri tance 
networks can be condi t ioned to al low for correct and 
efficient retr ieval of i n f o rma t i on ( t ime 0(log(n)) for n 
concepts) such as in NETL (Fah lman 1979), our results 
demonstrate t ha t th is cond i t i on ing procedure itself is 
in t rac tab le when based on downward (coupled) inher
i tance. However, our other complex i ty results, gener
a l iz ing the t rac tab i l i t y result obta ined by Hor ty ct ai 
(1987), also suggest t ha t the various forms of upward 
(decoupled) inher i tance can be used to achieve t rac tab i l 
i ty . 

One possible d i rect ion for f u tu re research is to consider 
fu r ther restr ict ions on the f o r m of inher i tance networks 
t ha t wou ld al low for a p o l y n o m i a l inference mechanism 
based on downward inher i tance. One candidate we have 
already begun to explore is inher i tance restr icted to com
pletely balanced hierarchies. Such hierarchies have a 
m a x i m u m depth of 0 ( l o g ( n ) ) , where n is the to ta l num
ber of concepts in the hierarchy. Such a restr ic t ion seems 
qui te reasonable, given tha t taxonomic hierarchies w i l l 
of ten be "shal low." However, we have found a reduc
t i on f r o m the smal l -c l ique p r o b l e m 1 3 to downward in 
heri tance reasoning w i t h such networks. Th is result i n 
dicates tha t Toure tzky 's inher i tance no t ion restricted to 
balanced hierarchies is most l ike ly s t i l l in t ractable ( i .e. , 
not po l ynomia l ) . See Selman and Levesque (1989) for a 
more detai led discussion of these issues. 
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13Given a graph G w i th n vertices, does G contain a clique 
of size log(n)? (Karchmer 1989; Megiddo and Vishkin 1988) 
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