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ABSTRACT 

This paper explores the realization of robotic arm 
motion planning, especially Findpath Problem, which is a 
basic motion planning problem that arises in the 
development of robotics. Findpath means: Given the initial 
and desired final configurations of a robotic arm in 3-
dimensional space, and given descriptions of the obstacles 
in the space, determine whether there is a continuous 
collision-free motion of the robotic arm from the one 
configuration to the other and find such a motion if one 
exists. There are several branches of approach in motion 
planning area, but in reality the important things are 
feasibility, efficiency and accuracy of the method. The 
topological method has shown great potentiality in 
practice compared with the others. Here a simulation 
system is designed to embody the topological Dimension 
Reduction Method (DRM) [l]-[2] and it is in sight that 
DRM can be adopted in the first overall planning of real 
robotic arm system in the near future. 
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connectivity among these limited number of connected blocks 
{D i (F) , F,(Fj),)}. The continuous infinitely-divisible space of real, 
FCS, is at last partitioned into finite number of equivalent connected 
blocks. With this kind of abstract evolution, the planning can be 
realized accurately and efficiently. 

There is something to do before we can see its feasibility. First 
we must answer how to divide D(F) into {Dj(F)\ to adapting to the 
requirements. By close research on the problem we get to the 
following partition rule: 

Theorem 2.2: D(F) is divided into {D , (F ) | with the critical curves 
which consists of three kinds of curves: R-Growing Boundaries [2], 
Disappearance Curves (DC) [1],[4] and original obstacle boundaries. 
The critical curves can be expressed by segmental parametric 
equations. 

See Fig 2.2(a),(b), R-Growing Boundary is produced by 
expanding the original obstacle boundary by R distance. 
Disappearance Curves emerge where the convex obstacles are 
crowded together or some concave obstacles exist. (A concave 
obstacle can be divided into several convex obstacles.) Disappearance 
means moving into the DC-region some connected branch wil l 
disappear. These are the most interesting curves. In a planar polygon 
environment, there are only two types of DCs. Assume PQ is a R-
long line-segment and P is the reference point, then one type of DCs 
are generally curves traced by P as PQ rests against one obstacle's 
comer and another obstacle's edge, which means a DC is generated 
by a point and a line-segment. See Fig 2.2 (a), within the region 
closed by the DC, the connected branch (B1 B2) disappears. We can 
see one type of DC is a conchoid curve or a part loop of a conchoid 
curve, whose equation is readily calculated. Another type of DC is 
very simple. See Fig 2.2 (b), it is an arc caused by a concave comer. 

1. It solves the problem in a point of global view, just like man 
doing. 

2. It plans, instead of continuously or numerically, topologically 
and then combinatorially. As a result, it gains efficiency. 

3. It is an accurate, or complete, algorithm theoretically, which 
meaas it can find the path if and only if one exists. 

4. Not only does it judge whether there exists a path but also gives 
a practical solution. 

5. The worst-case complexity is exponential in the freedom 
degrees of the robotic arm, but seen from the angle of obstacle 
combinations, its time complexity is (XM2), where M is the 
number of obstacles. 
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realize the partition to enable every 
is a connected block in RMG. It is obvious that trie partition must be 
completed in two steps: first partition D into so that for every x 
in has the same combination of connected branches and 

has the same partition form, then compute {F , (D, ) } ; second 
p a r t i t i o n i n t o so that for every 

has the same combination of connected branches, 
then compute 

This is a framework of our simulation system: 

* Input and organize obstacles with mathematical model based 
data structures and exclude the obstacles which are out of 
radius of 

* Expand all obstacles by (assume so the robotic 
arm is simplified as three line-segments jointing together. To 
maintain the independence of the algorithm, let us suppose that 
the expanded obstacle is a similar-shaped figure of the original 
one. 

* Initialize 0-level Small-Node of CN-Tree; 

* Partition on 

* Project the environment vertically and obtain the topview. 
On the topview, compute the Supporting Lines [10] of 
every obstacle from the origin where the robotic arm is 
fixed, and arrange them in the angular order. Partition the 
whole possible angle range on into 
angle intervals with the sorted angle values. 

After such partition, we can deduced that if we make 
a cross section at any angle value of then on all of 
the cross sectioas there'll be the same number and the same 
shapes of cut obstacles, whereas on each cross section the sizes 
of obstacle sectional views may very and the distances between 
them may be different. See Fig 3.2 . Therefore the above 
partition is not enough for to have the same 
connected branches on the cross sectioas made at every angle 
value in each interval The cross sections at different 
angles of the same may be different. 

A yA2 and A-jA^ to have the same connected branches in each 
partitioned angle interval on ©,. However, there are often 
Disappearance Curves when the obstacles are crowded together. 

* With the liner-cutting-detection technique, which 
means making cross sections at regular intervals within 
the partitioned interval, detecting whether some 
DC emerges or vanishes, we can find the angle values on 

where the Disappearance Curves corresponding to 
start or end. On , the interval, 

is so small after the former partition that the liner-cutting 
is very limited. Insert these angle values into the above 
partition. Now the partition on is at last completed. 

Split the corresponding 0-level Small-Node to 1-level Big-
Nodes on CN-Tree according to the complete partition. It is 
obvious that Big-Node levels maintain the adjacency 
information. 

Because we are sure that every angle value belonging to one 
partitioned angle interval on wi l l have the 
same connected branches, we make a cross section at an 
arbitrary value of every angle interval. 

Compute the connected branches of and expand the 
corresponding 1-level Big-Node to 1-level Small-Nodes on 
CN-Tree according to the computation 

Partition each connected branch of A XA 2 into sub-branches with 
the -Growing Boundaries, Disappearance Curves 
corresponding to and r-expanded obstacle boundaries so 
that for every angle value belonging to each sub-branch of 

has the same connected branches. See Fig 4.2. 

Split the corresponding 1-level Small-Node to 2-level Big-
Nodes on CN-Tree according to the partition on the cross 
section. 

Compute the 
corresponding 
CN-Tree. 

connected branches oi AjA^ and expand the 
2-level Big-Node to 2-level Small-Nodes on 

By now the CN-Tree is accomplished, which is also a 2-step 
tree. On the CN-Tree, each branch from the root node to the leaf 
node indicates a connected block in the C-Space of the robotic arm, 
or corresponds to a complete 
connected branch. 

* Link tiie nodes of the CN-Tree with arcs by applying theorem 
2.2 to the CN-Tree recursively, so all connectivity information 
of the problem is stored in the CN-Tree. 

* For a branch from the root to leaf on the CN-Tree is 
homologous with a leaf node on the CN-Tree, we deliver all 
connectivity information down to the leaf level, so we gain s 
simple graph, called Leaf-Graph. 

* I ocate the initial and desired final state of the robotic arm to 
the corresponding leaf mxles on CN-Tree and search in the 
Leaf-Graph. 

4. E X A M P L E 

With one solution of our simulation system, we conclude this 
paper. The program is composed in PASCAL and performed on SUN 
3/60 workstation. The CPU time of the following example is 1:17 
seconds and we can still improve it by doing efforts. 

See Fig 4.5, the robotic arm has three joints and the 
environment consists of a wall comer, a cylinder and two cuboids. 
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In this case, the partition on 9, is relatively simple, see Fig 4.1. 
The CN-Tree is illustrated in Fig 4.4, where the lines of (lashes on 
the two Big-Node level represent the adjacency relations of D, and 
FjK(D;) respectively, the real lines on the Leaf-Node level represent 
the direct connectivity relations obtained from every cross section and 
the lines of dashes on the Leaf-Node level represent the indirect 
connectivity relations obtained by delivering connectivity information 
down. Finally all connectivity information is stored on the Leaf-Node 
level. The CN-Tree is symmetrical. The Leaf-Nodes where the states 
S1, S2 and S3 are located are also symmetrical with those where S1', 
S2' and S3' are located, see Fig 4.4. This reflects the real world 
perfectly. 

Searching in the Leaf-Graph, we can see that every two 
configurations of {S1, S2, S3, S1', S2', S3'} are connected. If we 
abbreviate a Leaf-Node (Di, Fj,k(Di), G 1 (D i ' F j k (D i ) ) ) to a four 
group ( i j K I ) , then we can show a solution of S1 → S2 → S3 by 
giving a series of the Leaf-Nodes: (3,2,1,1) → (3,2,2,1) → (3,2,3,1) 
→ (4,1,1,1) → (5,2,1,1) → (4,2,2,1) → (33,2,2). Fig 4.5 is the 
hardcopies of the result displayed on the video-terminal of SUN 3/60 
by selecting a arbitrary configuration in each of the nodes. 

We adopt the Shortest-Way Algorithm of Graph Theory in our 
searching of the Leaf-Graph, then the solution is optimal in the sense 
of least sudden changes of states because a configuration can be 
turned into all configurations of the same Leaf-Node smoothly and 
continuously. This character is beneficial to the motion of a real 
robotic arm. 
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Fig 4.4 The CN-Tree and Leaf-Graph of the example 
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Fig 4.5 The solution to S1→S 2—>S3 is d i sp lyed 
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