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ABSTRACT 

Factory scheduling can be considered as an 
instance of the constraint satisfaction problem 
(CSP). Factory scheduling differs from traditional 
forms of the CSP in that it is a dynamic or open 
problem. Constraints are added to and retracted 
from the problem as work progresses on the shop 
floor. Constraints alter as unexpected events occur, 
such as the breakdown of machines, the late 
arrival of work, the early arrival of work and the 
changing demands put upon the scheduling system 
by the user. A system is required that can generate 
and maintain a schedule in near-real time and 
exploit opportunities as they arise. A single 
resource scheduling agent has been developed to 
schedule incrementally and reactively in a 
dynamic environment using advanced CSP 
techniques. 

1. THE SCHEDULING PROBLEM 

The scheduling task can be loosely described as the 
problem of assigning resources and start times to 
operations. One conventional approach is to view this 
problem as one of optimisation. Two problems are 
associated with such a strategy: definition and brittleness. 
In many real world applications the concept of optimality 
is poorly defined due to problems of measure and conflict. 
To optimise on one measure alone could jeapordise other 
measures of optimality. Due to the dynamic and stochastic 
nature of the factory environment, optimal schedules 
quickly break down. They are brittle. It is preferable to 
produce schedules that are satisfactory and to maintain 
these schedules in the dynamic environment. 

Schedulers can be classified as predictive or reactive. 
Predictive schedules are created in a static world and 
assume that events are entirely predictable. Reactive 
scheduling addresses the problem of maintaining a 
schedule in a dynamic and stochastic world. Such a world 
offers up both conflicts and opportunities to the scheduler. 
In ISIS [Smith et al., 1986] deviations from the predictive 
schedule are viewed as constraint violations which result in 
a rescheduling of the effected orders. 

In OPIS [Ow et al., 1988] and SONIA [Collinot et al., 
1988] the predictive and reactive scheduling components 
are integrated. Reactive scheduling (schedule maintenance) 
is achieved by the use of domain specific heuristics: load 
balancing, constraint relaxation and permutations of the 
predictive schedule. The system described here creates 
incrementally a predictive schedule (in a fashion similar to 
that used by Elleby [1987]) and maintains that schedule, 
reacting to both conflict and opportunity, using one 
common mechanism. 

2. PROBLEM REPRESENTATION 

The scheduling problem can be represented using 
constraints. The job (or customer order) is expressed as a 
process plan, that is, a (possibly non-linear) sequence of 
job steps (as in [Fox and Kempf, 1985]) that must be 
performed to complete the job. The process plan is then the 
set of precedence constraints on a job. Each job step is 
refered to as an operation. Associated with each operation 
are technological and temporal constraints. Technological 
constraints describe the set of resources that can be used to 
perform a given operation. Temporal constraints describe 
the intervals of time in which an operation can be 
performed such that the due date of the order is met. In 
the single resource scheduling case it is assumed that the 
precedence and technological constraints have been 
satisfied; the problem is to satisfy temporal constraints on 
individual operations. 

The CSP can be represented (as in [Mackworth, 
1977]) as a simple un-directed graph G. Let V(G) the set 
of vertices in G correspond to variables {v1, v2, v3, v„}. 
Each variable v, has a domain d{. a set of values that may 
be assigned to v,. Let E(G) be the set of binary constraints 
{(v, v;), (vk v1), ... (vm v j } . between pairs of variables. The 
binary constraint (v, vy) exists if there are values in the 
domain dk that may conflict with values in the domain dr 

In the scheduling problem an operation OP, is 
analogous to a variable v,. The domain di is then the set of 
legal start times for OPi. The binary constraint (OP, OPj) 
exists if there are values in di that may conflict with values 
in dj. Viewed another way there is a potential to schedule 
OPi and OPj such that they interfere in time. During the 
construction or execution of a schedule the domain d, of 
operation OPi may be altered by an external agent. 
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Domain di may be enlarged (OPi may arrive early or be 
allowed to finish late) or reduced (OPi, may arrive late or 
have to finish early). A new operation OPj can be added to 
G (an operation arrives at the resource) or an existing 
operation OPk can be deleted from G (an operation 
completes and leaves the resource). These changes may 
create and destroy edges in G. 

Most research on the constraint satisfaction problem 
has used the n-queens or similar problems as a vehicle to 
study algorithms and their complexities. The n-queens 
problem has two characteristics that put it apart from the 
factory scheduling problem. Firstly, the n-queens problem 
can be represented by a complete undirected graph G 
(sometimes refered to as Kn). In the factory scheduling 
problem the complete graph Kn wi l l be a special case. The 
graph G wi l l tend to be incomplete and may be a union of 
disconnected graphs, corresponding to a set of independent 
CSP's. Secondly, the n-queens problem is a static or 
closed constraint satisfaction problem: once posed the 
graph G does not alter. In the factory scheduling problem 
the graph G is dynamic. 

One further difference between the traditional CSP 
and the one posed here is that only the first solution to the 
scheduling problem is required (though if the problem is 
one of optimisation then many schedules would be 
required). The search for the first solution in a dynamic 
problem has implications on the techniques to be used. A 
search appropriate to finding all solutions (as in Mack worth 
[19771) is not neccessarily economical in finding the first 
solution. 

3. THE REACTIVE SCHEDULING AGENT 

The agent is given the scheduling problem posed as a 
constraint graph G. In moving forwards through the search 
space the agent performs forward checking, removing 
inconsistencies from the domains of unscheduled 
operations. Moving backwards, backtracking, the agent 
reasons over inconsistencies deriving knowledge about the 
search space. This knowledge is exploited during search 
(pruning the search space) and in reacting to externally 
induced change. The agent exploits the topology of G in 
two ways [Nudel, 1983]. First, having scheduled operation 
OP, the agent wi l l select the next operation to schedule 
from the set of unscheduled operations adjacent to OPi. 
This allows the agent to navigate around independent 
problems rather than imbed them within each other. 
Secondly, having given OP, a start time forward checking 
need only be applied to the set of unscheduled operations 
adjacent to OP,. In moving backwards through the search 
space, backtracking, the agent exploits the dependency 
information derived by forward checking. 

The following example demonstrates the incremental 
creation of a schedule by the agent. Suppose we have four 

operations (A, B, C and D) to be scheduled on a single 
resource. For the sake of simplicity it is assumed that each 
operation has a duration of 1 unit of time on the resource, 
the resource cannot be shared and the temporal domains of 
the operations are discrete (table 1). 

The agent solves the scheduling problem in a depth-
first incremental manner. On assigning a start time to an 
operation OPi the agent applies the forward checking 
procedure (FC) of Haralick [Haralick and Elliot, 1980] to 
all unscheduled operations adjacent to OP, in the constraint 
graph G, removing inconsistent values from their domains. 
Table 3 shows the result of assigning a start time of 2 to 
operation A. The value 2 is removed from A's domain. 
Forward checking is applied to all operations adjacent to 
operation A: operations B, C and D. This results in the 
reduction of the domains of operations C and D (the value 
2 is removed from their domains) and a recording of the 
source of this reduction (column reducers in table 3). 

Prosser 1005 

The scheduling problem is represented as a constraint 
network. In the example given an arc (constraint) exists 
between operations OPi and OPj if there is an intersection 
between their domains (a potential for operations to 
interfere in time). Table 2 shows the adjacency matrix for 
the constraint graph V(G)=(A B C D). 

The agent wi l l then proceed, making the assignments 
B= l (forward checking B with D) and C=4 (forward 
checking C with D). This results in, table 4, operation D 
having a null domain. 



On discovering an inconsistency the agent wi l l 
backtrack using dependency information derived by 
forward checking. During backtracking the agent reasons 
over inconsistencies using the nth order shallow learning 
of Dechter [1986]. In the situation depicted in table 4 the 
agent wi l l concentrate on the operation with the null 
domain, operation D, until the inconsistency is resolved or 
the information derived by forward checking is exhausted. 
The most recent reducer of D, operation C, wi l l be 
unscheduled. This wi l l enlarge the domain of D, returning 
the value 4 that was earlier removed by forward checking 
C with D. Using shallow reasoning the agent determines 
the nogood {(D€V(G) & B=1 & A=2) -> C#4], (when 
operation D exists and B = l and A=2, C cannot have the 
value 4). For brevity the nogood is identified uniquely by a 
symbol, in this case #0. Due to nogood #0 the value 4 is 
removed from the domain of C leaving C with a null 
domain. The agent wi l l then unschedule the next most 
recent reducer of operation D, operation B. As a result of 
this nogood #0 can no longer be believed because B= l is 
false and the value 4 is returned to the domain of operation 
C (nogood #0 is destroyed). Unscheduling B wi l l also 
return the value 1 to the domain of D, previously removed 
by forward checking B with D. Again using shallow 
learning the agent derives the nogood #]{(A=2 & CeV(G) 
&. DeV(G)) —> B#1}, removing the value 1 from the 
domain of B leaving a domain of (3 5). This is shown in 
table 5. 
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4. REACTION TO EXTERNALLY INDUCED CHANGE 

Notification of change is received by an agent via mail. 
Typically changes are: the deletion of an operation, the 
addition of an operation or a modification to the domain of 
an operation. Such changes can occur during search or 
after search has completed. Deletion of an operation, 0Px' 

corresponds to the relaxation of constraints. A l l reductions 
imposed by 0PX via forward checking are returned to the 
domains of the effected operations, the nogood 
knowledge-base is updated and OPx is removed from the 
constraint graph. For example suppose operation C is 
removed from the scheduling problem in table 6. The 
reductions imposed by C on D via forward checking are 
undone (the value 4 is returned to the domain of D). The 
nogood #7 {A =2 & C€V(G) & D€V(G) -> B#1} can no 
longer be believed because C€V(G) is false. The nogood 
#1 is destroyed and the value 1 is returned to the domain 
of B. Operation C is finally removed from the constraint 
graph resulting in the schedule of table 7. 

The addition of an operation OPx corresponds to the 
addition of constraints to the problem and involves the 
mechanisms of search (forward checking, dependency 
directed backtracking and shallow learning). Suppose 
operation E, with a single point domain (2), is added to the 
schedule in table 6. The adjacency matrix (table 2) is 
updated, creating new arcs AE, EA, CE, EC, DE and ED. 
Forward checking takes place between A and E, removing 
the value 2 from E's domain, resulting in an inconsistency 
(table 8). 

Search can then move forward from B, making the 
assignments B=3, C=4 (forward checking C with D) and 
finally D = l (table 6). 

The nogood #1{(A=2 & C€V(G) & D€V(G) ) -> 
B#1} is equivalent to the discovery of a path inconsistency 
between vertices A, B, C and D in the constraint graph G. 

The agent wi l l then perform the following sequence of 
actions, resulting in the schedule depicted in table 9. 



1 
1.1 

1.2 
1.3 

1.4 
1.5 

2 
2.1 

2.2 
2.3 

UNSCHEDULE A 
A#2 therefore relinquish 
#1{(A=2 & C€V(G) & De V(G)) -> B#1} 
Return to domain of B the value 1 
Undo forward checking from A. 
Return value 2 to domains of C, D and E 
Create nogood #2{(E€V(G)) -> A#2} 
Apply FC(BA) removing 3 from domain of A. 
Domain of A is 0 

UNSCHEDULE B 
Undo forward checking from B. 
Return value 3 to domain of A 
Create nogood #3 {#2 -> B#3} 
Apply forward checking between D and B 
removing the value 1 from domain of B 

M A K E ASSIGNMENTS 
B←5 
A←3 
E←2 

3 
3.1 
3.2 
3.3 

The nogood #2{(EeV(G)) —> A#2) is equivalent to 
discovery of an arc inconsistency between vertices E and 
A in the constraint graph G. 

Table 9. 

A naive method of reacting to a modified domain is to 
delete the effected operation and add it back into the 
problem as an unscheduled operation using the techniques 
described above. Such a technique makes little effort to 
protect the knowledge discovered during search and is not 
recommended. Assume the original domain D, of 
operation OPx has been modified to become a new domain 
Dv The following situations must be considered: 

earlier than anticipated, some later operation in the process 
plan being re-scheduled into a later time interval or a 
relaxation of the due date of the order. In (c) the domain of 
0PX has been translated along the time line and, possibly, 
enlarged or reduced. This can be caused by a potentially 
malignant combination of events from both (a) and (b). 

Situations (a), (b) and (c) must be considered in 
conjunction with situation (1), (2) and (3), giving cases 
(a.l) through to (c.3). In fact there are only eight cases to 
consider. Case (b.2) is a contradiction and therefore cannot 
occur. Cases (a.2) and (c.2) correspond to conflicts: the 
start time of an operation now lies outwith its temporal 
domain. This can be addressed by dependency directed 
backtracking. Case (b. l) corresponds to an opportunity, the 
operation can be re-scheduled using a start time which 
better meets the order's due date or the resource's 
scheduling goals. 

In situations (b) and (c) the domain of an operation 
has been enlarged or translated and possibly 
reduced/enlarged. Any nogood with OPx€V(G) as part of 
its antecedent must be relinquished; the nogood can no 
longer be believed. For example assume, in table 9, the 
domain of operation E is enlarged from (2) to become (1 
2). The nogood #2{(EeV(G)) —> A#2} can no longer be 
believed because we have not considered the implications 
of E having the additional value 1 in its domain. [In fact 
the value 2 in the domain of A is still nogood, although it 
has not yet been deduced, so long as (C€ V(G) & De V(G) 
& E€ V(G)) remains true]. If we can no longer believe #2 
then we can no longer believe #3{#2 —> B#3}. Therefore 
enlarging or shifting the domain of E also enlarges the 
domains of A and B. A further effect of enlarging the 
domain of an operation is the potential addition of arcs to 
E(G). In the case above, E's domain enlarged to (1 2), new 
arcs BE and EB must be added to E(G). 

In situation (a) the domain of OPx has become more 
restrictive and the nogoods in the knowledge-base continue 
to be believed. For example in table 6, if the domain of 
operation C is reduced from (2 4) to (4) we continue to 
believe #1{(A=2 & CeV(G) & DeV(G)) -> B#1). 
Reducing C's domain from (2 4) to (4) wi l l remove the 
arcs AC and CA from E(G). 

5. ENHANCEMENTS 

The basic algorithm described in sections 3 and 4 uses 
heuristics to improve performance when applied to the 
scheduling problem. 

The arcs in E(G) are classified as either active or 
passive. When forward checking is applied across an arc, 
with the consequent reduction of a domain, the arc is 
considered active. The next operation to be scheduled is 
selected from the set of unscheduled operations incident to 
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(1) OPx is scheduled and its start time falls within Dx. 
(2) OPx is scheduled and its start time falls outside Dx 

9 

(3) OPx is not scheduled. 

In (a) the domain of OPx has been reduced. Typically 
this is due to some earlier operation in the process plan of 
OPx finishing late, some later operation in the process plan 
being re-scheduled into a earlier time interval or the due 
date on the order becoming more restrictive. In situation 
(b) the domain of OPx has been enlarged. This may be due 
to some earlier operation in the process plan finishing 



active arcs. For example, in table 3, after operation A<— 2 
the agent would make an assignment to C or to D and then 
finally to B without backtracking. A further improvement 
is made by locally reordering consistency tests [Nudel 
1983]) after each call to forward checking that results in 
the discovery of an inconsistency. 

Having determined the set of candidate operations to 
be considered for scheduling a heuristic is applied to select 
the most appropriate operation to schedule. The fail-first 
heuristic of Haralick [1980] (select the operation with the 
smallest domain) is not appropriate to the factory 
scheduling problem. The reason for this is that the domains 
and durations of operations in G are not all identical (as in 
the n-queens) and an operation with the smallest domain 
need not be the operation that most constrains the problem. 
The greatest valency heuristic of Nudel [1983] (select the 
vertex with maximum valency) has also performed 
relatively poorly in this domain. The best performer, so far, 
has been greatest duration. This heuristic selects from the 
set of candidates the operation with the longest duration. 
This is a similar heuristic to that used in bin packing, 
fitting large blocks first then smaller blocks in the 
surrounding gaps. 

6. THE AGENTS ROLE 

The agent described here is a component part of DAS, the 
Distributed Asynchronous Scheduler [Buchanan et al, 
1988]. DAS is a reactive/opportunistic scheduler, currently 
undergoing field test at Alcan Plate Ltd (Birmingham, 
England). The architecture of DAS is a model of the ideal 
business organisation. DAS is a three level hierarchy of 
units. At the lowest, operational, level each unit represents 
an individual machine centre. At the middle, tactical, level 
each unit represents an aggregation of similar machine 
centres. The top, strategic, level represents a global 
management view of the scheduling task. Attached to each 
unit in the hierarchy is a scheduling agent. At the 
operational level o~agents maintain work-to-lists for 
individual machine centres. At the tactical level t-agents 
delegate and retract work from the subordinate operational 
level. At the strategic level the s-agent releases work onto 
the shop floor. All agents run asynchronously and 
communicate freely via mail (although agents are allowed 
to ignore messages under special circumstances). The o-
agent's role is to satisfy temporal constraints. The t-agents 
satisfy technological constraints and attempt to resolve 
operational conflicts by load balancing between resources. 
The s-agent resolves temporal conflicts by inter-agent 
backtracking (resequencing the order that decisions are 
made through a process plan) or by temporal constraint 
relaxation. 

The agent described here is the o-agent. Decisons 
made by an o-agent are propagated through the global 
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hypothesis (the current schedule) and messages are sent to 
affected agents. Change induced on one operational agent 
by any another agent are handled in an identical manner to 
change induced on an agent from the external world. If 
the operational agent is posed an over constrained 
scheduling task the agent will deliver to its superior t-agent 
a conflict set (a set of operations that cannot be 
consistently scheduled on this resource). This conflict set 
is derived from the agent's current set of beliefs, the 
nogood set. The tactical agent analizes this conflict set and 
attempts to resolve it by load balancing (undoing 
technological decisions). If the t-agent fails to resolve a 
conflict then it will pass up a new, richer, conflict set to 
the s-agent. This may result in the s-agent resequencing the 
order that decisions are made through a job's process plan 
or as a last resort relaxation of temporal constraints on one 
of the jobs in the conflict set. 

7. CONCLUSION 

The reactive agent is a hybrid of forward checking, shallow 
learning and the JTMS of Doyle [1979]. The 
implementation differs from the pure JTMS in the 
following respects 

- The current set of program beliefs and then-
jus tifications is, exclusively, the set of nogoods. 

- All justifications have empty out-lists's 
- Any program belief that is not justified is deleted 
- The incremental schedule is the set of program 

assumptions 
- The creation of program beliefs is performed by 

shallow learning based on knowledge derived from 
forward checking 

- Backtracking only uses dependency information 
derived from forward checking 

- The set of program beliefs (the nogood set) are 
utilised in pruning the search space, in reacting to 
externally induced change and in explaining 
conflicts to the external world. 

By giving an agent a reactive/opportunistic capability 
and an ability to explain its current set of beliefs (due to 
shallow learning and truth maintenance techniques) a 
symbiosis emerges. Problem solving effort can be 
distributed across an architecture and be allowed to 
proceed asynchronously. 
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