
Towards Friendly Concept-Learners.

Luc De Raedt Maurice Bruynooghe
Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A
B-3030 Heverlee, Belgium

Abstract
We give a general overview of C U N T , a user-
friendly interactive concept-learner, which can
be used as a module for Learning Apprentice Sys
tems. CLINT combines several interesting fea
tures : it uses domain-knowledge, generates
examples, copes with indirect relevance, shifts
its bias, recovers from errors and identifies con
cepts in the limit.

1 Introduction.

One of the achievements of early work on machine learn
ing [Michalski et al, 83] was the development of con
cept-learners which operated in isolation, relied heavily
on the user and addressed only well defined and restrict
ed tasks. Today, a new generation of learning systems,
named Learning Apprentice Systems (LAS), is being
developed, e.g. DISCIPLE [Tecuci, 88] learning precondi
tions of actions and object models, BLIP [Morik, 89]
modelling the world by observation, PRODIGY
[Minton, 88] and LEAP [Mitchell et al, 85] improving
their problem-solving performance, ... Concept-learning
is often a subtask in this type of systems; it has to use
the available knowledge and keep the user's involvement
to a minimum.

This paper gives a general overview of CLINT
(Concept-Learning in an INTeractive way), a user-friend
ly concept-learner. It uses knowledge, generates exam
ples, copes with indirect relevance, shifts its bias, recov
ers from errors and identifies concepts in the limit. A l l
these properties make it well suited as a module in a
LAS. A more thorough discussion of CLINT w.r.t.
example generation and assimilation can be found in [De
Raedt and Bruynooghe, 88a] and w.r.t. bias, language and
explanation in [De Raedt and Bruynooghe, 88b]. The con
tribution of this paper is that it shows how the tech
niques of [De Raedt and Bruynooghe, 88ab] can be inte
grated in one system.

The paper is organized as follows : in section 2, the
learning task is formulated in a logical framework; the
following section contains a full description of the
learning algorithms in CLINT; an example illustrating
the technique is given in section 4 and finally in section
5, we briefly touch upon related work. The appendix con

tains a summary of CLINT's algorithms.

2 Problem-Specification.
Concept-learning refers to the process of generating a
concept-description from examples. We use a logical
framework [Genesereth and Nilsson, 87]. A concept is a
predicate. A concept-description is a set of Horn-Claus
es defining the predicate and examples are ground
instances of a predicate. We restrict ourselves to func
tion free predicates. Moreover, literals are of the form
p(X1 , ... , Xn) with the X. distinct variables. This is not

an additional restriction because constants are allowed in
the knowledge-base and an equality predicate is also
available e.g. q(a,X,X) rewrites to q(X,Y,Z) :- A(X),
Y=Z where A(a) is in the knowledge-base.

In practice the concept-learning process is not only
driven by training-examples but also by bias [Utgoff and
Mitchell, 82], which is -following Utgoff- anything
which influences how the concept-learner draws induc
tive inferences based on the training-examples. The sig
nificance of bias for concept-learning is widely recog
nized [Utgoff and Mitchell, 82], [Utgoff, 86].
Although bias may be incorporated in a concept-learning
system in a variety of ways, we wi l l only consider bias
in the form of restrictions on the description language.

In our framework, a bias is correct for learning a
predicate p if there exists a set of Horn-clauses S for the
predicate p in the description language associated with
the bias, such that all positive and no negative examples
are covered by S. A concept is conjunctive if it can be
defined with one Horn-clause. Otherwise it is disjunc
tive.

The knowledge-base, employed by the learner, con
tains two different kinds of predicates. Basic predicates
are defined by the user and assumed to be correct. They
are specified by arbitrary Horn-clauses. Learned predi
cates are defined by the learner and derived from opportu
nities. An opportunity occurs when the user signals that
there is an error in the learner's knowledge-base. In our
framewoik, an opportunity takes the form of an uncov
ered positive or a covered negative example. Horn-claus
es for learned predicates satisfy one of the language-
schema's in the learner's knowledge-base. A language-
schema describes a set of syntactic restrictions, i.e. a

De Raedt and Bruynooghe 849

bias, which must be satisfied by a Hom-clause in order
to belong to the language associated with the schema.
Our concept-learner has an ordered series of language-
schema's L1 L 2 , . . . , Ln , . . .

For each opportunity, the learner analyzes and aug
ments its knowledge by asking membership questions to
the user. Each question asks for the classification of an
example for a learned predicate. By processing the oppor
tunities, the learner's knowledge base gradually con
verges to the desired one.

By now we can define our notion of concept-learning
more precisely :
Given :

• a knowledge-base of basic and learned predicates
• for learned predicates, a set of positive and negative
examples

• a series of language-schema's, L1 L 2 , . . . , Ln , . . .

• an opportunity to learn, indicated by the oracle
• an oracle, wi l l ing to answer membership questions

F i n d :
• an adapted knowledge-base, such that all positive
examples and no negative examples are covered

3 Processing an opportunity.

The two classes of opportunities, uncovered positive
examples and covered negative examples, are processed in
a different way.

3.1 Processing a positive example.
When the learner receives an uncovered positive example,
it constructs a new clause covering the example and adds
it to the knowledge-base. To compute the clause, the
learner constructs an explanation (cf. later) in order to
obtain a starting clause, and generalizes it by asking ques
tions. The algorithm to process an uncovered positive
example is shown in h a n d l e u n c o v e r e d of the
appendix.

As examples are ground facts, they only specify the
objects which are directly involved and not the relevant
relations between these objects with respect to the con
cept. A l l relations in the knowledge-base are potentially
relevant. However, considering all these relations simul
taneously is clearly not feasible since this would very
rapidly lead to combinatorial problems. Therefore, our
learner divides its knowledge-base into different regions
and at any time only relations belonging to one region
are considered. The regions are computed from the exam
ple, the knowledge-base and the language-schema's. Giv
en an example, a knowledge-base and a language-schema,

a maximal ' set of relations holding for the example

As such a set may indicate why an example belongs to a con
cept, we call it an explanation However, in contrast to EBG
[Mitchell et al., 86], our notion of explanation does not mean
that the conditions are sufficient.

2
For simplicity, we wi l l assume that the explanation is unique.
In [De Raedt and Bruynooghe 88b], we show that the explana
tion is unique for some interesting languages and show how
to extend the method if explanations are not unique.

and satisfying the schema, is computed. This set consti
tutes the explanation. From the explanation and the
example, a starting clause is derived by turning all con
stants into distinct variables in the clause with as head
the example and as body the explanation. Note that the
starting clause for an example is true, provided that the
concept can be described in terms of the predicates in the
knowledge-base and the language-schema. The reason is
that a starting clause is the most specific one covering
the example with respect to the knowledge-base and the
language-schema. Since the language-schema's are ordered
according to growing expressiveness of the languages
they describe, we can order the starting clauses according
to the language they belong to. Within this order, the
first starting clause, which does not cover any negative
example, is passed to the generalization procedure.

In the next step, the starting clause is carefully gen
eralized using a specific to general search which drops
multiple conditons (this part constitutes the w h i l e
loop). The generalization procedure computes a new
clause obtained from the old clause (the starting clause),
by deleting a subset S of the body of the old clause, such
that the new clause covers an example e which was not
covered by the old clause, the new clause does not cover
negative examples and S is minimal. The example e is
then presented to the user for classification. If it is posi
tive the old clause is replaced by the new one, and the
process is repeated. Otherwise, the learner backtracks in
order to construct another subset. If there are no more
subsets fulf i l l ing the conditions, the generalization pro
cess terminates and the clause is added to the knowledge
base. During generalization, the system may have collect
ed new negative examples. The algorithm tests whether
these are covered by previously learned rales, and if nec
essary, it takes appropriate action in order to recover
from possible errors.

3.2 Processing negative examples.
When the learner receives a covered negative example,
there must be an incorrect clause in its knowledge-base.
The algorithm to handle covered negative examples is
shown in h a n d l e _ c o v e r e d in the appendix. A clause
c is incorrect if there exists a substitution 0 such that
head(c)0=false and body(c)6 is true. To locate incorrect
clauses, the learner constructs the proof tree explaining
why the negative example is covered and analyses it. If
necessary it asks intelligent questions to the user. These
questions are also membership-questions. They ask for
the classification of examples which correspond to nodes
in the proof tree. The method to locate incorrect clauses
is very similar to Shapiro's debugging method used in
the Model Inference System [Shapiro 82]. When an incor
rect clause is located, it is retracted from the knowledge
base. Of course, in order to maintain consistency the
learner must verify whether the positive examples which
were covered by the incorrect clause, are still covered. If
not, it w i l l generate and process an opportunity for each
uncovered positive example. Also, if a predicate was
learned after the predicate for the incorrect clause and if
the latter one was involved in learning the former, then

850 Machine Learning

we must also verify its positive and/or negative exam
ples. In order to avoid these interactions between differ
ent predicates as much as possible, it is advised that pred
icates arc thoroughly tested before other ones are
learned. The complete algorithm is shown in the
appendix.

33 About the algorithm.
At this point we want to stress that the subsets S in
hand le_uncovered can efficiently be computed using
a breadth-first search, pruned by knowledge and guided
by heuristics. For more details see [De Raedt and
Bruynooghe, 88a].

The efficiency of the algorithm depends on the redun
dancy in the starting clause(s) and the size of the knowl
edge-base. For a lot of interesting problems, the needed
resources are acceptable (cf. [De Raedt and Bruynooghe,
88a]). The number of questions generated by the algo
rithm, depends on the number of conditions and the
redundancy in the starting clause(s). In general, the num
ber of questions needed is small (cf. [De Raedt and-
Bruynooghe, 88a]).

Because of space-limitations we do not discuss the
language-schema's and the way they are implemented
here. For more details see [De Raedt and Bruynooghe,
88bJ. Instead, we give a detailed example.

CLINT's algorithm has several interesting features :
• It copes with indirect relevance [Michalski, 83]
because the user only has to supply the directly
involved objects in an example and not the impor
tant relations holding between them. This is a more
natural and less demanding way to describe exam
ples.

• Disjunctive as well as conjunctive predicates can be
learned.

• The system can shift its bias when it discovers that
its language is not sufficient to describe the predi
cate. This situation occurs whenever the starting
clause covering a positive example in a language cov
ers negative examples (see also the example). In
that case the language of the clause will be shifted.
So, CUNT shifts the bias at the clause-level.

• The system generates most of the examples it
needs. The user has to specify at most one positive
example to learn a clause.

• The system is a closed-loop one. This means that
newly learned predicates are integrated (assimilated)
in the knowledge-base and that once learned, they
can be used like any other predicate.

• The system provides a kind of error-recovery. If an
incorrect clause is assimilated, the system will
retract it when there is an opportunity to do so.

• CLINT identifies concepts in the limit, provided
that the predicate can be described in one of the lan
guages and the current knowledge. This limiting
behaviour is proved in [De Raedt and Bruynooghe,
88ab]. For conjunctive predicates and simple lan
guages there is even finite identification.

There are still some remaining problems with the algo
rithm :

• Recovering from an error in an assimilated predicate
may also affect other predicates. Therefore, recover
ing from such errors may involve a lot of work.

• The order in which predicates are learned is impor
tant. Ideally, the easier predicates should be learned
first, and the more difficult ones, which use the easi
er ones in their definition should only be learned
afterwards. However, if the user presents the predi
cates in a different order, this does not necessarily
lead to problems, because of CLINT's error-recov
ery ability. In fact, problems only arise when there
is a positive and a negative example such that given
the knowledge and the languages, there is no clause
which covers the positive example and which does
not cover the negative one. In that case, CLINT will
keep on shifting its bias.

• The learned clauses depend very much on the knowl
edge CLINT possesses. If CLINT knows all rele
vant predicates w.r.t. the concept to be learned, then
CLINT will learn a small number of clauses in
easy languages. On the other hand, if CLINT knows
only predicates that are not so relevant, CLINT
will learn a larger number of clauses or the bias of
the clauses will be more complex. This problem
seems to be inherent to concept-learners.

• CLINT does not take into account the relationship
between different clauses for the same concept. As a
consequence, CLINT does not always learn the con
cept-description whith the minimal number of claus
es. This problem also arises in MARVIN [Sammut
and Banerji, 86] and MIS [Shapiro, 82].

• For some language-schema's, knowledge-bases and
examples there may be more than one explanation.
If the number of possible explanations is large, the
algorithm may require a lot of computation. For a
discussion of these issues and some possible solu
tions we refer to [De Raedt and Bruynooghe, 88b].

4 An example session.

The knowledge-base consists of the following defini
tions in PROLOG :

De Raedt and Bruynooghe 851

object(X):- block(X).

less(X,Y) :- X < Y.

Comments are in italic, user input in bold and C L I N T s
output in roman.

?-learn.
Positive Example of New Predicate ?
> same_coior(t2,b4).
An explanation for the example is computed using the
first language schema : table(t2), block(b4), object(t2),
object(b4). The starting clause is derived from the expla
nation. Notice that the starting-clauses contain only rela
tions which hold for the example. The first language-
schema requires that all variables in the body of the
starting-clause also occur in the head of the starting-
clause. Although the system knows that object is more
general than block and table, it keeps these predicates
in the body in order to facilitate the generalization pro
cedure. This knowledge is however used by the system
during the generalization process and in order to simpli
fy final clauses.
Starting clause :

same__color (X, Y) : -
t a b l e (X) , b l o c k (Y) , o b j e c t (X) ,
o b j e c t (Y) .

The system tries to generalize and after considering one
candidate generalization, it constructs an example and a
subset fulfilling the necessary conditions, so it asks the
user to classify the example. The example is choosen
randomly from the set of examples which can be con
structed using the subset.
Is same_color(tl,tl) positive ? [y/n]

>y
After searching 1 clauses, next clause :

same__color (X, Y) : -
t a b l e (X) , o b j e c t (X) , o b j e c t (Y) .

As the user classifies it as positive, the system general
izes.
Is same_color(bl,tl) positive ? [y/n]
>y.
After searching 2 clauses, next clause :

s a m e _ c o l o r (X , Y) : -
o b j e c t (X) , o b j e c t (Y) .

The system is unable to find further generalizations, so
the clause is asserted in the knowledge-base.
No more valid generalizations after searching 2 clauses
Generalized clause :

same__co lo r (X ,Y) : -
o b j e c t (X) , o b j e c t (Y) .

?-error.
Example which is incorrectly handled ?
> same_color(t2,b5).
The user signals that an error has occurred. The system
locates and retracts the incorrect clause by analyzing
the proof for the example. If object was a basic predi
cate, then the two verification questions would not be
asked since it is assumed that basic predicates are cor
rect.
Verify whether object(b5) is true ? [y/n]

>y.
Verify whether object(t2) is true ? [y/n]
>y.
Retracting wrong clause:

s a m e _ c o l o r (X , Y) : -
o b j e c t (X) , o b j e c t (Y) .

same_color(t2,b4) is positive and uncovered
Starting clause for same_color(t2,b4) covers negative
example same_color(t2,b5)
As the system discovers that the starting clause covers a
negative example, it decides to shift the bias of this
clause. The new language-schema includes clauses
where each condition can have one variable not occur
ring in the head. No relations between these existential-
ly quantified variables are allowed.
Shifting bias, new starting clause :

same__color (X, Y) : -
t a b l e (X) , b l o c k (Y) , w e i g h t (X , X W) ,
w e i g h t (Y , Y W) , c o m p o s i t i o n (X , X C) ,
c o m p o s i t i o n (Y , Y C) , c o l o r (X , C X) ,
c o l o r (Y , C Y) , o b j e c t (X) , o b j e c t (Y) .

Starting clause for same_color(t2,b4) covers negative
example same_color(t2,b5)
The new language-schema is the same as the old one
except that it allows for relations between the existen-
tially quantified variables.
Shifting bias, new starting clause :

same__color (X, Y) : -
t a b l e (X) , b l o c k (Y) , w e i g h t (X , X W) ,
w e i g h t (Y , Y W) , c o m p o s i t i o n (X , X C) ,
c o m p o s i t i o n (Y , Y C) , c o l o r (X , C X) ,
c o l o r (Y , C Y) , o b j e c t (X) , o b j e c t (Y) ,
CX = CY, l e s s (X W , Y W) .

Ls same_color(bl,b3) positive ? [y/n]

After searching 2 clauses, next clause :
same__color {X, Y) : -

b l o c k (Y) , w e i g h t (X , X W) ,
w e i g h t (Y , Y W) , c o m p o s i t i o n (X,XC),
c o m p o s i t i o n (Y , Y C) , c o l o r (X , C X) ,
c o l o r (Y , C Y) , o b j e c t (X) , o b j e c t (Y) ,
CX = CY, l e s s (X W , Y W) .

I know same_color(bl,tl) is positive, so I generalize !
After searching 1 clauses, next clause :

s a m e _ c o l o r (X , Y) : -
w e i g h t (X , X W) ,
w e i g h t (Y , Y W) , c o m p o s i t i o n (X , X C) ,
c o m p o s i t i o n (Y , Y C) , c o l o r (X,CX) ,
c o l o r (Y , C Y) , o b j e c t (X) , o b j e c t (Y) ,
CX = CY, l e s s (X W , Y W) .

Is same__color(bl,b2) positive ? [y/n]
> n .
Ls same_color(bl,bl)positive ? [y/n]

After searching 8 clauses, next clause :
same__color (X, Y) :-

w e i g h t (X , X W) , w e i g h t (Y , Y W) ,
c o m p o s i t i o n (X , X C) , c o m p o s i t i o n (Y , Y C) ,
c o l o r (X , C X) , c o l o r (Y , C Y) , o b j e c t (X) ,
o b j e c t (Y) , C X = CY.

Is same_color(b2,p2) positive ? [y/n]

852 Machine Learning

After searching 6 clauses, next clause :
same__color (X, Y) : -

w e i g h t (X , X W) ,
c o m p o s i t i o n (X , X C) , c o m p o s i t i o n (Y , Y C) ,
c o l o r (X , C X) , c o l o r (Y , C Y) , o b j e c t (X) ,
o b j e c t (Y) , C X = CY.

Is same_color(pl,pl) positive ? [y/n]

>y.
After searching 6 clauses, next clause :

same__color (X, Y) : -
compos i t i on (X ,XC) , compos i t i on (Y ,YC) ,
c o l o r (X , C X) , c o l o r (Y , CY), o b j e c t (X) ,
o b j e c t (Y) , C X = CY.

No more valid generalizations, after searching 31 clauses
Generalized and simplified clause :

s a m e _ c o l o r (X , Y) : -
c o l o r (X , C X) , c o l o r (Y , C Y) , C X = CY.

The final clause can be simplified using information gath
ered during the while-loop in the appendix. This session
with CUNT, implemented in BIMprolog took about 50
seconds of CPU-time on a SUN 3/50.

5 Related work.

Our approach is related to the work on version-spaces
[Mitchell, 82], learning apprentices [Tecuci, 88], EBG
[Mitchell et al, 86], experimentation [Subramanian and
Feigenbaum, 86],[Sammut and Banerji, 86], [Krawchuk
and Witten, 88], indirect relevance [Buntine, 87], identifi
cation in the l imit and debugging [Shapiro, 82] and shift
of bias [Utgoff and Mitchell, 82],[Utgoff, 86].

CLINT's basic algorithm is very similar to version-
spaces, except that CLINT stores the negative examples
instead of the G-set. For rich description languages this
is often more efficient [De Raedt and Bruynooghe, 88a].

As CLINT builds plausible explanations for exam
ples in an inductive way it attempts to overcome the
strong theory requirement imposed by EBG. Therefore it
also needs more than one example to find a new defini
tion.

CLINT asks membership questions to the user, just
like Factoring [Subramanian and Feigenbaum, 86], MAR
VIN [Sammut and Banerji, 86], A L V I N [Krawchuk and-
Witten, 88]. However, none of these techniques copes
with indirect relevance, because they all require that the
relevant relations in an example are specified. Subramani
an uses some kind of propositional logic, while we use
subsets of first order logic. Factoring is more powerful
but less general than CLINT because it requires that the
space is factorable. For M A R V I N and A L V I N it is less
clear which concepts can be learned. A L V I N is less effi
cient and more powerful because it always tries to con
struct crucial objects, while CLINT constructs just sig
nificant objects. Also, M A R V I N and A L V I N cannot
shift their bias and only cope with a more limited form
of indirect relevance (from some given relations it is pos
sible to induce other ones).

Coping with indirect relevance in CLINT is very
similar to the technique in PGA [Buntine, 87]. Only,
PGA is unable to shift its bias or to generate examples.

CLINT is related to the learning component of DIS
CIPLE [Tecuci, 88]. However, it does not suffer from
some of the problems with DISCIPLE [Tecuci, 88] like
the use of a restricted versionspace approach, limited
explanations and no means for error-recovery.

The debugging method used in CLINT is adapted
from [Shapiro, 82], and optimized not to ask questions
about basic predicates.

Previous work on shifting the bias concentrated on
propositional logic [Utgoff, 86]. One of the main contri
butions of CLINT is the introduction of a series of lan
guages, which are subsets of first order logic and which
can be used to shift the bias. These languages are comput
ed dynamically from one example and the knowledge
base.

6 Conclusions.

We presented an original approach to concept-learning
combining several interesting features (example-genera
tion, shift of bias, use of knowledge, indirect relevance)
into one system. We believe that the resulting system
CLINT, is more friendly than other concept-learners.
Hence, it seems very promising for use in learning
apprentice systems. CLINT is currently being integrated
in an expert system shell in order to obtain a learning
apprentice.

Acknowledgements.

We would like to thank Y. Kodratoff, G. Tecuci, G.
Sablon and J.F. Puget for suggestions on CLINT and G.
Sablon, D. De Schreye, M. Vermaut and the referees for
their comments on earlier versions of this paper. Part of
the work was done while Luc was a visitor in the Infer
ence and Learning Group of Y.Kodratoff at the Univer-
site de Paris-Sud. Maurice Bruynooghe is supported by
the Belgian National Fund for Scientific Research and
Luc De Raedt's visit was partially supported by the Bel
gian National Fund for Scientific Research by means of
an IBM-travel grant.

R e f e r e n c e s .

[Buntine, 87] Buntine, W., Induction of Horn-Clauses :
methods and the plausible generalization algorithm,
International Journal of Man-Machine Studies,
26(4): 499-520, 1987.

[De Raedt and Bruynooghe. 88a] De Raedt, L.,
Bruynooghe, M, On interactive concept-learning and
assimilation, In Proceedings of the 3rd European
Working Session On Learning, pages 167-176, Glas
gow, October 1988.

[De Raedt and Bruynooghe, 88b] De Raedt, L.,
Bruynooghe, M, On explanation and bias in inductive
concept-learning and assimilation, Report , Depart
ment of Computer Science, Katholieke Universiteit
Leuven, Belgium, 1988.

[Genesereth and Nilsson, 87] Genesereth, M.R., Nilsson,
N.J., Logical foundations of Artificial Intelligence,
Morgan Kaufmann, Los Altos, 1987.

De Raedt and Bruynooghe 853

[Krawchuk and Witten, 88] Krawchuk, B., Witten, I.,
On asking the right questions, In Proceedings of the
5th Machine Learning Conference, pages 15-22, Ann
Arbor, June 1988.

[Michalski et al„ 1983] Michalski, R.S., Mitchell,
T.M., Carbonell, J.G., (editors) Machine Learning :
an artificial intelligence approach, Tioga publishing
company, Palo Alto, 1983.

[Michalski, 83] Michalski, R.S., A theory and methodol
ogy of inductive learning, In Michalski, R.S.,
Mitchell, T.M., Carbonell, J.G., (editors), Machine
Learning : an artificial intelligence approach, Tioga
publishing company, Palo Alto, 1983, pp. 83-134.

[Mitchell, 82] Mitchell, T .M, Generalization as search,
Artificial Intelligence, 18(2):203-226, 1982.

[Mitchell et al 85] Mitchell, T.M., Mahadevan, S.,
Steinberg, L.I., LEAP : a learning apprentice for
VLSI design, In Proceedings of the ninth Internation
al Joint Conference on Artificial Intelligence, pages
573-580, Los Angeles, California, August 1985.

[Mitchell et al., 86] Mitchell, T.M., Keller, R.M.,
Kedar-Cabelli, ST. , Explanation based generalization
: a unifying view, Machine Learning, 1(1): 47-80,
1986.

[Minton, 88] Minton, S., Quantitative results concerning
the utility of Explanation Based Learning, In Pro-
ceedings of the seventh National Conference on Arti
ficial Intelligence, pages 564-569, StPaul, Minsota,
August 1988.

[Morik, 89] Morik, K., Sloppy Modeling, In Morik, K.,
(editor) Knowledge Representation and Organization
in Machine Learning, Lecture Notes in Artif icial
Intelligence, Vol . 347, Springer Verlag, 1989.

[Sammut and Banerji, 86] Sammut, C, Banerji, R., Learn
ing concepts by asking questions, In Michalski, R.S.,
Mitchell, T.M., Carbonell, J.G., (editors), Machine
Learning : an artificial intelligence approach, 2,
Morgan Kaufmann, Los Altos, 1986.

[Shapiro, 82] Shapiro, E.Y., Algorithmic program debug
ging, The M I T Press, Cambridge, 1982.

[Subramanian and Feigenbaum, 86] Subramanian, D.,
Feigenbaum, J., Factorization in experiment genera
tion, In Proceedings of the fifth National Confer
ence On Artificial Intelligence, pages 518-522,
Philadelphia, August 1986.

[Tecuci, 88] Tecuci, G., DISCIPLE : A theory, methodol
ogy and system of expert knowledge acquisition, Doc
toral Dissertation, Universite Paris-Sud, Orsay, 1988.

[Utgoff and Mitchell, 82] Utgoff, P.E., Mitchell,
T.M., Acquisition of appropriate bias for concept
learning, In Proceedings of the second National Con
ference On Artificial Intelligence, pages 414-417,
Philadelphia, August 1982.

[Utgoff, 86] Utgoff, P.E., Shift of bias for inductive
concept-learning, In Michalski, R.S., Mitchell,
T.M. , Carbonell, J.G., (editors), Machine Learning :
an artificial intelligence approach, 2, Morgan Kauf
mann, Los Altos, 1986.

Appendix : a summary of CLINT's algorithm.

CLINT =
As long as there are st i l l opportuni t ies

Receive an example e for a predicate p f rom the
user
A d d e to the set of examples
Handle__example (p , e)

H a n d l e _ e x a m p l e (p , e) =
If e is posit ive and uncovered
then H a n d l e _ u n c o v e r e d (p , e)
If e is negative and covered
then Hand le__cove red (p , e)

Hand le__uncove red (p , e) =
bias__index = 0
Repeat

bias_index = bias_index + 1
Find the explanation x for e in the language

Lbias_index
Construct the max imal set of relations f r om e,
Lb a i s _ i n d e x and the knowledge-base

Construct c: head(c) = e and body(c) = x
Der ive c f r om c by tu rn ing al l constants into dis
tinct variables

Un t i l c' does not cover negative examples
New_negatives = 0
possible=true
Whi le possible do

Delete a subset S f r o m body(c') to obtain a new
clause c" such t ha t :

(1) c" covers an example e'
(2) c' does not cover e'
(3) c" does not cover any negative example
(4) There is no subset of S for wh ich (1,2,3) holds

Ask the user to classify e'
If e' is posit ive then c'=c"
If e' is negative
then backtrack on the subset S

add e' to New_negatives
If there are no more plausible subsets
then possible=false

A d d c' to the knowledge-base
If there are clauses for p dif ferent f r o m c' then

For al l e" in New_negatives do
H a n d l e _ e x a m p l e (p , e ' ')

Handle___covered (p , e) =
Analyze the proof tree for e in order to obtain an
example e' and an incorrect clause c such tha t :

(1) e' is negative
(2) there is a subst i tut ion 6 such that head(c)0=e'
(3) body(c)0 is t rue

Retract c
For al l posit ive examples e" of p covered by c do

Handle__example (p , e ' ')
For a l l predicates q learned after p and using p do

For al l examples e" of q do
Handle__example (q , e ' ')

854 Machine Learning

