
Yang and Nau 3 4 9

Preprocessing Search Spaces for Branch and Bound Search

Dana S. Nau*
Computer Science Department,

Institute for Advanced Computer Studies,
and Systems Research Center

University of Maryland
College Park, Maryland 20742

Qiang Yang
Computer Science Department

University of Maryland
College Park, Maryland 20742

Abstract

Heurist ic search procedures are useful in a large
number of problems of pract ica l impor tance .
Such procedures operate by searching several
paths in a search space at the same t i m e , ex
pand ing some paths more qu ick ly t han others
depending on which paths look most promis
ing. Of ten large amounts of t ime are required
in keeping track of the contro l knowledge.

For some problems, th is overhead can be
great ly reduced by preprocessing the prob lem
in appropr ia te ways. In par t i cu la r , we dis
cuss a data s t ruc ture called a threaded deci
sion graph, which can be created by prepro
cessing the search space for some problems, and
winch captures the contro l knowledge for p rob
lern so lv ing We show how th is can be done,
and we present an analysis showing that by us
ing such a me thod , a great deal of t ime can be
saved du r i ng prob lem so lv ing processes.

1 I n t r oduc t i on

Heurist ic search procedures are useful in a large number
of p rob lem domains. Most heurist ic search procedures
(for example. A * . SSS*, B*, AO)*, and alpha beta) have
been shown to be special cases of best first Branch-and--
Bound search [V. K u m a r and L. Kanal , 1983, Nau
I981]. These procedures search several so lu t ion paths at
the same t ime, expand ing some paths more qu ick ly t han
others depending on which paths look most p romis ing .

One source of compu ta t i ona l overhead du r i ng such
search is the t ime spent keeping track of the a l ternate
par t ia l solut ions that the procedure is examin ing . T y p i
cal ly, the search a l go r i t hm stores these par t ia l so lut ions
on a list called the agenda, open list, or activelist, in
order of their est imated cost. Any t ime a new par t ia l so
lu t ion is generated, i ts est imated cost must be compared
w i t h the est imated costs of the other par t ia l so lut ions
already on the l ist , in order to f ind the appropr ia te place

*This work was supported in part by an NSF Presidential
Young Investigator award, wi th matching funds provided by
Texas Instruments and General Motors Research Laborato
ries, and in part by NSF Grant NSFD CDR-88003012 to the
Systems Research Center.

to pu t i t on the l is t . Thus, s ign i f icant c o m p u t a t i o n a l
overhead is required j us t to m a i n t a i n the act ive l is t .

Cer ta in p rob lem domains have special propert ies
which a l low us to e l im ina te th is overhead. In pa r t i cu
lar, in some p rob lem domains i t is possible to do au to
mat ic preprocessing or "compi l ing" ' of the search space,
to ext ract cont ro l knowledge which can be used to do
the heur ist ic search w i thou t hav ing to m a i n t a i n the ac
t ive l ist exp l i c i t l y . In th is paper, we discuss what k ind
of domains al low us to do such preprocessing, how to
do the preprocessing, how to use the i n f o r m a t i o n gat ti
ered f rom the preprocessing, and how much t ime can be
saved by do ing th is preprocessing. We also present an
example f rom a prob lem doma in of part icu lar interest to
us: generat ive process p lann ing for the manufac tu re of
machined par ts .

2 P rob lem Character is t ics

Preprocessing of the search space is possible whenever
the fo l l ow ing condi t ions are sat isf ied;

1. W i t h the except ion of f eas ib i l i t y / i n feas ib i l i t y of
nodes, the search space has the same shape regard
less of the par t i cu la r prob lem instance being con
sidered. Thus , i f p and p1 are two prob lem in
stances, then there is a one-to-one m a p p i n g between
the nodes of their search spaces s and s', such
that if some feasible node a in s has n ch i ldren b1
/ = 1 . .n. then its cor responding node a' in S' w i l l
ei ther have n chi ldren b1 for i — 1 . n such that b,
corresponds to b1 or be infeasible.

2. Cor respond ing nodes need not have the same- cost
but if two nodes a and b in s1 have- cost(a) > cos t (b) ,
then for the corresponding nodes a1 and b1 in V. we
must have cost (a1) > cost.(b1).

Nearly al l heurist ic search problems satisfy the first
cond i t i on a.bove, but fewer satisfy the second one. How
ever, there are s t i l l many problems which do satisfy i t .
One- example is generat ive process p lann ing for the man
ufacture of machined parts. In our generative process
p lann ing system SIPS[. \au , 1987], a mach inab le part, is
considered to be a collect-ion of mach inab le features. For
each feat.ure, SIPS finds an o p t i m a l plan for that feature
via a best-f irst Branch-and-Bound search in i ts knowl
edge base. SIPS's knowledge base- consists of in forma
t ion on a large number of different mach in i ng processes.

organized in a taxonomic hierarchy. For two different
machinable features, different machining processes may
have different costs-but if process a costs more than pro
cess b on feature /, it generally also costs more than
process b on feature /' as well.

Robotic route planning[T. A. Linden and J. Clicks-
man , 1987] is another problem domain which also sat
isfies the second condition. In this domain, a route map
corresponds to a graph, in which a node represents a
region and an arc represents connectivity between two
regions. The cost of a node can be the time needed to
pass through the region it represents, and the feasibility
of a node indicates whether or not the region is pass
able. In general, although the passability of a region
may change from one problem instance to another, the
relative costs of the regions stay the same. In such cases,
preprocessing is possible.

3 Threaded Decision Graphs

Suppose that for a given problem instance the search
space is as shown in Figure 1. The goal is to search for
the cheapest leaf node for which all the nodes along the
path from the root are feasible. In Figure 1, suppose
the problem solver is checking the conditions associated
with node r. If c succeeds, we know that the next node
to check wil l be /, since c must be the current minimum
costly node to be checked, and f's cost is the same as
r s . Similarly, if c fails, the next node to check in the
search space must be j. This is because at the time r
is being checked, nodes a, 6, d, E,h and k must all have
been checked, since they all have costs less than that
of c's. Control information like this is independent of
the particular problem instances, and can be gathered
before the problem solving process starts. Therefore, we
can assign a success thread from node r to node /, and
failure thread from c to j. During the course of finding
the cheapest actions to achieve a given goal, once we
reach node c, if all the conditions are satisfied, we can
follow the success thread of c to get to the next node to
be checked. On the other hand, if they are not satisfied,
then the failure thread at c can be followed to get to
the next node to be checked. Figure 2 shows such a
structure.

If all the deterministic control information is gath
ered, it is no longer necessary to maintain an active list
for storing control information. Before problem solving
starts, the information can be used to construct a data
structure that contains one or more occurrences of each
action, and for each action occurrence there is a suc
cess pointer and a failure pointer. We wil l call such a
data structure a threaded decision graph of the original
search space. Problem solving can then be completely
guided by its threaded decision graph. Figure 3 shows
the threaded decision graph for the search space in Fig
ure 1.

Two special nodes in Figure 3 are worth noting. The
node marked "success" is called a success node. If this
node is reached through the success threads, the search
process terminates with success. The path from the root
node to success in the threaded decision graph contains
the solution path which should be returned. The node
marked " fa i l " is called a failure node, which marks the
termination of the search process without success.

In the following, we first discuss in detail how problem
solving is done with the help of threaded decision graphs.
We then consider how such a data structure could be
automatically constructed.

4 Search w i t h the Threaded Decis ion
Graphs

(l iven a search space, assume that we have constructed
its threaded decision graph. A request to solve the prob
lem would correspond to finding out the cheapest path
in the tree. For the given threaded decision graph, this
is done by checking the conditions associated with each
node, starting from the root node. The success thread of
the current node should be followed if the node is tested
to be feasible, and the failure thread should be followed
if it is infeasible. Each node is also marked as "success"
or "failure" depending on the result of its feasibility test.

If, during the traversal process, a success node is
reached via a success thread, then the search ends with
success.

350 Automated Deduction

Fiqure 2: The search space in figure 1 with threads inserted at node c. The
thick solid line is c's success-thread, and the thick dotted line its failure-thread.

Figure 3: The threaded decision graph for the search space in figure 1. In this figure,
solid lines represent success threads, while the dotted ones the failure ones.

Yang and Nau 3 5 1

If a failure node is reached through failure thread,
then no actions satisfying the criteria exist. In this case,
search is terminated with failure.

After tracing down the failure thread of some node, it
is possible to reach some other node whose ancestor in
the original search tree failed the feasibility test. For ex
ample, suppose node b in figure 3 is infeasible and node
/ is being checked. If / is infeasible then the next node
to be checked should be j. Since b is an ancestor of j
which failed, no feasibility test need be done at j, and
the failure thread of it should automatically be followed.
In general, whenever a node n is reached via some fail
lire thread, it should always be checked to see if n has
any ancestor m which failed the feasibility test. If so,
the failure thread of node n should be followed, without
conducting its feasibility test.

To check if a given node has any infeasible ancestor is
straightforward: we can retrieve the traversal informa-
tion associated with the parent node of the given node
in the original search space. It has an infeasible ancestor
if its parent node is unvisited or marked as infeasible.

6 Very Large or Infinite Search Spaces

If the search space is very large, the time it takes to pre-
process it may be prohibitive. In such cases, and in cases
when the search space is infinite, we can preprocess a fi
nite portion of it. This partial threaded decision graph
can be created by running the algorithm Construct for a
finite number of iterations, until one or more goal states
appear in the graph.

During the problem solving process, the threaded deci
sion graph can be used in the same maimer as described
in the previous sections, until a node which has no suc
cess and failure threads is reached. At this point, con
ventional Branch and-Bound search can be utilized as
follows: An active* list is constructed by including all of
the successor nodes of the current node and the children
of the feasible nodes along the path back to the root, node
in the state space. This list is sorted according to the
costs of its nodes, and least, costly of these is expanded.

The construction of the threaded decision graph may
also be done with the following strategy; During search
through the search space for each particular problem in-
stance, every time a node is tested we' will look for its
success or failure threads. If they do not exist, we will use
the search procedure to find out which node we should
test next. The success or failure threads can then be
assigned to this node. In other words, the threaded de
cision graph is partially built on the job.

3 5 2 Automated Deduct ion

D u r i n g preprocessing of the search space, each node
in the tree appears at the head of the act ive l ist once
and on ly once, and the resul tant threaded decision graph
has the same number of nodes as the or ig ina l search
space. Since every node has on ly two threads, the suc
cess and the fa i lu re threads, the number of threads of the
threaded decision graph is twice the number of nodes as
t h a t of the search space. The same argument also guar
antees the absence of cycles of threads.

In th is sect ion, we consider the p rob lem of how the
threaded decision graphs are const ruc ted. For s impl ic
i ty , we assume the search space is f in i te . Later we w i l l
discuss cases where the search space is not f in i te .

W i t h the above rest r ic t ions, the fo l l ow ing a l g o r i t h m
generates the threaded decision g raph . T h i s a l g o r i t h m
is a modi f ied version of best-first search.

5 The Construction of Threaded
Decision Graphs

7 Analysis
By ga ther ing all the possible stat ic cont ro l i n f o rma t i on
beforehand, preprocessing of the search space can great ly
improve prob lem so lv ing efficiency. In order to see th is
c la im more quan t i t a t i ve l y , consider a s impl i f ied example.
Assume that the search space is in the shape of a tree
w i t h a b ranch ing factor of m and depth k (the root of
the tree has a depth of 1) To see how much t ime the
p rob lem solver spends on m a n i p u l a t i n g the list of incom
plete paths using convent ional search methods, consider
the fo l l ow ing two ext reme cases.

In the best, case, the search procedure expands only
one pa th down the tree The t ime for m a n i p u l a t i n g the
act ive list is O {km log m).

In the worst case, the search procedure expands the
tree in a breadth first manner . The to ta l t ime spent on
m a n i p u l a t i n g the list in th is case is bounded by in x

On the other hand , search w i t h a threaded decision
graph is guided complete ly by the success and fail
ure threads, and no add i t i ona l compu ta t i ona l effort is
needed for m a n i p u l a t i n g the search cont ro l i n f o r m a t i o n .
Therefore, the t ime saved by using the threaded deci
sion graph to guide the search procedure can be between
O(km log m) and where k is the depth of
the tree and m; is the b ranch ing factor .

8 Discussion

In th is paper we presented a technique for preprocessing
search spaces in order to gather cont ro l i n fo rma t i on for

p rob lem so lv ing . We also discussed a number of condi
t ions under wh ich the me thod works. T h r o u g h complex
i ty analys is, we demonst ra ted tha t by using preprocess
i ng , a great deal of c o m p u t a t i o n a l effort is saved du r ing
the search process.

O u r idea of preprocessing search spaces has some
s im i l a r i t y to t ha t o f t h read ing of b inary trees for tree
t r a v e r s a l [K n u t h , 1968]. However, the way such thread
ing is done, and the way it is used, are bo th clearly
d i f ferent f r om our threaded decision graphs.

As described in the paper, our technique only works on
state-space graphs. An extension of the work is to al low
the search space to be an A N D / O H graph. When A N D
branches are a l lowed, the p rob lem can be very compl i
cated depend ing on how the costs are assigned its nodes.
In the worst case, the threaded decision graph can con-
ta in an exponent ia l number of the occurrences of nodes
in the o r ig ina l search space. An example of this situa
t ion is given in F igure 4. T h e p rob lem is tha t the Ith and
/' -f Ith best, paths, for i = 1,2, . . ., are not next to each
other , bu t on the left and r ight subtrees respectively.
One way to tackle t his p rob lem is to partially preprocess
the search space. For example , we ran assign success
and fa i lure threads only to the nodes winch are in the
first k best paths

Ano the r p rob lem which needs more a t ten t ion is that
the re lat ive costs of some nodes in dif ferent problems
may not be the same, bu t may change w i th different
s i tua t ions . However, i f the cost of nodes change w i t h
di f ferent s i tua t ions in some pred ic tab le manner , and i f
the number of such changes is f in i te , the preprocessing
technique can s t i l l be made to work. For example, it
may be possible to d iv ide the s i tua t ions in to separate
classes, each w i t h a di f ferent threaded decision g raph .
Many domains satisfy th is proper ty , inc lud ing process
p lann ing in au tomated m a n u f a c t u r i n g and robot ic path
p lann ing

References

[Horowi tz ft at., 1978] F. Horow i tz and S. Sahn i . Fun-
damentals of Computer Algorithms. C o m p u t e r Sci
ence Press, Potomac, M D , 1978.

[K n u t h , 1968] D.F. K n u t h . The Art of Computer
Programming, Volume 1: Fundamental Algorithms.
Addison-Weseley, Heading, Mass., 1968.

[V. K u m a r and F. Kana l , 1983] V. K u m a r and F.
Kana l . A General Branch and Bound Fo rmu la t i on for
Understanding and Synthesiz ing A n d / O r Tree Search
Procedures. Artificial Intclligence, (21) , 1983, 179
198.

[T. A. Linden and J. Gl icksman , 1987] T. A. L inden
and J. O l i cksman. Cont ingency P lann ing for an A u
tonomous Land Vehicle. In Proceedings of the Tenth
International Joint Conference Artificial Intelli
gence, pages 1017 1051. M i l a n , August 1987. Inter
nat ional Jo in t Commi t t ee on A r t i f i c i a l Intel l igence.

[Nau (t al, 1984] D.S. Nau, V K u m a r and L. Kana l .
Oeneral Branch and Bound , and Its Rela t ion t.o A*
and A O * Artificial lntellengence(. (23) , 1984, 29 58

[Nau . 1987] D.S. Nau. A u t o m a t e d Process P lann ing
Fs ing Hierarchical Abs t rac t i on . 77 Technical Jour
nal, 1987, 39. 46. Award winner , Texas Ins t ruments
1987 ("all for Papers on Indus t r ia l A u t o m a t i o n

[Nilsson , 1980] N. Nilsson Principles of Artificial In-
tilligenct. Chapters 2 and '.3. T ioga Pub l i sh ing Co. ,
1980.

Yang and Nau 3 5 3

