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Abstract 

Heurist ic search procedures are useful in a large 
number of problems of pract ica l impor tance . 
Such procedures operate by searching several 
paths in a search space at the same t i m e , ex
pand ing some paths more qu ick ly t han others 
depending on which paths look most promis
ing. Of ten large amounts of t ime are required 
in keeping track of the contro l knowledge. 

For some problems, th is overhead can be 
great ly reduced by preprocessing the prob lem 
in appropr ia te ways. In par t i cu la r , we dis
cuss a data s t ruc ture called a threaded deci
sion graph, which can be created by prepro
cessing the search space for some problems, and 
winch captures the contro l knowledge for p rob 
lern so lv ing We show how th is can be done, 
and we present an analysis showing that by us 
ing such a me thod , a great deal of t ime can be 
saved du r i ng prob lem so lv ing processes. 

1 I n t r oduc t i on 

Heurist ic search procedures are useful in a large number 
of p rob lem domains. Most heurist ic search procedures 
(for example. A * . SSS*, B*, AO)*, and alpha beta) have 
been shown to be special cases of best first Branch-and--
Bound search [ V. K u m a r and L. Kanal , 1983, Nau 
I981]. These procedures search several so lu t ion paths at 
the same t ime, expand ing some paths more qu ick ly t han 
others depending on which paths look most p romis ing . 

One source of compu ta t i ona l overhead du r i ng such 
search is the t ime spent keeping track of the a l ternate 
par t ia l solut ions that the procedure is examin ing . T y p i 
cal ly, the search a l go r i t hm stores these par t ia l so lut ions 
on a list called the agenda, open list, or activelist, in 
order of their est imated cost. Any t ime a new par t ia l so
lu t ion is generated, i ts est imated cost must be compared 
w i t h the est imated costs of the other par t ia l so lut ions 
already on the l ist , in order to f ind the appropr ia te place 
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to pu t i t on the l is t . Thus, s ign i f icant c o m p u t a t i o n a l 
overhead is required j us t to m a i n t a i n the act ive l is t . 

Cer ta in p rob lem domains have special propert ies 
which a l low us to e l im ina te th is overhead. In pa r t i cu 
lar, in some p rob lem domains i t is possible to do au to
mat ic preprocessing or "compi l ing" ' of the search space, 
to ext ract cont ro l knowledge which can be used to do 
the heur ist ic search w i thou t hav ing to m a i n t a i n the ac
t ive l ist exp l i c i t l y . In th is paper, we discuss what k ind 
of domains al low us to do such preprocessing, how to 
do the preprocessing, how to use the i n f o r m a t i o n gat ti
ered f rom the preprocessing, and how much t ime can be 
saved by do ing th is preprocessing. We also present an 
example f rom a prob lem doma in of part icu lar interest to 
us: generat ive process p lann ing for the manufac tu re of 
machined par ts . 

2 P rob lem Character is t ics 

Preprocessing of the search space is possible whenever 
the fo l l ow ing condi t ions are sat isf ied; 

1. W i t h the except ion of f eas ib i l i t y / i n feas ib i l i t y of 
nodes, the search space has the same shape regard
less of the par t i cu la r prob lem instance being con
sidered. Thus , i f p and p1 are two prob lem in
stances, then there is a one-to-one m a p p i n g between 
the nodes of their search spaces s and s', such 
that if some feasible node a in s has n ch i ldren b1 
/ = 1 . .n. then its cor responding node a' in S' w i l l 
ei ther have n chi ldren b1 for i — 1 . n such that b, 
corresponds to b1 or be infeasible. 

2. Cor respond ing nodes need not have the same- cost 
but if two nodes a and b in s1 have- cost(a) > cos t (b ) , 
then for the corresponding nodes a1 and b1 in V. we 
must have cost (a1) > cost.(b1). 

Nearly al l heurist ic search problems satisfy the first 
cond i t i on a.bove, but fewer satisfy the second one. How 
ever, there are s t i l l many problems which do satisfy i t . 
One- example is generat ive process p lann ing for the man
ufacture of machined parts. In our generative process 
p lann ing system SIPS[ . \au , 1987], a mach inab le part, is 
considered to be a collect-ion of mach inab le features. For 
each feat.ure, SIPS finds an o p t i m a l plan for that feature 
via a best-f irst Branch-and-Bound search in i ts knowl
edge base. SIPS's knowledge base- consists of in forma
t ion on a large number of different mach in i ng processes. 



organized in a taxonomic hierarchy. For two different 
machinable features, different machining processes may 
have different costs-but if process a costs more than pro
cess b on feature /, it generally also costs more than 
process b on feature /' as well. 

Robotic route planning[T. A. Linden and J. Clicks-
man , 1987] is another problem domain which also sat
isfies the second condition. In this domain, a route map 
corresponds to a graph, in which a node represents a 
region and an arc represents connectivity between two 
regions. The cost of a node can be the time needed to 
pass through the region it represents, and the feasibility 
of a node indicates whether or not the region is pass
able. In general, although the passability of a region 
may change from one problem instance to another, the 
relative costs of the regions stay the same. In such cases, 
preprocessing is possible. 

3 Threaded Decision Graphs 

Suppose that for a given problem instance the search 
space is as shown in Figure 1. The goal is to search for 
the cheapest leaf node for which all the nodes along the 
path from the root are feasible. In Figure 1, suppose 
the problem solver is checking the conditions associated 
with node r. If c succeeds, we know that the next node 
to check wil l be /, since c must be the current minimum 
costly node to be checked, and f's cost is the same as 
r s . Similarly, if c fails, the next node to check in the 
search space must be j. This is because at the time r 
is being checked, nodes a, 6, d, E,h and k must all have 
been checked, since they all have costs less than that 
of c's. Control information like this is independent of 
the particular problem instances, and can be gathered 
before the problem solving process starts. Therefore, we 
can assign a success thread from node r to node /, and 
failure thread from c to j. During the course of finding 
the cheapest actions to achieve a given goal, once we 
reach node c, if all the conditions are satisfied, we can 
follow the success thread of c to get to the next node to 
be checked. On the other hand, if they are not satisfied, 
then the failure thread at c can be followed to get to 
the next node to be checked. Figure 2 shows such a 
structure. 

If all the deterministic control information is gath
ered, it is no longer necessary to maintain an active list 
for storing control information. Before problem solving 
starts, the information can be used to construct a data 
structure that contains one or more occurrences of each 
action, and for each action occurrence there is a suc
cess pointer and a failure pointer. We wil l call such a 
data structure a threaded decision graph of the original 
search space. Problem solving can then be completely 
guided by its threaded decision graph. Figure 3 shows 
the threaded decision graph for the search space in Fig
ure 1. 

Two special nodes in Figure 3 are worth noting. The 
node marked "success" is called a success node. If this 
node is reached through the success threads, the search 
process terminates with success. The path from the root 
node to success in the threaded decision graph contains 
the solution path which should be returned. The node 
marked " fa i l " is called a failure node, which marks the 
termination of the search process without success. 

In the following, we first discuss in detail how problem 
solving is done with the help of threaded decision graphs. 
We then consider how such a data structure could be 
automatically constructed. 

4 Search w i t h the Threaded Decis ion 
Graphs 

(l iven a search space, assume that we have constructed 
its threaded decision graph. A request to solve the prob
lem would correspond to finding out the cheapest path 
in the tree. For the given threaded decision graph, this 
is done by checking the conditions associated with each 
node, starting from the root node. The success thread of 
the current node should be followed if the node is tested 
to be feasible, and the failure thread should be followed 
if it is infeasible. Each node is also marked as "success" 
or "failure" depending on the result of its feasibility test. 

If, during the traversal process, a success node is 
reached via a success thread, then the search ends with 
success. 
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Fiqure 2: The search space in figure 1 with threads inserted at node c. The 
thick solid line is c's success-thread, and the thick dotted line its failure-thread. 

Figure 3: The threaded decision graph for the search space in figure 1. In this figure, 
solid lines represent success threads, while the dotted ones the failure ones. 
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If a failure node is reached through failure thread, 
then no actions satisfying the criteria exist. In this case, 
search is terminated with failure. 

After tracing down the failure thread of some node, it 
is possible to reach some other node whose ancestor in 
the original search tree failed the feasibility test. For ex 
ample, suppose node b in figure 3 is infeasible and node 
/ is being checked. If / is infeasible then the next node 
to be checked should be j. Since b is an ancestor of j 
which failed, no feasibility test need be done at j, and 
the failure thread of it should automatically be followed. 
In general, whenever a node n is reached via some fail 
lire thread, it should always be checked to see if n has 
any ancestor m which failed the feasibility test. If so, 
the failure thread of node n should be followed, without 
conducting its feasibility test. 

To check if a given node has any infeasible ancestor is 
straightforward: we can retrieve the traversal informa-
tion associated with the parent node of the given node 
in the original search space. It has an infeasible ancestor 
if its parent node is unvisited or marked as infeasible. 

6 Very Large or Infinite Search Spaces 

If the search space is very large, the time it takes to pre-
process it may be prohibitive. In such cases, and in cases 
when the search space is infinite, we can preprocess a fi
nite portion of it. This partial threaded decision graph 
can be created by running the algorithm Construct for a 
finite number of iterations, until one or more goal states 
appear in the graph. 

During the problem solving process, the threaded deci
sion graph can be used in the same maimer as described 
in the previous sections, until a node which has no suc
cess and failure threads is reached. At this point, con 
ventional Branch and-Bound search can be utilized as 
follows: An active* list is constructed by including all of 
the successor nodes of the current node and the children 
of the feasible nodes along the path back to the root, node 
in the state space. This list is sorted according to the 
costs of its nodes, and least, costly of these is expanded. 

The construction of the threaded decision graph may 
also be done with the following strategy; During search 
through the search space for each particular problem in-
stance, every time a node is tested we' will look for its 
success or failure threads. If they do not exist, we will use 
the search procedure to find out which node we should 
test next. The success or failure threads can then be 
assigned to this node. In other words, the threaded de
cision graph is partially built on the job. 
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D u r i n g preprocessing of the search space, each node 
in the tree appears at the head of the act ive l ist once 
and on ly once, and the resul tant threaded decision graph 
has the same number of nodes as the or ig ina l search 
space. Since every node has on ly two threads, the suc 
cess and the fa i lu re threads, the number of threads of the 
threaded decision graph is twice the number of nodes as 
t h a t of the search space. The same argument also guar 
antees the absence of cycles of threads. 

In th is sect ion, we consider the p rob lem of how the 
threaded decision graphs are const ruc ted. For s impl ic 
i ty , we assume the search space is f in i te . Later we w i l l 
discuss cases where the search space is not f in i te . 

W i t h the above rest r ic t ions, the fo l l ow ing a l g o r i t h m 
generates the threaded decision g raph . T h i s a l g o r i t h m 
is a modi f ied version of best-first search. 

5 The Construction of Threaded 
Decision Graphs 

7 Analysis 
By ga ther ing all the possible stat ic cont ro l i n f o rma t i on 
beforehand, preprocessing of the search space can great ly 
improve prob lem so lv ing efficiency. In order to see th is 
c la im more quan t i t a t i ve l y , consider a s impl i f ied example. 
Assume that the search space is in the shape of a tree 
w i t h a b ranch ing factor of m and depth k ( the root of 
the tree has a depth of 1) To see how much t ime the 
p rob lem solver spends on m a n i p u l a t i n g the list of incom
plete paths using convent ional search methods, consider 
the fo l l ow ing two ext reme cases. 

In the best, case, the search procedure expands only 
one pa th down the tree The t ime for m a n i p u l a t i n g the 
act ive list is O {km log m). 

In the worst case, the search procedure expands the 
tree in a breadth first manner . The to ta l t ime spent on 
m a n i p u l a t i n g the list in th is case is bounded by in x 

On the other hand , search w i t h a threaded decision 
graph is guided complete ly by the success and fail
ure threads, and no add i t i ona l compu ta t i ona l effort is 
needed for m a n i p u l a t i n g the search cont ro l i n f o r m a t i o n . 
Therefore, the t ime saved by using the threaded deci
sion graph to guide the search procedure can be between 
O(km log m) and where k is the depth of 
the tree and m; is the b ranch ing factor . 

8 Discussion 

In th is paper we presented a technique for preprocessing 
search spaces in order to gather cont ro l i n fo rma t i on for 



p rob lem so lv ing . We also discussed a number of condi 
t ions under wh ich the me thod works. T h r o u g h complex
i ty analys is, we demonst ra ted tha t by using preprocess
i ng , a great deal of c o m p u t a t i o n a l effort is saved du r ing 
the search process. 

O u r idea of preprocessing search spaces has some 
s im i l a r i t y to t ha t o f t h read ing of b inary trees for tree 
t r a v e r s a l [ K n u t h , 1968]. However, the way such thread
ing is done, and the way it is used, are bo th clearly 
d i f ferent f r om our threaded decision graphs. 

As described in the paper, our technique only works on 
state-space graphs. An extension of the work is to al low 
the search space to be an A N D / O H graph. When A N D 
branches are a l lowed, the p rob lem can be very compl i 
cated depend ing on how the costs are assigned its nodes. 
In the worst case, the threaded decision graph can con-
ta in an exponent ia l number of the occurrences of nodes 
in the o r ig ina l search space. An example of this situa
t ion is given in F igure 4. T h e p rob lem is tha t the Ith and 
/' -f Ith best, paths, for i = 1,2, . . ., are not next to each 
other , bu t on the left and r ight subtrees respectively. 
One way to tackle t his p rob lem is to partially preprocess 
the search space. For example , we ran assign success 
and fa i lure threads only to the nodes winch are in the 
first k best paths 

Ano the r p rob lem which needs more a t ten t ion is that 
the re lat ive costs of some nodes in dif ferent problems 
may not be the same, bu t may change w i th different 
s i tua t ions . However, i f the cost of nodes change w i t h 
di f ferent s i tua t ions in some pred ic tab le manner , and i f 
the number of such changes is f in i te , the preprocessing 
technique can s t i l l be made to work. For example, it 
may be possible to d iv ide the s i tua t ions in to separate 
classes, each w i t h a di f ferent threaded decision g raph . 
Many domains satisfy th is proper ty , inc lud ing process 
p lann ing in au tomated m a n u f a c t u r i n g and robot ic path 
p lann ing 
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