
Minimizing Response Times In Real Time Planning And Search

Shashi Shekhar & Soumitra Dutta

Computer Science Division
University of California,

Berkeley, CA 94720

Abstract

Real time artificial intelligence (AI) systems are required to
respond within a given deadline, or have optimal response times.
While some researchers have addressed the issue of planning
under deadline constraints, there has been very little research
towards optimizing the response time of problem-solving
methods. The costs for a response consists of the cost to plan for
a solution and the cost of executing the chosen solution. There is
an intimate trade-off between these two costs. This paper
presents an algorithm for providing near optimal response times
by formalizing the trade-offs between planning and execution
costs. We provide a proof of correctness and describe an imple
mentation of the algorithm in a real time application of query
planning. We also provide a model for considering response
times in the context of the A* heuristic search algorithm.

1. Introduction
As the application of AI systems evolves from an art to an

engineering science, we can expect more challenging applications to
be addressed. Some of the most challenging and interesting applica
tions can be found in real-time domains. An AI system operating in
a real-time situation will typically need to respond within a certain
deadline, or have optimal response times (for planning and execu
tion). For example in managing defensive weapons against nuclear
missiles, the system has to respond within a few seconds or
minutes[l]. On the other hand, in credit approval systems[2],
optimal response times are desired, but there are no hard deadlines.
The deadline problem is hard and many such problems (e.g.,
scheduling with deadlines) are NP-complete [3] and guaranteeing an
optimal solution within a fixed deadline is often not possible. The
optimal response time is required in the case wherein the plan execu
tion time is comparable to planning time. The response time is the
sum of planning time and execution time, and the application has no
strict short deadlines. As shown in figure 1, in general, the optimal
response time is not achieved by solely minimizing execution time,
as then planning time increases to offset the gains.

Currently, ad hoc techniques are used for making a system pro
duce a real-time response , and these methods suffer from poor
extensibility, brittleness and a lack of a formal proof of "reliable real
time performance" [4). Traditional search algorithms like depth first
search, breadth first search and depth first iterative deepening [5],
A* [6] and IDA* [5] are useful with small search spaces and large

deadlines only. However, the size and complexity of most search
spaces faced by real time AI systems preclude the use of these algo
rithms, as they may take exponential time in producing a solution.
These search strategies may be able to guarantee an optimal solution
in the absence of limits on search time, but cannot function with the
constraint of deadlines and response times. Consequently the plan
ning methods based on A* and EDA* may potentially take exponen
tial time for problem-solving. Within a given deadline to solve cer
tain problem, the system may not produce any solution (complete or
partial). Scaling them up with real world data and adequate
knowledge-bases, would amplify their performance problems,
including their inability to meet real time constraints[7].

Research on real-time AI systems have concentrated on
software and implementation issues like interrupt handling[7]. There
has been little research on problem-solving methods, which can meet
a deadline or provide an optimal response time. Some researchers
[8,9] have worked towards planning and search algorithms to meet
reasonable deadlines by finding a partial solution within the given
deadline. The algorithm is based on bounded look-ahead search, i.e.
one searches forward from the current state to a fixed depth horizon
determined by the deadline. A cost function (similar to A*) is used to
evaluate the frontier nodes. The minimum value is then backed up
and a single move is made in the direction of the minimum value.
Korf has further proposed a real time modification of A* called
RTA* for controlling the sequence of moves actually executed.
Russell[10] has extended RTA* by adding meta-greedy decision-
theoretic search control. Some of the results from reasoning under
resource constraints[\ 1,12] are also applicable, if time is considered
as a resource. This line of work is based on assigning utility
numbers with choices and maximizing utility.

238 Real-Time and High Performance

The above mentioned real time algorithms essentially deal with
the problem of deadlines in real time systems (see classification in
figure 1). They ignore the execution cost of any solution and essen
tially spend all available time (the deadline) searching. This may not
be realistic in cases where executing the solution takes some appreci
able amount of time and it is no longer possible to ignore it. Our
research concerns the other class of real-time applications where
response time is important.

To optimize the response time, a real time system has to con
sider the tradeoff between execution and planning costs. A greater
planning cost may possibly lead to a lower execution cost, but the
extra time spent planning may also lead to a potential increase in the
response time as shown in Fig.t. Thus it is crucial that a real time
system be able to decide upon the appropriate moment to stop

planning and start executing the best solution plan obtained t i l l then.
Our focus in this paper is to formalize the trade-off between planning
cost and execution cost in such real time systems and prove bounds
on the optimality of the results obtained. We present a search algo
rithm for providing near optimal response times. We provide
correctness proofs and bounds on the optimality of the response time
performance obtained. We describe an implementation of our algo
rithm in a real-time application of query planning [13], which sub
stantiates our results experimentally. Finally we explore the combi
nation of our algorithm with A* .

The structure of this paper is as follows. Section 2 describes
our search algorithm, correctness proofs and other results. Section 3
and 4 describes the application of our proposed algorithm in two
example domains: query optimization (planning) and the A* heuris
tic search algorithm[14]. Finally, section 5 summarizes our contri
butions and lists directions for future research.

2. Optimizing Response Time

For a real time system with optimal response time requirement,
the total time for responding to a situation can be conceptually
modeled as consisting of the time for planning a path to solution, and
the time for actually executing the chosen solution path. In some
situations we need to generalize the planning and execution times to
planning and execution costs or utilities [10,11] to account for vari
ous other aspects of the problem domain.

For simplicity, we wi l l adopt to the model given by Korf, and
consider costs as equivalent to the times required for planning and
execution. In this context, the process of planning a response can be
modeled as a search among different possible responses or actions
for the best possible action. The space of different possible actions
can be very large, and as the sequence of search for finding the best
possible action is (usually) not known apriori, the process of plan
ning (to find the best action) can take prohibitively large amounts of
time, so as to thwart the desired optimality of the response time of
the real time system. Thus it is important to devise algorithms which
not only allow a real time system to suitably terminate the planning
phase, but also prove some bounds on how well it has done as com
pared to the optimal response time.

2.1. NORA (Near Opt imal Response-time Algor i thm)

In this sub-section, we shall describe NORA, a simple and
intuitively appealing algorithm for providing near optimal response
times in real time systems that satisfies the above-mentioned con
cerns. Blind exhaustive searches like BFS or DFS are generally
applicable to limited domains. Most heuristic search algorithms
require the ability to recognize the goal node (i.e., the best action).
This is not always possible, (e.g., recognizing the cheapest query
execution plan in query optimization! 15]) and one needs other ter
mination criteria to stop the search.

Given a search algorithm, a real time system has to make a cru
cial decision of determining the time to stop searching so as to pro
vide a near optimal response time. This problem is simplified for
small search spaces (where it may be possible to search the entire
search space quickly) or when it is possible to recognize the best
action (so that the search can be stopped as soon as the best action is
found). In general it may not be possible to characterize apriori the
best action and even if it is possible to characterize it for recognition,
reaching it in the many search traversal algorithms may require
prohibitively large time. Thus a real time system must have some
algorithm for appropriately balancing the planning and execution
costs.

The basic idea of NORA is simple and intuitive. Conceptually,
the search space can be thought of as a set of nodes with inter
connecting arcs. Each node represents one possible action (or set of
actions) and has an associated execution cost. A search traversal
algorithm specifies the order of traversal of these nodes and there are
costs associated with this traversal. These costs include the cost of
actually moving from node to node and any associated computation
costs at each node (for example, to estimate the execution cost of the
actions at the node). The chosen search traversal algorithm goes
from node to node in some order to find the node with the best action
(or here for simplicity, the least action time). At each node, NORA
keeps track of two metrics:

[1] Planning cost so far this represents all associated costs of plan
ning so far and includes all cost of traversing the search space.

[2] Least execution cost so far: this is the node with the least exe
cution cost so far.

The search space traversal is terminated whenever the planning
cost exceeds some fraction of the best execution cost found so far,
i.e., when the following condition is satisfied:

where X defines the fraction. As shown in the next sub-section, this
simple stopping criterion allows us to achieve a near-optimal
response time (when the search is terminated with the above condi
tion satisfied) satisfying the following bound:

This is for the general case, in which we are unable to recognize
apriori the best action. In cases, where it is possible to recognize the
best action, a direct comparison can be made for a crisper bound (see
section 3.2). As evident, the choice of X is crucial and at the end of
the next sub-section, we describe how we can obtain heuristics for
the choice of an appropriate X. We further note that the bound holds
for any given search space traversal ordering (e.g. A*) .

22. Correctness of NORA

In this section, we provide a correctness proof for NORA.
Some notation used in the proof below is introduced in Table 2.1.
We structure the search space as a interconnected set of nodes Qi,,
each node representing a possible action (or set of actions).

Shekhar and Dut ta 2 3 9

3. Query Optimization: A Real-time Application
We implemented our algorithm for optimizing the response

time of query optimizer for data-bases. Most databases are on-line
and users access desired information via a query, represented in a
suitable query language. Queries involve operations like join, select,
and project, and can be answered by executing several different
execution-plans each with different execution-times. The query
optimizer generates and examines many execution plans to choose
the one with the least execution-time. The planning time increases
exponentially, as the optimizer expands its search of possible execu
tion plans.

The optimization cost can be comparable to the cost of query
execution. The tradeoff between optimization time and the cost of
query execution becomes a major issue in optimizing the total cost of
query processing. We further note that it is not possible to apriori
specify the query with the least execution cost, while traversing the
search space.

We tested NORA for semantic query optimization for a ship
ping database of six relations. The database schema, the relation
sizes, semantic integrity constraints and the various indexes available
are reported elsewhere[16,17]. The first step in our experiment was
to generate the search space. The NORA algorithm was simulated
on the search space. The stopping rule of NORA terminates the
search when the following condition becomes true : T(/) > t(i) The
stopping rule was examined for the values λ = 2,1, and 1/2. The
results are presented in Table 3.1.

X This assumption is justified by many planners, e.g. query optimizers,
t RT(i) = T(i) + a/ (i) , and represents an integrated cost.

240 Real-Time and High Performance

Table 3.1 Performance of NORA
The result can be verified for all the three values of X. Here we

shall illustrate the validation for λ- 1. The search stops after itera
tion 3, since the stopping criterion of NORA evaluates to
(163X1) + (5)(5) > 127.0 =» 188 > 127.0, which is true. The optimiza
tion cost and best execution cost estimate are,

t (i)=188w; t(i)= 127.0 ms
The bound of the Correctnes Theorem is satisfied since,

)

We see that stopping rule is quite effective. Especially notable
is the fact that even though we attempt to minimize a weighted sum
of T(I) and r(i), and not t(i) alone, the value of /(i) obtained is actu
ally quite close to the minimum. We believe a more careful analysis
of the algorithm would help us get a better bound.

4. NORA and Heuristic Search Algorithm A*
A* +[18] is probably the best known heuristic search algorithm

for finding a solution path from an initial start node to a goal node,
when the execution costs are negligible. It finds an optimal solution
path in optimal planning time if the heuristic function, h(n), is mono-
tone and admissible, i.e., it satisfies triangle inequality and it never
overestimates the actual cost of reaching a goal node. A* ignores
execution time and essentially concentrates on minimizing the
searching time instead on response time. Furthermore A* terminates
by recognizing the goal node. Thus the problem definition must pro
vide adequate characterization of the goal node, so that it can be
recognized easily.

To apply NORA formalism to A* we generalize A* in two
respects: (a) introduce the notion of execution time, (b) relax the
assumption that the search algorithm can recognize the goal node
during the search process, even though one can define heuristic func
tions. We use a more general stopping criteria for search termina
tion.

To introduce execution costs in A*, we proceed as follows.
Associated with any node n, in the search space, let ge (n) represent
the execution time for executing the partial solution (corresponding
to the path from the start node to node n) found so far and let h, (n)
represent the heuristic estimate of the cost of execution from the par
tial solution to a goal node (corresponding to a path from node n to a
goal node). Note that ge(n) and he(n) are distinct from the conven
tional g and h functions of A*. While g(n) estimates the cost of
expanding the search tree from the start node to the node n and thus
contributes to the planning costs for finding a solution path from the
initial state to the partial solution state specified by node n, ge{n)
estimates the cost of actually executing that partial solution path in
the real world. Similarly, while h(n) estimates the planning cost of
further expanding the search tree from node n to a goal node, he (n)
estimates the actual cost of execution while trying to reach a goal
from the partial solution state specified by node n. These functions
can be computed as it is possible to apriori precisely characterize the
goal state.

+ a best-first search of the search space, where the merit of a node, f(n) is the si
of reaching that node, n, from the start node, S, and the estimated cost, h(n), of reac
that node.

While trying to optimize response times in real time planning
and search using A*, it is possible that we may decide to terminate
the search (based on a chosen search stopping criterion, e.g., as
specified by NORA) at some node i, before reaching a goal node, G.
Assume that stopping at some node i, (i * goal node), forces us to
incur some penalty for execution in real time (caused by the distance
from the partial solution state, node i, to a goal node), and let it be
represented by ht (i). We assume that he (i) is proportional to the dis
tance of the node i from a goal node and that it monotonically
decreases as i approaches a goal node.

4.1. Applying Stopping Criterion of NORA
Let us assume that the A* heuristic evaluation function, h,

satisfies the monotone t restriction and is admissible. Under these
conditions, A* never expands any nodes other than those that lie on
the optimal solution path and thus at any node, i, (i = goal node), on
the optimal solution path, the total planning cost so far is given by
g(i) and the best estimate of the execution cost is given by the sum of
g€(i) and he(i). Let G represent the goal node, and thus the planning
cost for reaching the goal node is g(G) and the execution cost is
given by the sum of ge (G). The stopping criterion as specified by
NORA would be: stop when

Writing the ratio of the response time, RT(i), when stopping at node
i over the response time, RT(G), when stopping at goal node, G, we
have:

Note that g(G) £g(i) + h(i) as h is assumed to be admissible. Since
h(i) is positive, we can ignore it from the denominator and on substi
tuting the stopping condition we get:

Dividing both numerator and denominator by g(i), we get

as both g,(G) and g(i) are positive. Thus the bound of NORA is
satisfied. Note that as λ is positive, 1 + λ is greater than 1.

Thus result provides an interesting extension of A* for minim
izing response time for the real-time problems, where plan-execution
time is not negligible. Use of stopping criteria of NORA leads to a
near optimal response time, which is shown to be near-optimal even
when he (goal) = 0. We have verified this assertion for the best case

of A*, ie the case of monotone admissible heuristic functions. It can
easily be verified that the assertion holds in all cases.

Shekhar and Dutta 241

5. Conclusions
We have looked at real-time AI applications, where planning

and execution costs are equally important. We have presented a
classification of real-time problem solving systems, and an algorithm
for producing near optimal response times. We proved that balanc
ing planning cost with execution cost, can lead to near-optimal
response time, and provided bounds on the worst-case deviation
from the optimal point. We have then provided an empirical valida
tion of the algorithm, via a real-time application of query planning
for databases. Experimental results show that the performance of our
algorithm is often much better than the worst case bounds. We have
also developed a framework for obtaining bounds on response times
in the context of real time heuristic search using A*.

The results can be extended in many directions. The bounds
on the performance of the algorithm are far from tight as illustrated
by experiments. We would like to prove tighter bounds on the
optimality of our algorithm. Secondly, our termination criterion can
be used with any search algorithm like A*, RTA* etc. More
research needs to be done in this direction. In particular we would
like to combine it with RTA*[9] and explore the properties of that
algorithm. Finally, we are exploring the applicability of our results in
domains.

6. Acknowledgements
We would like to thank Prof. Srivastava, Univ. of Minnesota,

for help with the implementation and performance evaluation of the
semantic query optimization example, and Prof. Korf and Dr. Hor-
vitz for fruitful discussions on real time search.

7. References

References

1. RP. Bonaso, "What Al Can Do for Battle Management: A
Report of the AAAI Workshop on AI Applications to Battle
Management," AI Magazine, vol. 9, no. 3, p. AAAI, Fall
1988.

2. H.P.Newquist III, "American Express and Al : Don't Leave
Home Without Them," AI Expert, vol. 2, no. 4, p. Miller Free-
man Publications, 500 Howard St., San Francisco, CA 94105.,
April 1988.

3. M. R. Garey and D. S. Johnson, Computers and Interactability,
W.H.Freeman and Company, New York, 1979.

4. CA. O''Reilly and A.S. Cromarty, "Fast is not Real-Time in
Designing Effective Real-Time AI Systems," Applications of
Artificial Intelligence II, p. International Society of Optical

Engineers, Bellingham, Washington, 1985.
Richard E. Korf, "Depth-First Iterative Deepening : An
Optimal Admissible Tree Search,'' Artificial Intelligence, vol.
27, pp. 97-109, North-Holland, 1985.

D. Galperin, " O n the optimality of A*," Artificial Intelligence,
vol. 8, no. 1, pp. 69-76,1977.

T.J. Laffey and P.A.Cox, "Real-Time Knowledge Based Sys
tems,'' AI Magazine , vol. 9 , no. 1, p. A A A I , Spring 1988.

R.E.Korf, "Real-Time Heuristic Search: New Results,'' Proc.
AAAI Conference, 1988.

R.E.Korf, "Real-Time Heuristic Search: First Results/' Proc.
AAA1 Conference, 1987.

S.Russell and E. Wefald, "Decision Theoretic Control of Rea
soning: General Theory and an Algorithm to Game Playing,"
Report No. UCB/CSD 88/435, p. Computer Science Division,
U.C.Berkeley, 1988.

E. J. Horvitz, "Problem Solving Design: Reasoning about
Computational Value, Tradeoffs and Resources," Report No.
KSL-87-64, Knowledge Systems Laboratory, Stanford Univer
sity, CA 94305, 1987.

E. J. Horvitz, "Reasoning Under Varying and Uncertain
Resource Constraint," Report No. KSL-88-35, Medical Com
puter Science, Stanford University, Stanford, CA 94305, 1988.

Yao,S.B., "Optimization of query evaluation algorithms,"
ACM TODS, vol. 4, no. 2, 1979.

P.E. Hart, N. J. Nilsson, and B. Raphael, "A formal basis for
the heuristic determination of minimum cost paths," IEEE
Trans. Systems Sci. Cybernet., vol. 4(2), pp. 100-107,1968.
King.J.J, "QUIST : A system for semantic query optimization
in relational databases," Proc. 7th VLDB Conf, 1981.
Shekhar, S., Srivastava, J., and Dutta, S., ''A Model of Trade-off

between Optimization and Execution costs in Query Processing",
lnt'l Conf. on Very Large Data- bases. Los Angeles, CA. ,

17. J. Srivastava, "New Optimization Techniques in Database
Access and Maintenance," PhD. Dissertation, p. Computer
Science Division, U.C.Berkeley, 1988.

18. N. J. Nilsson, Principles of Artificial Intelligence, Tioga, Palo
Alto, CA, 1980.

15.

16.

242 Real-Time and High Performance

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

