
A Knowledge-Based Software Information System 
Premkumar Devanbu 

Peter G. Selfridge 
Bruce W. Ballard 

Ronald J. Brachman 
AT&T Bell Laboratories 
600 Mountain Avenue 

Murray Hill, New Jersey 07974 

Abstract 
The difficulty of maintaining very large software 
systems is becoming more widely acknowledged. 
One of the primary problems is the need to ac
cess information about a complex and evolving 
system. We are exploring the contribution to be 
made by applying explicit knowledge representa
tion and reasoning to the management of infor
mation about large systems. LaSSIE is a proto
type tool (based on the ARGON system) that uses 
a frame-based description language and classifica
tion inferences to facilitate a programmer's discov
ery of the structure of a complex system. It also 
supports the retrieval of software for possible re
use in a new development task. Among LaSSIE's 
features are an integrated natural language front-
end (TELI) that allows users to express requests 
in an informal and compact fashion. Although not 
without some limitations, LaSSIE represents sig
nificant progress over existing software retrieval 
methods and strictly bottom-up cross-referencing 
facilities. 

1 Introduction 
The problems that arise with large, complex software sys
tems include those of producing the code, managing a multi-
person enterprise, testing the system, and assuring its in
tegrity with respect to various specifications and other de
sign documents. In many ways the most difficult problem 
involves maintenance, which includes fixing explicit bugs 
and, more importantly, upgrading the system to add new 
features or adapting the system for slightly different pur
poses. Some software systems, including those that control 
the space shuttle, nuclear power plants, and communication 
networks, have become so large and complex that no one 
person, or even a small set of people, understand them. This 
lack of a reliable knowledge source is exacerbated by people 
moving within an organization or leaving it altogether. 

One common aspect of maintenance and other problems 
with large software is the discovery problem, i.e., the pro
cess of learning about an existing system in order to use or 
modify it. A developer must spend a great deal of time "dis
covering" features of an existing system, ranging from the 
overall software organization and the conceptual framework 
that drove that organization to the location and details of 

specific functions and data structures. All of this is prereq
uisite to implementing the actual modification for which the 
developer is responsible. Discovery also has a lot in com
mon with the problem of retrieving code for re-use. One 
could imagine, for example, a system that could retrieve an 
existing piece of code that implements a specified function. 
The discovery process then becomes a process of formu
lating a series of queries to retrieve information, including 
actual code, about the system. 

We have undertaken the task of building an information 
system (IS) to aid in the discovery process. This paper first 
examines the problem of developing such an IS in more 
detail. An existing system of large software is used as a test 
case in this work; and four specific "discovery queries" arc 
examined to further motivate our approach. Next, the core 
system we have developed, called LaSSIE, is described in 
detail. Then, two extensions to LaSSIE are described: the 
addition of low-level code knowledge, and the integration of 
a natural language front end. Finally, we put this effort into 
perspective by examining the queries that can be currently 
handled, comparing our effort to previous work on software 
retrieval and related systems, and outlining directions for 
future work. 

2 The Problem in More Detail 
The AT&T System 75™ [AT&T Technical Journal, 1985] 
is a Private Branch Exchange (PBX) that can handle up 
to 800 telephone lines. As a modern digital switch, it is 
controlled by a large and complicated software system that 
enables it to perform the basic switching functions as well as 
implement a sizeable collection of somewhat customizable 
features. This software is complex along several dimen
sions. It contains about a million of lines of C code; it 
comprises multiple versions, the latest of which is always in 
a state of flux; and, most importantly, it is a manifestation 
of a complex conceptual model of the architecture of the 
switch and its functionality. For this reason, the code can be 
understood only with reference to a framework that exists 
apart from it—a framework that reflects the hardware and 
software architecture, as well as the various resource and 
real-time-response constraints that the system is designed to 
satisfy. 

The kinds of questions asked by System75 developers 
give us some insight into the conceptual model(s) of a large 
switch. Consider these queries, typical of the ones elicited 
in extensive discussions with developers: 

110 Tools 



• Q l . How do I allocate an international toll trunk? 

• Q2. What messages are sent by a process in the net
work layer when an attendant pushes a button to acti
vate the "Hold" feature? 

• Q3. What C functions enable the Call Forwarding fea
ture at a phone ? 

• Q4. What functions in the Line Manager Pro
cess access global variables defined in "/usr/pgs/ 
gp/tgpall/profum.h"? 

These queries require different kinds of answers, which de
pend on knowledge associated with at least four different 
views of the system: 

• A functional view—what is the code doing relative to 
the switching function? Our IS should know how in
ternal operations, or actions, relate to external events 
such as a user picking up a phone. For Ql , some code 
might be described as "allocating a trunk", which is an 
operation internal to the switch. 

• An architectural view—what is the hardware and soft
ware configuration? System 75 has a number of layers 
in its software architecture, each of which presents a 
"conceptual base" for the layers above it. For Q2, one 
needs to know what processes are in the network layer. 

• A feature view—how are basic system functions associ
ated with features such as "Call Forwarding"? For Q3, 
we must capture the way in which a feature cuts across 
a number of basic functions and has ramifications on 
all layers. 

• A code view—how do the code-level components 
(source files, header files, functions, declarations, etc.) 
relate to each other? Functions call functions, source 
files include header files, functions and declarations are 
defined in source files, etc. For Q4, these relationships 
need to be represented. 

In addition to these somewhat independent views, some ad
ditional issues must be addressed in a software information 
system capable of handling queries like those above. The 
views must be integrated in order to answer queries like Q2 
that combine them. The system must also allow queries 
about the structure of the knowledge base itself, in addition 
to individual facts in the domain. How the queries are asked 
is very important if the system is going to be useful; the use 
of a formal query language will be much less effective than 
being able to query in a subset of English. Finally, the role 
of classification (discussed in detail later) will be important 
if the system is to out-perform a static keyword approach. 

3 The LaSSIE System 
LaSSIE is an experimental knowledge-based IS running on 
a Symbolics 3600, under ZetaLisp/Flavours. It consists of a 
knowledge base (KB), a window interface (based on AR
GON [Patel-Schneider et al., 1984]), a graphical brows
ing tool (based on the ISI-GRAPHER [Robins, 1988]), and 
a customized version of the TELI natural language inter
face [Ballard and Stumberger, 1986]. The system is designed 
to be used in a formulate-retrieve-reformulate cycle. If the 

answer to an initial query is unsatisfactory, the user can re
formulate the query in a variety of ways, and try again. The 
reformulation step can be carried out using descriptions of 
retrieved individuals, or by exploring the knowledge base for 
related concepts. Natural language can be used to formulate 
a query or to reformulate part of a previous query. 

In all modes of querying, the KB plays a key role in 
processing queries and in assisting the user in reformulating 
a query when necessary. The design of this KB is therefore 
crucial. We now describe the perspective from which the 
KB was constructed. The LaSSIE KB primarily captures 
the functioning of the system, from a conceptual viewpoint, 
with some information about its architectural aspects. 

3.1 Functional Knowledge 
Most of the functions of System 75 can be described in terms 
of operations, or actions that it performs. Some examples 
are 

• Connect a user to a call. 
• Initialize a call control process. 
• Audit the digit translation database. 
• Release buffer space to free some memory. 
• Light up an LED when a call is terminated at a station. 
• Allocate a touch tone recognizer because of a pickup 

by a user. 
Corresponding to each of these actions are segments of 

code and the files that contain them. Notice also that these 
actions can be cast into the general form Actor does Action 
on Object to Recipient using Agent because-of Action. This 
general form was used to formulate descriptions of a wide 
range of actions in the call processing area of System 75. It 
also motivated the design of LaSSlE's natural language in
terface. We then coded these descriptions in the KANDOR 
knowledge representation system [Patel-Schneider, [1984], 
which classifies them into a conceptual hierarchy using a 
formally defined subsumption inference operation. This hi
erarchical KB is the core of LaSSIE, consisting of about 
200 frames and 3800 individuals, which describe System 75 
using functional, architectural, and code-level concepts, and 
their inter-relationships. 

3.2 The Knowledge Base 
As shown in Figure 1, the four principal object types of 
concern in our domain are OBJECT, ACTION, DOER, and 
STATE. The edges of the taxonomy have their common "1S-
A" meaning1. DOER represents those THINGS in the system 
that are capable of performing actions. Nodes below DOER 
and OBJECT represent the architectural component of the 
system, i.e., its hardware and software components. Nodes 
below ACTION represent the system's functional compo
nent, i.e., the operations that are performed to or by the 
system. The relationship between the two system compo
nents is captured by various slot-filler relationships between 
ACTIONS, OBJECTS and DOERS. Each action description 

' in particular a TRUNK IS-A RESOURCE-OBJECT, a 
COMMUNICATIONS-DEVICE, and a DOER. 

Devanbu, Selfridge, Ballard and Brachman 111 



the talking state [8]; and it is implemented by the source file 
/ u s r / p g s / g p / t g p a l l / p r o f u m . c [9,10]. It should be 
noted here that the KANDOR classification algorithm will 
ensure that this individual gets classified under the frame 
USER-CONNECT-ACTION mentioned above. It is this kind 
of classification that organizes the large number of frames 
and individuals in LaSSIE into a usable form. 

3.3 Why Classification is Essential 
In a large software system, it is very difficult to know how 
one part of the system relates to another. Our approach is 
to build explicit descriptions of the actions performed by 
different parts of the system, then use formal inference to 
build a taxonomic hierarchy, where all IS-A links are de
rived from the descriptions themselves. The formal, logi
cal nature of the inference, which is based on an intuitive 
set-theoretic semantics, ensures that action descriptions are 
classified where one would expect to find them. (The infer
ence procedure that accomplishes this is described in [Patel-
Schneider, [1984].) Thus, programmers working on distinct 
components of the system can describe the operations per
formed by their specific components and be sure that their 
work is properly organized and categorized with other com
ponents for retrieval and re-use by later programmers. 

The taxonomy can also be useful in query formulation 
and reformulation. When querying the database, if there 
are no answers, or if there are too many answers, a tool 
like ARGON [Patel-Schneider et a/., 19841 can be used to 
specialize, generalize, or look for alternatives for an ap
propriate portion of the query, modify that portion, and 
retry the query. For example, a programmer may query 
the system for an action that reinitializes a trunk. This 
query may be stated as "a process-operation whose operand 
is a trunk and whose result is the initialized-state". If 
no such action exists, the the user can use the taxonomy 
to generalize either TRUNK, I N I T I A L I Z E D - S T A T E or 
PROCESS-OPERATION, to see whether any matching in
stances are retrieved. 

Large AT&T Switches like System 75 and 5ESS™ are 
actually structured to support re-use. The layered architec
ture is intended to promote the re-use of primitives from 
lower levels to construct higher-level operations. Although 
this is intended to simplify construction and maintenance, 
identifying the appropriate primitives when they are needed 
can be difficult. When primitives arc not used as they were 
intended, the original simplicity of the system is lost; in 
addition to needless re-coding, the system becomes harder 
to maintain and understand. The LaSSIE KB will help 
prevent this loss of architecture by explicitly codifying the 
primitives supported by the architecture into a formal, taxo
nomic knowledge base and making it available for browsing 
and querying with a powerful user interface. 

4 Incorporating the Code View 
Representing the "code view" of System 75 means develop
ing a general representation of code objects and their inter-

3 I t is dangerous for the same operation to be reimplemented 
several times by different programmers in different subsystems; 
besides the wasted work, when a bug develops in this operation, 
every single implementation thereof must be found and fixed. 

112 Tools 



relationships, then populating this generic taxonomy with in
stances from the system. The goal is to facilitate answering 
queries that contain requests for general information about 
file structure ("what extensions do source files have?"), gen
eral information about System 75 software ("where are Sys
tem 75 header files located?"), and information about spe
cific code objects ("what functions call 'apost' and include 
'errproc.h'?''). 

We have designed a taxonomic and relational model of 
the C language and C programming conventions and imple
mented most of this model in a KANDOR knowledge base. 
This knowledge base, which is integrated with the functional 
and architectural knowledge described in the previous sec
tion, represents the Unix file structure, including directories, 
C source files, header files, object files, makefiles, and their 
inter-relationships; and cross-reference information, includ
ing source files and functions, header files, macro definitions, 
and type (struct) declarations. The relationship knowledge 
includes both "defined-in" (as in what function is defined in 
what source file, or what macro is defined in what header 
file), and "referenced-in" (as in what functions reference 
(call) what other functions) relationships. 

We have added to this generic knowledge base informa
tion specific to System 75 and its own software methodol
ogy. This information includes directory and file naming 
conventions as well as conventions about the file structure 
itself. 

This conceptual framework of about 40 frames has been 
populated with individuals generated automatically from 310 
System 75 source and header files. This generation was done 
in a three-stage process starting with the data file created by 
CScope [Steffen, 1985], which is then further analyzed to 
generate two-place relations between code objects, which are 
then grouped together and used to generate legal KANDOR 
definitions. The resulting knowledge base includes, besides 
the 310 files, 27 directories, 433 functions, 39 structure def
initions, and 1416 #def ines (macros). These objects are 
very richly interconnected; a fairly typical function will call 
a dozen others and use several dozen # defines. 

5 Adding a Natural Language Interface 
To provide a natural language interface for LaSSIE, we cus
tomized the TELI system, which maintains data structures 
for each of several types of knowledge [Ballard and Stum-
berger, 1986, Ballard, 1988]. This information includes (1) 
a taxonomy of the domain, which enables the parser to per
form several types of disambiguation; (2) a lexicon, which 
lists each word known to the system, along with information 
about it; and (3) a list of compatibility tuples, which indi
cate plausible associations among objects and thus reflect 
the semantics of the domain at hand. For example, an agent 
can perform an action on a resource, but actions cannot be 
performed on agents, resources cannot perform actions, etc. 

In LaSSIE, KANDOR individuals generally correspond to 
proper nouns (i.e., names), while a frame may correspond 
to either a verb or a common noun. Generally, frames un
der ACTION correspond to verbs describing actions, while 
nodes under OBJECT or DOER correspond to nouns. For ex
ample, the frame ALLOCATE-ACTION maps to "allocate", 
"reserve", and "grab", and PROCESS maps to the noun "pro
cess". Individuals are usually associated with one or more 

proper nouns in an obvious way. For example, the individual 
process BUS-CONTROLLER is named "bus controller". 

As explained above, action frames include slot restrictions 
corresponding to case roles including the actor, the operand, 
the recipient, the cause of the action, etc. To each of these, 
there naturally correspond one or more English prepositions. 
Thus, each slot associated with an action frame gives rise 
to compatability tuples as described above. As an exam
ple, consider the frame definition4 shown below, with its 
associated verb connect: 
1 (verbframe CALL-CONNECT-TRUNK-ACTION 
2 (connect) (ACTION) 
3 (ex is ts has-operand (generic TRUNK)) 
4 (ex is ts has - rec ip ien t (generic CALL)) 
5 (ex is ts has-actor 
6 (value CALL-CONTROL-PROCESS))) 

For this frame and its slots, the following compatibility 
tuples are generated: 

CALL-CONTROL-PROCESS connect TRUNK 
CALL-CONTROL-PROCESS connect to CALL 

The "annotation" of the knowledge base was done manu
ally, after which the conversion to the TELI data structures 
is automatic. The resulting compatability tuples for LaSSIE 
include 167 verb case frames, corresponding to a total of 
40 verbs. The lexicon contains 882 entries, including 193 
common nouns and 260 proper nouns. 

To process a query such as What actions by the line con
troller are caused by an action by an attendant?, TELI 
parses the input, making intimate use of the compatibility 
tuples and the taxonomy to insure globally consistent case 
bindings. The final parse tree is then converted into a se
mantic structure resembling a first-order logical form, which 
is sent to a LaSSIE-specific filter to strip out quantifiers as
sociated with words such as "a" and "the". The resulting 
structure is then passed back to LaSSIE for translation into 
a query that is executed (thus performing a retrieval) but 
which also provides an editable ARGON expression. For 
example, TELLs output for the above query is: 
(set Al (ACTION Al) 

((ACTION BY AGENT) Al L i ne -Con t ro l l e r ) 
((ACTION CAUSE ACTION) A2 Al) 
((ACTION BY AGENT) A2 P1) 
(ATTENDANT P1)) 

This is then translated into the following editable ARGON 
query: 
ACTION 

HAS-ACTOR LINE-CONTROLLER 
HAS-CAUSE ACTION 

HAS-ACTOR ATTENDANT 

Note that the user of LaSSIE need not know the details 
of the underlying KB in order to pose questions in English 
but, by seeing the associated ARGON query, may well learn 
something about the KB when the input is processed. For 

4Actually, the form shown generates a table entry for the action, 
associating it with a verb name, and generates a standard KND-DE 
call to define a KANDOR frame. 

Devanbu, Selfridge, Ballard and Brachman 113 



example, a query What actions by a process reserve a touch 
tone recognizer because a pickup by a user ?, would be 
translated to 
ALLOCATE-A CTION 

HAS-ACTOR PROCESS 
HAS-CAUSE OFF-HOOK-ACTION 

HAS-ACTOR USER 

In this case, the user would learn that the action verb 
"reserve" corresponds to ALLOCATE-ACTION, "pickup" 
to OFF-HOOK-ACTION, and also that actors of and 
causes of ACTIONS respectively are specified by using the 
HAS-ACTOR and HAS-CAUSE slots. 

6 Discussion 
6.1 Results 
The overall goal of this project was to build an information 
system that represents a significant amount of knowledge of 
a large software system. Our motivating problem was that 
of discovery: the need of developers to be able to access 
existing knowledge of the system prior to extending it. As 
we built LaSSIE, we were forced to elucidate the kinds of 
knowledge that we needed to represent, as well as how it 
was to be represented. LaSSIE represents hundreds of in
terrelated facts about the call-processing part of System 75, 
including a taxonomic breakdown of high-level actions that 
drive the system, and low-level knowledge about the code 
structure. The knowledge of code structure was generated 
automatically from source files. We added a natural lan
guage interface that allows many queries to be formulated 
in English, and uses the underlying knowledge base to help 
resolve lexical and syntactic ambiguities. The use of the 
existing ARGON system allows a very powerful form of 
exploration. 

LaSSIE can answer hundreds of different queries about 
System 75, including queries about actions, architecture, 
code, and combinations of the three. ARGON or TELI 
is used to formulate these queries, which are answered by 
showing a list of matching instances. These instances can 
be used to generalize or specialize the query, and the process 
continues. With regard to the discovery queries presented in 
Section 2, which are illustrative of some important classes 
of queries, the current version of LaSSIE successfully an
swers Ql, Q3, and Q4 exactly as stated. Q2 is an interesting 
case: while it cannot be handled exacdy as stated, LaSSIE 
can be used to home in on the answer. Q2 is: "What mes
sages are sent by a process in the network layer when an 
attendant pushes a button to achieve the 'Hold' feature?". 
The problem is that the sending of a message is not repre
sented at a fine enough grain, so that "message sent when 
an attendant pushes a button" cannot be directly retrieved5. 
However, LaSSIE can be used to answer the related query, 
"what functions are called when an attendant pushes a but
ton to activate the 'Hold* feature". At this point, the user 
can inspect the functions' source code manually to deter
mine which messages could be sent under actual running 

To answer this question precisely, the code has to be actually 
run or simulated; this means that computing a correct answer would 
be undecidable. 

conditions. Even for queries that cannot be handled exactly, 
LaSSIE's mode of interaction is rich enough to provide at 
least a partial answer. 

6.2 Related work 
Traditional approaches to software retrieval fall into two 
complementary categories: high-level classification tech
niques, which emphasize retrieval by software category; 
and low-level cross-reference tools, which facilitate various 
kinds of browsing at the code level. 

The goal of high-level classification techniques is usually 
to create a database of programs and program parts that 
can be retrieved for re-use. Two methods of indexing are 
normally used. In the first, keywords arc used to describe 
and classify software components and keywords are used for 
retrieval in the traditional fashion: a user will list a set of 
uninterpreted terms that "describe" the desired component 
and the system will retrieve all components that are close 
in some multi-dimensional space defined by the keywords. 
The CATALOG system [Frakes and Nejmeh, 1987] is of this 
type. Clearly, the utility of a keyword system will depend 
on how well the keywords describe the components and how 
well they match those keywords normally thought of by a 
user. The further issue of generating the database arises 
here, as it does with any such database. 

Prieto-Diaz expanded the notion of strict keyword re
trieval by forming a static taxonomy of concepts or "facets" 
that impose an organization on the set of keywords. [Prieto-
Diaz, 1987] For example, the facet "Function" includes the 
terms add, append, create, evaluate, and the facet "Objects" 
includes the terms arrays, expressions, files, and functions. 
The system is queried much like a keyword system, but 
may be more amenable to a "query-modify" retrieval cycle 
than pure keyword description. Once designed, however, his 
classification scheme is static and fixed. 

At the low level, there are a number of tools derived 
from the notion of a cross-reference listing, which indexes 
two code components with each other, for example, files and 
function calls. MasterScope [Teitelman, 19741 was one of 
the earliest such tools; it was integrated with the InterLisp 
environment. CScope [Steffen, 1985] and CIA [Chen and 
Ramamoorthy, 1986] are tools that run in the C environment; 
they both automatically generate a database of two-place re
lations (essentially, the "defined-in" and the "referenced-in" 
relations) and allow a user to query or browse the relation
ships of a large software system. CIA, the more comprehen
sive of the two, is based on the relationships between five 
code objects: files, functions, global variables, type defini
tions, and macro definitions ("#def ine" statements), and 
it allows limited two-place queries. For example, one can 
ask for all functions that call a given function, or all macros 
used in a given file. The current implementation is unable 
to handle queries with conjunctions, negation, or quantifica
tion. 

Neither of these two approaches—software classifica
tion techniques and cross-reference tools—comes close to 
achieving the power of LaSSIE, due in part to the fact that 
they do not provide inference capabilities. They could not 
handle the classes of queries illustrated by Q1-Q4 in Section 
2. They do not address the issue of integrating high-level 
functional knowledge and code knowledge, attempt to model 

114 Tools 



the underlying domain, or capture more than a single view 
of software. 

6.3 Directions for future research 

LaSSIE has reached a plateau of accomplishment, but there 
is a long way to go before it is the ideal software Informa
tion System. For example, we need to incorporate more of 
the architectural view of System 75. This involves a more 
detailed examination of the process-level functioning of the 
system, including details on the purpose of specific pro-
cesses, the messages they send, and the meanings of those 
messages. 

On a more practical level, we are re-designing LaSSIE 
to use the CLASSIC knowledge representation language 
[Borgida et a/., 1989]. Present plans also include porting 
the system from the Symbolics machine to run on SUN 
workstations and other Common Lisp environments. This 
involves a re-design of the ARGON interface. 

We must also continue to address the problem of knowl
edge acquisition. Constructing a knowledge base is labor 
intensive, and we need to examine the possibility of doing 
some of it automatically. The acquisition of the code knowl
edge in the current version of LaSSIE was done automati
cally; acquiring other kinds of knowledge in a similar man
ner is a research project in itself. There is reason to believe 
that some large software systems include enough highly stan
dardized comments that this can be done. There has recently 
been some promising research in the area. Biggerstaff [Big
gerstaff, 1988] has proposed an approach to reconstructing 
the lost design of software from a variety of sources, includ
ing source code, design documents, using a domain model, 
mimicking the process by which an expert who is well ac
quainted with, for example, windowing systems in general, 
might reconstruct the design of a new windowing system 
using his/her knowledge of the general structure of such 
systems. On a more formal (and somewhat closer the code) 
level, Letovsky [Letovsky, 1988] and Wills [Wills, 1988], 
have used formal methods to discover algorithmic patterns 
(loops, tests, accumulations, etc) in programs. 

7 Summary 

Our approach to the problem of maintaining and extend
ing large software systems is to employ explicit knowledge 
representation and reasoning technology. This has led us 
to formulate complementary models of a software system 
in terms of its function, architecture, features, and code. To 
this end, we constructed a knowledge base that captures crit
ical aspects of three of these four views of the System 75 
switching system. We also customized and incorporated a 
natural language component to be used either alone or in 
conjunction with the ARGON interface. 

As a result of these efforts, LaSSIE is the first information 
system to incorporate multiple views of a large software 
system embedded in an environment that lets a user query 
the system and explore the knowledge base. Although much 
remains to be done, LaSSIE can handle successfully many 
classes of queries about a large software system. 

References 
[AT&T Technical Journal, 1985] AT&T Technical Journal, 

Special Issue on the System 75 Digital Communica
tions System, Vol. 64, No. 1, Part 2, January 1985. 

[Ballard and Stumberger, 1986] Ballard, B. W., and Stum-
berger, D.E., Semantic Acquisition in TELI: A Trans
portable, User-Customized Natural Language Proces
sor, 24 th Annual Meeting of the ACL, New York, June 
1986, pp. 20-28. 

[Ballard, 1988] Ballard, B. W., A Lexical, Syntactic, and 
Semantic Framework for a User-Customized Natu
ral Language Question-Answering System, Lexical-
Semantic Relational Models, Martha Evens, Editor, 
Cambridge University Press, 1988, pp. 211-236. 

[Biggerstaff, 1988] Biggerstaff, T. J., Design recovery for 
Maintenance, MCC Technical Report Number STP-
378-88, November, 1988. 

[Borgida et al., 1989] Borgida, A., Brachman, R. J., 
McGuinness, D., and Resnick, L. A. CLASSIC: 
A Structural Data Model for Objects. Proc. ACM 
SIGMOD-89, on Management of Data, Portland, OR., 
May-June, 1989 

[Chen and Ramamoorthy, 1986] Chen, Y. F. and Ra-
mamoorthy, C. V., The C Information Abstractor, 
COMPSAC, Chicago, October 1986. 

[Steffen, 1985] The CScope Program, Berkeley UNIX Re
lease 3.2, originally written by Joe Steffen. 

[Frakes and Nejmeh, 1987] Frakes, W. B. and Nejmeh, B. 
A., An Information System for Software Reuse, Pro
ceedings of the Tenth Minnowbrook Workshop on Soft
ware Reuse, p. 142-151, 1987. 

[Letovsky, 1988] Letovsky, S.I., Plan Analysis of Programs, 
Ph.D. Thesis, Yale University, December 1988. 

[Patel-Schneider, [1984] Palel-Schneider, P. F. Small can be 
beautiful in knowledge representation. In Proc. IEEE 
Workshop on Principles of Knowledge-Based Systems, 
Denver, December, 1984. 

[Patel-Schneider et a i , 1984] Patel-Schneider, P. E, Brach
man, R. J., and Levesque, H. J. Argon: Knowledge 
representation meets information retrieval. In Proc. 
First Conference on Artificial Intelligence Applications, 
1984, pp. 280-286. 

[Prieto-Diaz, 1987] Prieto-Diaz, R. and Freeman, P. Classi
fying Software for Reusability, IEEE Software 4: 6-16, 
January, 1987. 

[Robins, 1988] Robins, Gabriel., The ISI Grapher Manual, 
USC Information Sciences Institute, Technical Manual 
ISIATM-88-197, February 1988. 

[Teitclman, 1974] Teitelman, W., The INTERLISP Refer
ence Manual, Bolt, Beranek and Neuman, 1974. Sec
tion 20 describes MasterScope written by L. M. Mas-
inter. 

[Wills, 1988] Wills, L., Automated Program Recognition, 
Technical Report 904, MIT AI Labs, 

Devanbu, Selfridge, Ballard and Brachman 115 


