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ABSTRACT 
In this short article, we report new results on our work on the 

problem of using passive Vision and more precisely Stereo Vision to build 
up consistent 3D geometric descriptions of the environment of a mobile 
robot 

I-INTRODUCTION 
The robot that we have built consists of a four-wheeled platform 

with two driving wheels operated by electrical motors. A set of three CCD 
cameras provides black and white images of the environment The cameras 
are located at the vertexes of a vertical roughly equilateral triangle. Images 
are transmitted via a VHF link to a workstation where they are stored and 
made available through Ethernet to a number of processors. To the user, the 
vehicle appears as a standard peripheral and can be accessed as such from any 
terminal on the net It is therefore a very convenient testbed for studying a 
number of problems in Vision. 

One such problem is the following. Suppose we let our vehicle 
wander around in a building using its ultrasound sensors to avoid obstacles, 
odometry to roughly estimate its motion and its three cameras to compute 
3D descriptions of its environment One question then is, can we hope to 
combine coherently the various sources of information, and especially the 
visual information obtained at different times and from different places, and 
build up an accurate geometric 3D representation of the building even if 
each individual measurement is itself fairly inaccurate 7 We call this 
problem the Visual Fusion problem. 

There are two deep issues which are associated with this question. 
First is the issue of the type of geometric representation that is used by the 
system. Representations which are mathematically equivalent may behave 
quite differently on a real problem due to the unavoidable presence of noise 
and errors. This brings up the second issue which is the question of how do 
we represent and manipulate uncertainty. 

In the next Sections we propose a solution to these issues and 
present some results. 

ll - WHAT IS THE PROBLEM THAT WE ARE TRYING TO SOL VE ? 
Each triplet of images provided by the three cameras is analysed by 

a Stereo program described in [3,4]. This program outputs 3D line 
segments described in a coordinate system attached to the three cameras. 
Each line segment has a geometric description which we elaborate on in the 
next Section and an uncertainty which we explain in Section IV. This 
uncertainty is directly related to the limited resolution and the geometry of 
the three cameras. 

To relate the various coordinate systems corresponding to the 
different viewpoints we estimate the rigid motions between them. This is 
done in two steps. First a rough estimate is obtained by combining the 
odometry with the rotation of the cameras. Second, a better estimate is 
obtained by combining the two 3D representations provided by the Stereo 
program in the two positions of the vehicle. This is done by matching 3D 
segments which are present in the two views and is described in details in 
[5,1]. The result is an estimate of the rotation matrix and translation vector 
between the coordinate systems attached to the cameras in their respective 
positions, together with some measure of their uncertainty (to be explained 
in Section IV). 

This having been completed, the current representation of the 
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environment is a number of uncertain geometric primitives (here 3D line 
segments) attached to coordinate frames related by uncertain rigid motions. 
The more we move the robot and measure, the move we increase the 
number of line segments until we run out of memory. This is clearly 
unsatisfactory and we must provide the system means of "forgetting 
intelligently". By this we mean the following. Let us consider a physical 
line segment S like a part of the frame of a window, or the edge of a desk. 
This line segment is very likely to have been detected in different positions 
1, 2, ... , n of the mobile robot and is therefore present as segment Sj in 
position 1, segment S2 in position 2, ... , segment Sn in position n. Since 
we can relate by rigid motions position 1, to positions 2, 3 n, by 
applying the right transformation, the physical segment S is represented by 
n segments S j , S'2 , . . . , S'n in the coordinate system attached to position 
1. 

We would like our system to have the capability of automatically 
deciding that S1, S2 ... ♦ and S'n are the same segment S and fusing them 
into one segment S , a combination of S j , S2, ... , S'n. This has two 
advantages. First, S being a combination of n sources of information 
should be at least as accurate as each of its instanciations, therefore accuracy 
in the description is now able to increase, and second since the system has 
recognized that S j , S 2 , . . . , and Sn are the same segment S , it can forget 
diem and remember only S, it is now able to "forget intelligently". 

In order to achieve this goal, two questions must be answered. How 
do we represent and manipulate geometry and uncertainty ? 

HI - REPRESENTING LINES AND LINE SEGMENTS 
The obvious way to represent a line is by choosing two points on 

it, or one point and a direction. The first representation has dimension 6 
(the six coordinates of the two points), the second representation has 
dimension 5 (the three coordinates of the point and the two coordinates 
defining die direction as, for example a unit vector on the gaussian sphere). 
In fact, the minimal dimension of the representation of a line is four. This 
can be seen by choosing, in the second representation, the point such mat 
the segment from the origin to the point is perpendicular to the line. The 
line is then located in the plane normal to that segment and can be 
determined by its orientation with respect to a known direction in that 
plane, i.e. by one parameter. 

A line segment is six-dimensional, being represented either by its 
two endpoints or by one endpoint (3 parameters), the line direction (2 
parameters), and its lengm (1 parameter). 

For our problem, even though we actually manipulate line 
segments because this is what is provided by our stereo algorithms, what 
we in fact would like to fuse are lines. The reason for this is the fact mat 
segmentation errors, variations of illumination, inadequate edge detectors, 
and variations of viewpoints result in the same physical segments being 
instantiated as a variety of subsegments. Since we do not know the real 
segment we must deal with its supporting line. 

A convenient minimal (i.e. four-dimensional) representation of 3D 
lines is the (a, b, p, q) representation where the line is defined by the two 
planes: 

x • az + p y - bz + q (1) 
This representation is easily computed using the coordinates of two 

points on the line. 
The effect of a rigid motion defined by a rotation matrix R and a 

translation vector t can be readily assessed, i.e. if we route and translate a 
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line L into a line L, a', b', p: and q' can be easily computed as functions of 
a, b, p, q, R, and t. The details of the computation can be found in [2]. 

IV - REPRESENTING GEOMETRIC UNCERTAINTY 
Uncertainty cannot be engineered away, therefore it has to be 

present explicit ly in the representation that is manipulated by the Vision 
system. In our example, we have two types of uncertainty. First, the 
uncertainty on the localization of the 3D segments in each coordinate frame 
and second, the uncertainty on the rigid motions relating the various 
coordinate frames. 

The stereo reconstruction program relates the pixel uncertainty in 
the three images to the uncertainty of the endpoints of the 3D segments as 
covariance matrixes. From them, we derive the covariance matrix of the (a, 
b, p, q) representation of the supporting 3D line (see [2]). 

The rigid motions between coordinate frames are represented by two 
three-dimensional vectors, r representing the rotation and t the translation. 
The uncertainty on the rigid motions is then represented as covariance 
matrixes on those vectors. For details on the representation of rigid motions 
and the computation of their uncertainty, the interested reader is referred to 
[5,1,2]. 

The key assumption underlying these computations is that the 
various geometric representations that we manipulate are well modelled by 
gaussian processes (thus the use of covariance matrixes to represent their 
uncertainty). It is impossible to demonstrate theoretically the validity of 
this assumption, the quality of the results that we show in Section V is a 
practical confirmation of it. This in turn allows us to use the extremely 
powerful tool of the Extended Kalman Filtering (EKF) to manipulate this 
uncertainty. Due to lack of space, we cannot develop here the corresponding 
formalism which the interested reader can find in some of the previous 
references. 

Let us now see how we can use these tools to solve our problem. 
We treat the case of a segment S1 in coordinate frame 1 and a segment S2 

in coordinate frame 2 related by a rigid transformation T (if we apply T to 
segments in frame 2 they are expressed in frame 1). We first discuss the 
case where the segments are represented by their endpoints and then the case 
of the minimal representation defined by equations (1). In both cases, T has 
uncertainty defined by a covariance matrix A. 

V - RESULTS 
We have experimented the previous formalism both on synthetic 

and real data. Here are two typical examples. 
First example is synthetic. We build a synthetic rigid object made 

of 8 vertical segments forming a square with a diamond in it. We form 
seven noisy instances of this object by the following technique : first, we 
generate a noisy displacement T on the object. This is done by generating a 
gaussian 6-vector of zero mean and small given covariance representing the 
parameters (r,t) of the rotation and translation. Second we modify the length 
of each segment by multiplying it by a random factor X uniformly 
distributed between 0.9 and 1.1. (This is to simulate the polygonal 
approximation instabilities.) Finally, we select a different covariance matrix 
for each endpoint, and apply a corresponding zero-mean gaussian noise. 
This is repeated seven times and the result is shown in figure 1, where the 
front view is above the vertical view. The ellipses are a representation of 
the covariance matrices attached to the endpoints, derived by the Kalman 
filter formalism to take into account the uncertainty on the motion and on 
the endpoints (but not the uncertainty on the segments lengths). To fuse 
these segments, we first applied a simple least squares algorithm between 
homologous endpoints. The result is shown in figure 2. We also applied 
the formalism developped in IV. 1, i.e. fused two points when the 
Mahalanobis distance between them was lower than 7.8 (corresponding to a 
95 % confidence rate) and applied a Kalman Filter to compute a better 
estimation. The result is shown in figure 3 with the a posteriori covariance 
matrices. Finally we did the same with the formalism developed in IV2, 
fusing lines instead of points. The projection of the initial points on the 
resulting lines and the a posteriori covariance on them are shown in figure 
4. The computed mean square error between the actual endpoints and the 
fused segments are respectively 4.3 %, 3.2 %, 1.1 % with respect to the 
side of the square, which shows the superiority of the Extended Kalman 
Filter over simple least-squares, and also the superiority of the line fusion 
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over the endpoint fusion. This last point is due the arbitrary segment 
breaking, which is not taken into account in the endpoint covariances, 
whereas it does not affect the line representations. 

Actually the same experiment conducted without line breaking 
yielded a similar error rate of about 0.5 % for the two Kalman approaches, 
while the least-squares technique was still yielding a 4.S % mxerror. 

The second experiment is conducted with real data. Figures 5 to 8 
shows a calibration grid observed by our mobile robot from 4 different 
positions. Actually the robot has 3 eyes (cameras) and builds in each 
position a set of 3D segments. Covariance matrices are computed on the 
segments endpoints assuming gaussian noise in the images (see [1]). Using 
those segments which are common to a pair of successive views, the 
system computes the 3D motion between each such pair, and then places all 
the segments into a single reference frame. Figure 9 shows a vertical view 
of the grid segments in such a frame. 

Fusing is then achieved between endpoints using the formalism 
described in IV. l. allowing a reduction of the spread of the vertical 
projection of the segments akmg 2 ideal lines (vertical segments lie slightly 
in front of horizontal ones). This spread agrees very well with the computed 
a priori and a posteriori computed covariance matrices (not shown in these 
figures). 

VI - DISCUSSION AMD CONCLUSIONS 
We have expanded in this paper on some key and simple motions 

which we have presented elsewhere [1,2). 
First we have obtained more evidence of the necessity to combine 

geometry and uncertainty in Visual representations. Second we have 
confirmed that the gaussian assumption which allows us to use the 
powerful tool of Extended Kalman Filtering is quite adequate for both 
synthetic and real data obtained by a mobile robot operating in a human 
made environment Third, we have shown that these simple ideas provide an 
efficient mechanism for building up incrementally a coherent 3D 
representation of this environment while allowing the system to forget 
intelligently redundant information and, at the same time, improving the 
accuracy of its current estimation. 
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