
Building Natural Language Interfaces for Rule-based Expert Systems

Galina Datskovsky Moerdler, Kathleen R. McKeown and J. Robert Ensor

Columbia University Columbia University AT&T Bell Laboratories
New York, N.Y. N e w Y o r k ' N Y ' Holmdel, N J

ABSTRACT:

In this paper we discuss a semantics for translating natural
language statements into facts of an underlying expert
system, replacing the more conventional menu interface for
gathering data from the user. We describe two issues that
must be considered when building such an interface for an
expert system. These issues are semantic processing of the
user statements and the design of an interpreter for the expert
system that efficiently utilizes the facts entered by the user.
The semantic approach is based on verb categorization and
hierarchical structuring of each category. The parsing
algorithm based on selectional restriction is directly encoded
into each verb class hierarchy. Next, we describe Director,
an interpreter for rule-based expert systems that efficiently
utilizes these facts for inferencing. Director uses a
combination of forward and backward chaining that gives
ful l consideration to each fact entered by the user and enables
the system to process input in an efficient and focused
manner.

1 Introduction
An expert system often interactively gathers data from a

user in order to solve a problem. In many expert systems this
information gathering is done via a menu interface. In this
paper we describe a natural language interface for expert
systems that replaces the more conventional menu interface
for collecting information from the user. One of the tasks of
a natural language interface is to translate user statements
into facts of the underlying expert system, which requires a
sophisticated semantics. Furthermore, such an interface
places additional requirements on the inference engine of the
expert system itself, namely to efficiently utilize the facts
entered by the natural language module. This paper presents
a semantic approach necessary for the translation as well as
Director, an interpreter for rule-based expert systems** that
meets the demands of the natural language interface. (For an
overview of the system see figure 1.)

The semantic approach presented relies primarily on verb
categorization and hierarchical structuring within each verb
category. This approach differs from previous work in
semantics by capturing linguistic generalizations of verb
categories while providing modularity and some domain
independence. In addition, it offers a semantic mechanism
for an unstructured underlying system unlike previous
approaches that made use of an assumed structure to define
semantics (e.g. data base systems). During parsing, an
appropriate hierarchy is selected according to the definition
of the verb in the system's dictionary. A selectional
restriction based algorithm is used to traverse the hierarchy.

.This research was partially supported by Office of Naval Research
grant N00014-82-K-0256.

The restrictions on the arguments of the verb are based on the
sentence noun features. Furthermore, in certain cases the
noun features can be used directly in order to derive certain
facts.

With a natural language interface, a user may volunteer
information at any point; either at the beginning of a session
or as an answer to any question posed by the expert system.
The expert system must be able to use this information to
arrive at a solution quickly, avoiding inferencing and
associated questions that are irrelevant to the user specified
goal and information. Director has been designed
specifically to support the construction of expert system
with natural language interfaces. It allows for facts entered
through natural language to be taken into account by using an
efficient combination of forward and backward chaining.
Forward chaining is used to ensure that full consideration is
eiven to each fact asserted by the natural language module on
behalf of the user. Backward chaining is controlled by
heuristics that ensure a focused interaction. These heuristics
are based on descriptions of how and when data has been
entered and guide the selection of rules to be evaluated.
Director also provides ready access to portions of its internal
structure. This feature allows the system to answer certain
types of queries with a minimal number of searches of the
rule base. The interpreter is designed to come to a solution
quickly, with the minimal number of questions posed to the
user and is therefore useful not only for systems with natural
language interfaces, but also for systems whose problem
domains involve data from hostile environments, such as
nuclear reactors.

2 Background
In order for a human expert to be able to answer a person's

question he often has to carry out extensive dialogs with that
person to gather information about his needs. Extensive
interaction and clarification is also needed for expert
systems. One way expert systems communicate with their
users is via a menu interface [Shortliffe 76] [Clancey 79].
Unfortunately, these interfaces are often tedious or awkward
[Datskovsky 84] and may even limit the capabilities of

associated expert systems [Pollack et. al. 82].
A natural language interface can relieve some of the

A typical rule-based expert system is constructed as a knowledge
base and an associated interpreter (inference engine) [Hayes Roth 85].
The knowledge base is a collection of facts and production rules. A fact is
a (name value) pair indicating the value of the object name; and a
production rule is a statement of the form IF premise THEN action. Such
a rule stores the knowledge that if the premise (left-hand-side) is true then
the action (right-hand-side) should be performed The interpreter controls
the execution of the expert system by selecting and evaluating rules. As
these rules are evaluated, they alter the values of the facts and generate
input and output

682 NATURAL LANGUAGE

problems associated with the menu interface by allowing the
user to receive advice in the most informative and least time
consuming way. That is, overall session length should be
shorter using natural language since the system wi l l have to
pose fewer questions. This is possible because natural
language allows the user to volunteer more than just the
requested information whenever the expert system presents a
question to the user.

The natural language module is responsible for interpreting
incoming statements as facts. Although natural language
interfaces to data base systems have been successfully
constructed [Kaplan 79] [Woods et. al. 72] [Grosz ct al. 85],
the task is more difficult in the expert systems domain. A
semantic interpreter for a data base system usually relies on
the regular structure of the data base as encoded in the
schema describing it No such regularity or description is
available in the expert systems' case. The lack of existing
system structure makes the construction of domain
independent semantics for expert systems difficult and means
that some sort of structure that can be used as the basis for
semantics must be built on top of the underlying rule base.

The semantics and control strategy we present in this paper
is aimed at exactly this problem: interpretations of natural
language responses to system questions, deriving and making
use of any additional facts volunteered by the user. Since
question asking is normally determined by the sequence of
rule firings in expert systems, a control strategy was
developed and fully implemented in Director that determines
which rules to fire so as to minimize the number of questions
and to ensure that they are asked in a focused and coherent
order.

We are testing our ideas in the domain of tax and financial
advising and using a small expert system called Taxpert
[Ensor et al. 85], which deals with personal income tax

matters as our experimental environment Taxpert consists
of a number of agents that cooperate to solve an assortment
of tax problems. Director, embodying our control strategy,
serves as the control mechanism for the Dependency
agent that helps the user determine whether someone
qualifies as his dependent

A hypothetical example from the tax domain illustrating
these issues is shown in Figure 2. Here the user is trying to
determine whether an individual, Fred, can claim another
individual, John. The system must determine whether 5
requirements are met in order to answer. These include the
type of support given, relationship between the individuals,
citizenship, income, and the type of return filed. The system
asks whether Fred is the only supporter of John. The user not
only supplies a yes as the answer to this question, but also
volunteers extra information, John is Fred's father.

Since the user can enter any amount of information at
arbitrary times with a natural language interface, the
underlying expert system must be able to make use of

***The Dependency agent contains over 80 rules and is implemented in
Zetalisp on the the Symbolics Lisp Machine.

System: Is Fred the only supporter of John? [Y/N]
User: Yes, Fred is the only supporter of his father John.
Facts derived: (?user is only supporter of ?dependent)

(?dependent is parent_of ?user)

Figure 2: User - System Interaction

volunteered information to avoid asking unnecessary
questions. Without any volunteered information, Taxpert
normally must ask questions about each of the five
requirements for dependency. In the example of Figure 2,
note that Taxpert need not ask any questions about the
relationship between the individuals since this information
was volunteered in response to an earlier question.

In this paper, we focus on the interpretations of natural
language responses to system questions. Ultimately, we plan
to replace the menu system with a full natural language
interface. In such a system, the user could indicate what goal
he would like the system to solve by asking questions (e.g.,
"Can Fred claim John as a dependent?") as well as
providing facts through natural language statements. While
Director does currently support the setting of expert system
goals through user input, the semantic translation of user
queries to goals is still under consideration.

3 Semantic Interpreter
Our semantic mechanism relies on categorization of verbs.

We have looked at over 90 verbs from the tax code and
classified them into 12 categories. Analysis of categories of
verbs have been done by researchers before [Osgood
79] [Ballmer et al. 81]; however, the analysis is generally
done for one category only, such as verbs of motion [Miller
72]. In real world domains, like tax advising, many such
categories are necessary.

Each verb category is organized hierarchically where each
node of the hierarchies is derived from the meanings of one
or more verbs. The leaves of the hierarchies contain either
expert system facts or pointers to other hierarchies. Thus, the
hierarchies form a connected forest A selectional restriction
algorithm is encoded into each hierarchy. The restrictions on
the arguments of the verbs rely on the noun features which
are based on Roget's thesaurus. During parsing, the
restrictions on the agent, patient, object and modifier of the
verb help guide the parse down the hierarchy and derive the
appropriate facts. Although the verb hierarchies are the
primary source of facts, some facts are derived directly from
the noun features.

The deep syntactic structure of the sentence, which is
derived by an ATN parse, also influences semantic
interpretations. In particular, it influences semantic
disambiguation, the number of facts derived from a given
sentence, instantiation of variables and relationships between
facts. Interaction between syntax and semantics is not the
main focus of this paper.

Figure 1: Natural Language - Expert System Interaction

Moerdler, McKeown, and Ensor 683

Figure 3: Partial Tree formed for the Transfer of possession
category****

As an example, consider one of the largest categories in
our domain, Transfer of possession. It contains many verbs,
such as give, get, receive, provide etc.. Figure 3 shows a
partial hierarchy formed for this category. A dictionary entry
for a verb contains the category or categories to which the
verb belongs; a plus or a minus, which indicates whether the
subject of a sentence is the semantic agent or patient; and
sometimes a lower level node from the parse tree. For
example, the verb to get has a dictionary entry of Transfer of
possession indicating that the underlying subject is
generally the patient in a sentence with this verb. In the
sentence John gets $500, John is the recipient or the patient
The verbs to pay and to earn have more specific meanings
and therefore have lower level tree nodes as entries in the
dictionary nodes. The verb to pay is defined as Transfer of
possession monetary, because the verb generally
indicates the transfer of monetary amounts, and the verb to
earn as Transfer of possession <+>, Taxable, because it
generally indicates the existence of a taxable income.

More specific information can come from cither the verb,
the arguments of the verb in the sentence, or both. The
arguments in square brackets indicate the restrictions
comming from the agent, patient, object and modifier of the
verb, which yield more specific meanings. Consider a
typical input sentence John gets 500 dollars of support from
Fred The verb gets is defined in the dictionary as Transfer
of possession Thus, during the parse the Transfer of
possession hierarchy is chosen based on the definition of the
verb in the dictionary. Next, the parser has a choice of
proceeding down to either Physical Object or HonJ>hysical
Object. It selects Physical Object because 500 dollars,
which is the object of the sentence, fits the concrete
restriction. At the next level, concrete is further restricted to
monetary. Now, the choice is between Donation and Income.
Here Income is selected based on the feature human of the.

•••*In the figure, * stands for wild card, and - meam that the feature is
inherited from the parent node.

a^ent (John), because in our domain a monetary amount
given to a human generally implies the money was earned,
while a monetary amount given to an organization implies
donation. At the next level, the choice is between Taxable
and Non Taxable. Here the additional information comes
from the modifier instead of the case roles as before and Non
Taxable is selected because support has the payment/given
feature in the dictionary. Finally, the fact (?depcndent is
amountofsupport ?support) is added to the data base (or
working memory) of the expert system.

Not all facts are derived from verb hierarchies. Some facts
are implied directly by noun features. The tax code contains
a large number of tests that deal with family relationships.
Thus, features such as relative, child, parent etc.. are
assigned to some of the nouns. For example, the feature
child is assigned to words such as son, daughter, step-son,
step-daughter, foster-son, etc., and in turn has a more general
feature of relative. The feature child directly implies the fact
(?dependent is child of ?user).

3.2 Cur ren t Direct ions
Our semantic approach specifies how to derive expert

system facts from user statements, but there are several other
functions that it should have. It should be able to derive
expert system goals from user queries and handle partial
matches (i.e. deal with data that matches only a part of a
fact), as well as deal with semantically incomplete input and
anaphoric reference. The exact algorithm for instantiating
the variables in the facts still has to be formalized. These
issues are currently being investigated and the semantics is
being fully implemented and integrated as part of Taxpert.

4 Director
The natural language interface described presents facts to

the underlying expert system in a more or less unconstrained
fashion. Director is an interpreter for rule-based expert
systems that was specifically designed to be able to handle
such input. The two major requirements for the interpreter
are to efficiently utilize information volunteered by the user,
while maintaining a focused and coherent interaction.

A rule-based system executes via the evaluation of its
rules. These evaluations are controlled by the system's
interpreter, which chooses which rules to evaluate according
to some strategy. System queries to the user are generated as
the rules attempt to determine the values of various data.
Therefore, in these systems the goal of minimizing the
number of questions and providing a focused interaction can
be realized through suitable control of rule firings, i.e.,
through an appropriate interpreter. Many common
interpreters for rule-based systems are based on sequential
statement evaluation (e.g., [Bobrow et. al. 83]), forward
chaining (e.g., [Forgy 81]), or backward chaining (e.g., [Van
Melle 81]). Sequential control, often used as the basis for
specialized user-programmed control structures, is of little
direct assistance in building rule-based systems. Systems
that are restricted to forward chaining inference violate the
coherence requirement because they focus on deriving
inferences from a set of facts, rather than investigating
hypotheses. Systems restricted to backward chaining often
do not allow a user to volunteer information, ignoring
inferences from new information. More than a simple
combination of forward and backward chaining is necessary,
thus Director is based on a heuristically controlled
combination of the two strategies, and so is able to efficiently
utilize the facts entered by the natural language module.

684 NATURAL LANGUAGE

4.1 Implementation
Since each rule is selected according to the selection

procedure contained within the interpreter, this procedure
influences the structure of the rules and the control
information that must be explicitly encoded into the system.
Indeed there is probably no major expert system in which the
rules are independent of their interpreter [Duda 84]. In
Director, each rule is invoked as a function, whose body is an
if-then form in which the premise and the action are
restricted Lisp s-expressions.

Each rule premise is restricted to data base (working
memory) queries, i.e., the examination of the values of facts.
The value of a fact may be added to the data base in only two
ways: either through the action of a rule or through user
input. Any fact that is not added by the action of a rule has
an associated query procedure so that the user can supply its
values. This query procedure is invoked if the premise of a
rule tries to examine the fact's value, and the value is not
present in the data base. Director automatically maintains the
mappings between the rules and the query procedures for
their associated facts.

The action of a rule is restricted to a single data base
assignment The value to be asserted may be a constant, the
value of a datum, or the result of a function evaluation.
However, any input/output performed by such a function is
beyond the control of Director. No query procedure is
automatically associated with the fact mentioned in the action
of a rule.

4.1.1 Interpreter
Director uses both forward and backward chaining. When

a fact is given to the system, all possible inferences from the
data in the current data base of facts are made using forward
chaining. This means that full consideration is given to
newly entered facts. Thus, forward chaining promotes a
focus of attention according to the facts offered to the system
by its user. When a user query is received, Director
establishes a goal, a hypothesis, to confirm or reject. If the
coal is not satisfied by simply examining the data base,
backward chaining occurs. Backward chaining is guided by
heuristics that try to maintain focus of attention according to
both the user query and the facts recently mentioned (see
Section 4.2.1). During backward chaining additional data
may be entered, and forward chaining is performed to
determine all inferences of this new information. This
control structure allows Director to shift focus and goals in
response to the user's change of focus and goals. See figure
4 for the algorithm used by Director.

4.2 Queries and Focus.
Director must select rules for evaluation in a way that tries

to minimize the number of queries posed to the user. This is
done through the use of heuristics, as well as by carefully
recording information about user inputs. The heuristics
determine which rule is most appropriate for evaluation
based on the number of known facts in that rule as well as on
focus considerations.

Given a fact or facts entered by the user;
1. Forward chain making all possible

inferences without asking any questions.
2. If Goal is not found - Backward Chain.
3. Forward chain on all additional data.

Figure 4: Algorithm Used by the Inference Engine

4.2.1 Heuristics for Backward Chaining.

l . I f (?dependent is parent_of ?user)) Then
(Relationshiptest is met)

2. If (Relationshiptest is met) (?dependent gets
multiple-support) (?User alone gives over
10%)) Then (Supportjest is met)

3. If (Relationship-test is met) (?User is the only
supporter of ?depcndent) (?User gives over
50%))) Then (Support-test is met)

4. If (Relationship-test is met) (Supportjest is
met))) Then (?dependent is claimable)

Figure 5: A set of rules from the Dependency Agent

Consider the set of rules in figure 5, which come from the
Dependency agent of Taxpert. Suppose the user enters the
following statements: John gets $500 of support from Fred.
Fred is the only one supporting John who, is his father. Can
Fred claim John?. These sentences add facts (?dependent is
parent of ?user)y (?User is the only supporter of ?dependent)
and (?dependent is amount of support ?support) to the data
base and states that the goal is to know whether (?dependent
is claimable). Director first forward chains to make all the
possible inferences given the contents of the data base. In
this case rule 1 is evaluated, adding (Relationship-test is met)
to the data base. Now the system backward chains starting at
rule 4. It then determines that in order to prove (? dependent
is claimable), it must first prove (Supportjest is met), so the
system backward chains again with the new goal. We want
Director to pick the next rule in such a way as to guarantee
the most focused conversation. To promote this behavior,
Director tries to select the rule with both the goal in its right-
hand-side and the greatest number of facts most recently
added by the user in its left-hand-side. This implies that
Director must differentiate those facts derived by rules and
those entered by the user. Furthermore, Director must assign
a time-stamp to each fact added by the user. In this example
Director would try rule 3 first, because it contains (?User is
the only supporter of ?dependent) which was entered by the
user. Now the system has to ask only one question, to
determine whether (?User gives 50%) is true before
answering the user's question. However, if (?User is only
supporter of ?dependent) were unknown, the system would
choose arbitrarily between the rules 2 and 3. If rule 2 were
chosen first, the user might have had to answer two
additional queries, namely whether (?User alone gives over
10%) is true and whether (?dependent gets multiple-support)
is true, before going on to consider rule 3 and answering the

questions associated with the facts in that rule as well.
The heuristics are guided by the facts entered recently and

thus do not always give optimal behavior. However, if the
user mentions relevant facts as he issues queries (as would be
expected if the user understood the problem domain), the
behavior should be quite natural, giving a focused
conversation, and minimizing the number of system
questions.

4.2.2 User Control of Backward Chaining.
Sometimes the user has semantic knowledge of the queries

and can, therefore, better direct the selection of rules.
Forward chaining can be controlled simply by the facts that
are added to the data base. Backward chaining can be

Moerdlar, McKeown, and Enaor 685

controlled by the facts and the queries issued to Director. An
optional mechanism is provided in Director to allow the user
to help direct the rule selection process. Normally, expert
systems use only information in the right-hand-sides of their
rules to initiate backward chaining. Director can also use
information in the left-hand-side of rules when selecting rules
to use as a starting point of the backward chaining process.
If the user supplies this left-hand-side information when
making a request, it wi l l be used in the initial rule selection.
For example, consider the following set of rules:

1. If (?dependent is a child) (?dependent is a
student)) Then (Gross_income_test is met)

2. If (?dependent is a child) (?dependent is ?age <
19)) Then (Grossincometest is met)

Suppose a user issues the following query: Do students
automatically meet the income test?

The fact (?dependent is a student) and the goal
(Gross income test is met) are derived from the question
above and added to the data base. Using the maps, Director
identifies that the general goal is implied by rules 1 and 2.
The system now selects a rule as the starting point of the
backward chaining process, choosing rule 1 according to user
control. If this information was not available, or if the
system did not take it into account, rule 2 may have been
selected first and additional questions may have been
generated.

4.23 Maps
During rule selection the interpreter must know which

facts are contained in the left- and right-hand sides of the
rules. This information can be obtained by searching the rule
set Naive searches, however, could be expensive
computationally and could make the response time of the
system unreasonable. To make this searching efficient,
Director maintains two maps. These maps are the rules-add-

fact map (RF), and the facts-used-by-rule map (FR). The RF
map provides pointers from each fact to the rules that can add
it to the data base. The FR map provides pointers between
each rule and the facts contained in its left-hand-side, thus
specifying which facts have to be true in order for that rule to
fire. The maps are built up during a preprocessing stage,
which has to be performed only once for a given set of rules.

First, let us look at the RF man. Sunpose that fact C is in
the right-hand-side of rule r : i t h e n C). The RF map
entry for this fact would be indicating that rule r
adds fact C to the data base. The information in this map is
used during the rule selection portion of the backward
chaining phase. For example, if Director is trying to solve
goal C, then the RF map provides efficient access to r. This
map also allows Director to suppress the firing of certain
rules: After a value is assigned to a fact, the system checks
the RF map and tries to mark those rules that would assert the
same value of this fact (Rules are not evaluated during the
marking process, hence the only rules marked are those that
reference this fact by a constant name and assert the same
value as a constant.) The marked rules are not evaluated,
thus avoiding rule evaluation and the superfluous queries to
the user that these evaluations might cause.

Similarly, the facts-used-by-rule map would contain an
entry for rule r, indicating that rule r depends on
facts A and B. Tne map would also contain entries for A and
B showing that rule r requires their values in order to be
evaluated. When some fact A is added to the data base, all
those rules that use A in a forward chaining inference are
readily found. In the present example, if A and B are in the

data base, rule r is found in the FR map to be usable for
forward chaining. This map is also used in the rule selection
process of backward chaining. Having determined that rule r
wi l l be used to infer a needed fact C, the system readily
determines that facts A and B need to be known.

4.2.4 Self Description.
So far, we have described what we call Director's

inferencing function. The system has another function,
called Display. There are many instances when a user wants
the system to provide information without providing
infcrencing. For example, a user may want to see everything
the system knows about a certain fact A and issue the
following request: "Tell me about A." Our system can
handle a query of this sort by using the maps. Al l the rules
that contain A in the left-hand-sides are found with the help
of the FR map. Similarly, all the rules containing A in the
right-hand-side are found with the help of the RF map. Al l
rules containing A are returned as a response to the above
query to the semantic module that translates user questions
into requests to Director. Providing this information is done
quickly because Director does not perform inferences, but
rather only references the maps.

5 Conclusions
In this paper we described two important issues that must

be addressed when constructing natural language interfaces
to expert systems. First we described the semantic
mechanism that is powerful enough to translate user
statements into facts of the underlying expert system. This
semantic approach is based on verb categorization. Each
category is structured hierarchically, and the parsing
algorithm is directly encoded into each hierarchy. Some
issues in the construction of the complete semantic module
are still being investigated. These are partial matching, i.e.
what to do with inputs that only match part of a fact,
instantiation of variables in the facts, as well as derivation of
goals from user queries. The semantics presented is not only
useful in the expert systems domain, but also in any domain
where the underlying system is not well structured.

The natural language module adds facts to the data base of
the underlying expert system in an unconstrained manner,
thus placing extra requirements on the underlying expert
system. We discussed Director, an inference engine that uses
a combination of forward chaining and backward chaining so
as to efficiently utilize facts entered by the natural language
interface. It makes available descriptions of its rule base and
allows for a limited form of user control over its backward
chaining mechanism. This facility allows the user to ask
questions about the information contained in the rules but not
normally supplied by expert systems. These attributes of
Director allow a knowledgeable user to arrive at a solution to
his query in the most efficient and least time consuming way,
while maintaining a focused dialogue. Director is also useful
in domains where the decisions have to be made quickly, or
where user queries are expensive, such as expert systems
designed for use by busy professionals, such as accountants
and doctors, as well as systems that work in hazardous
environments, such as nuclear reactors.

The two approaches presented here mark an important step
toward the construction of a full natural language interface
for rule-based expert systems.

686 NATURAL LANGUAGE

References

[Ballmer et. al. 81]
Levelt, W.J.M. (editor). Springer Series

in Language and Communication, volume 8: Speech Act
Classification. Springer-Verlag, 1981.

[Bobrow et. al. 83]
Bobrow, D.G., Stefik, M. The LOOPS

Manual Xerox Corp., Palo Alto, Ca., 1983.

[Clancey 83] Clancey, W. The Epistimology of a Rule-
Based Expert System - a Framework for Explanation.
Artificial Intelligence 20 , 1983.

[Clancey 79] Clancey W. Dialogue Management for
Rule-Based Tutorials. In Proceedings ofIjCAl. Japan,
1979.

[Datskovsky 84] Datskovsky, G. Menu Interfaces to Expert
Systems: Evaluation and Overview. Technical Report,
Columbia University, New York, 1984.

[Davis 78] Davis, R. Knowledge Acquisition in
Rule-Based Systmes-Knowledge About Representation as a
Basis for System Construction and Maintanance. Pattern
Directed Inference Systems. Academic Press, 1978.

[Duda 84] Duda. Presentation at the IEEE Workshop
on Principles of Knowledge-Based Systems.

1984

[Duda et. al. 79] Duda, R., Gasching, J., Hart, P. Model
Design in the Prospector Consultant System for Mineral
Exploration. In Michie, D. (editor), Expert Systems in the
micro-electronic age. Edinburgh University Press, 1979.

[Ensor et. al. 85] Ensor, Gabbe and Blumenthal. Taxpert -
A Framework for Exploring Interactions Among Experts.
1985.in preparation.

[Forgy 81] Forgy, C. OPS5 User's Manual Carnegie-
Mellon University, Pittsburgh, Pa., 1981.

[Grosz et. al. 85] Grosz, B.,Martin, P., Appelt, D., Pereira,
F. Team: An Experiment in the Design of Transportable
Natural Language Interfaces. Technical Report, SRI
International, 1985.

[Hayes Roth 85] Hayes Roth, F. Rule Based Systems.
Communications of the ACM, Vol. 28, No.9 , 1985.

[Hirst 83] Hirst, G. Semantic Interpretation Against
Ambiguity. PhD thesis, Brown University, 1983.

[Kaplan 79] Kaplan, S J. Cooperative Responses From
a Portable Natural Language Data Base Query System. PhD
thesis, University of Pennsylvania, 1979.

[Levin 85] Levin, B. Lexical Semantics in Review:
An Introduction. In Levin, B. (editor), Lexical Semantics in
Review. MIT, 1985.

[Miller 72] Miller, G.A. English Verbs of Motion: A
Case Study in Semantics and Lexical Memory. Coding
Processes in Human Memory. V.H. Winston and Sons,
1972.

[Osgood 79] Osgood, Charles, E. Focus on Meaning
Volume I: Explorations in Semantic Space. Mouton
Publishers, 1979.

[Palmer 83] Palmer, M. Inference-Driven Semantic
Analysis. In Proceedings of the AAAI. 1983.

[Palmer 85] Stone Palmer, M. Driving Semantics for a
Limited Domain. PhD thesis, University of Edinburg, 1985.

[Pollack 83] Pollack, M.E. Generating Expert Answers
Through Goal Inference. Technical Report, SRI
International, 1983.

[Pollack et. al. 82] Pollack, M., Hirschberg J. and Webber, B.
User Participation in the Reasoning Process of Expert
Systems. AAAI, 1982.

[Shortliffe 76] Shortliffe, E.H. Mycin: A rule-based
computer program for advising physicians regarding
anitimicrobial therapy selection. PhD thesis, Stanford
University, 1976.

[Van Melle 81] Van Melle, W. The Emycin Manual.
Technical Report Stan-cs-81-885, Stanford University,
Stanford, Ca., 1981.

[Webber 71] Nash-Webber, B., Verbs of Composition.
1971.Harvard University, 1971.

[Woods 73] Woods, W.A. An Experimental parsing
System for Transition Network Grammars. In Rustin
(editor), Natural Language Processing. Algorithmic Press,
1973.

[Woods et. al. 72] Woods W., Kaplan R., Nash-Webber B.
The Lunar Sciences Natural Lnaguage Information System:
Final Report. Technical Report 2378, BBN, Cambridge,
Mass, 1972.

Moerdler, McKeown, and Ensor 687

