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ABSTRACT 

This paper shows how the semantics of frames with 
exceptions can be described logically. We define a 
simple (purely declarative) frame language allowing 
for mult iple inheritance and meta classes (i.e. the 
instances of a class may be classes themselves). 
Expressions of this language are translated into first 
order formulas. Circumscript ion of a certain predicate 
in the result ing theory yields the desired semantics. 
Our approach allows the in tu i t ion that subclasses 
should override superclasses to be represented in a 
very natura l way. 

I, INTRODUCTION 

Inheritance systems have a long t radi t ion in AI. They 
allow the descript ion of hierarchies of objects and 
classes (we use the term hierarchy in the sense of an 
acyclic network throughout the paper) and the inher i 
tance of propert ies in such hierarchies. There are two 
main types of inheri tance systems: those which admit 
exceptions to inheri tance and those who do not. KL-
ONE [Brachman/Schmolze 85] and OMEGA 
[At tard i /S imi 81] are examples of the second type. 
Systems with exceptions are for instance FRL 
[Roberts/Goldstein 77], Flavors [Symbolics 85] and 
the BABYLON-Frame-System [di Pr imio/Brewka 85]. 

A common way of defining a semantics for a formalism 
F1 is to translate it into another formalism TZ for 
which a well defined semantics exists (this amounts to 
stating that Fl is a notat ional variant of (a subset of) 
F2). In the knowledge representation field first order 
logic is a good candidate for F2 since it is well under
stood and has an appealing semantics. 

It is not too diff icult to describe the semantics of 
inheri tance systems without exceptions in f irst order 
logic, see for instance [Hayes 79], [Hayes/Hendrix 81], 
where frames are interpreted as unary and slots as 
binary predicates. 

Inheri tance with exceptions is much more diff icult 
since exceptions introduce nonmonotonicity. Ether-
ington and Reiter use default logic [Reiter 80] to 
describe the semantics of NETL-like inheritance net
works [Ether ington/Rei ter 83][Etherington 87]. The 
problem with the i r approach is that the in tu i t ion 
underlying all inheri tance systems, namely that sub
classes should override superclasses (we will call this 
in tu i t ion the specialization principle), is not present 
in the i r formal izat ion. They require exceptions to be 
expl ici t (as exception links) in the network. 

Touretzky tries to capture the specialization principle 
in his inferential distance ordering [Touretzky 84] 
[Touretzky 86]. But 1 think he is not right in stating 
that "inferential distance is a partial ordering on 
defaults that implements this intuition" ([Touretzky 
84],p.325). The reason is very simple. The inheritance 
system he uses cannot represent the notion of sub
class. It only uses defeasible links with the intuitive 
meaning A's are typically B's. But if we have long 
chains as 

it may even be the case that A1. and A are disjoint. 
But how can the intuition that subclasses should over
ride superclasses be captured if the notion of subclass 
cannot even be represented? Touretzky simply 
redefines the meaning of subclass. He states: " ... A is a 
subclass of B iff there is an inheritance path from A to 
B."([Touretzky 84],p.322). But changing the definition 
of subclass is certainly not a solution. 

As Sandewall [Sandewall 86] has shown, there are 
cases where Touretzky's approach leads to counterin
tuitive results. We will discuss an example in section 
VI. 

Sandewall argues for defining a partial semantics for 
inheritance systems by a collection of structure types 
since this "semantics by examples" is the best we have 
up to now. He, also, does not distinguish between 
strict and defeasible links . This can lead to situations 
where we expect different results from the same 
structure type. Let's discuss a slight generalization of 
his type IB structures which can be represented as 
follows (IS-A links are represented by , NOT-IS-A 
l i n k s by 
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We try to show in this paper that at least for special 
types of inheritance systems the situation is not that 
bad. We will concentrate on frame systems 
(class/property inheritance systems in Touretzky's 
terminology [Touretzky 86]). They allow to represent 
hierarchies with strict subclass relations as well as 
properties (slots with slot values) that members of 
classes (frames) typically possess. On one hand the 
expressiveness of these systems is stronger than that 
of inheritance systems which only admit IS-A and 
NOT-IS-A links since defeasible and undefeasible links 
can be represented. On the other hand the expres
siveness is much more restricted since chains of 
defeasible inferences are not allowed. Fortunately, we 
do not need Touretzky's formal apparatus and his 
predicate lattices to describe the semantics of such a 
frame system. 

In principle, second order logic would be a good for
malism to express the specialization principle in a 
very intuitive way. If frames are interpreted as predi
cates, then the fact that one frame specializes 
another can easily be represented by a second order 
predicate. But, of course, second order logic intro
duces many difficulties, especially since we need a 
nonmonotonic logical formalism. 

Fortunately, there is a well-known technique (some
times called "reiflcation") which allows us to remain 
totally in first order logic. Instead of writing 
MAN(Peter) for expressing the fact that Peter is an 
instance of the frame Man, we introduce a predicate IS 
and a constant Man and express the mentioned fact as 
IS(Peter.Man). If a slot Age of Peter has the value 28. 
then we write HOLDS(Age,Peter,25) instead of 
AGE(Peter,28) The use of constants instead of predi
cate symbols allows to reason about properties of 
frames in first order logic. 
We will introduce a three-place predicate EXCEP
TIONAL whose extension will be minimized. We use 
McCarthy's circumscription technique [McCarthy 84] 
for that purpose. Circumscription is a very general 
formalization of nonmonotonic reasoning, many even 
think the most promising one (e.g. Raymond Reiter 
stated that in his invited talk during AAAI-86). The 
advantages of circumscription are 

1) it is quite close to standard logic, 

2) it has a very appealing semantics defined in terms 
of minimal models. 

Various different forms of circumscription have been 
defined during the last years. We will need a form 
known as variable circumscription [McCarthy 84]. 
Variable circumscription allows predicates to vary 
during the minimization. It will turn out that the logi
cal formulas we need to represent frame and instance 
definitions belong to the class of universal formulas. 
This is fine since for universal formulas variable cir
cumscription cannot lead to inconsistencies [Lifschitz 
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struct, e.g. defobject for all definitions. We wanted, 
however, to retain some similarity with other well 
known languages and chose the more conventional 
syntax, therefore). 

Let us assume that frames must be defined before 
they are mentioned in definitions as supers or as 
frames to be instantiated. Then our language allows to 
define directed acyclic graphs in which superclass and 
instance links may appear anywhere, but - as men
tioned above - at most one instance link may go out 
from one node. 

We allow multiple inheritance in our frame language. 
This means that a frame is allowed to have more than 
one (direct) superframe. In this case an inheritance 
strategy must specify from which frame an object 
inherits a property. There are different strategies 
implemented in existing systems. Mostly the (direct or 
indirect) superframes of a frame are linearized in 
some way. The Flavors system [Symbolics 85], for 
instance, uses such a linearization (until recently even 
superclasses could override their own subclasses in 
certain cases, this has been remedied in the newest 
Flavors version). This is not the best idea, however, 
since sometimes any linearization yields unintuitive 
results. An old example is: quakers are pacifists, 
republicans are not pacifists, Nixon is a quaker and a 
republican. How about his pacifism? The available 
information is ambiguous. Our intuition in this case is 
to remain agnostic. We have evidence for and against 
his pacifism, but nothing allows to prefer one of the 
contradictory conclusions. So we simply don't know 
and our system should not infer anything. 

In the introduction we mentioned the specialization 
principle: subclasses should override superclasses. 
Here we have the other side of the coin: only sub
classes should override superclasses. This is also 
Touretzky's view [Touretzky 86]. 

In section V we will show that circumscription easily 
handles ambiguities the way we want them to be han
dled. 

III THE MEANING OF THE FRAME LANGUAGE 

We now describe how definitions of our frame language 
can be translated into a set of second order formulas. 
We introduce the predicate EXCEPTIONAL which essen
tially is a three-place variant of McCarthy's ABnormal 
predicate. The idea is: if Frame1 has a slot Slot| with 
value Value1 this will be represented as 

Forall x. 
IS(x,Frame.) ft - EXCEPTIONAL(x.Slot. Frame1) 
-> 
HOLDS(Slot 1 .x.Value 1) 

Intuitively EXCEPTIONAL(x,Slot1 Frame 1 can be read 
as "x does not inherit information about attribute 
Slot1 from frame Frame.". 

Sometimes slots are interpreted as functions, not as 
general relations. We prefer the second approach 
here since it makes multiple values for slots possible. 
We don't deal with multiple values in this paper, how
ever. 

Independently from the definitions to be translated we 
need the following four formulas: 

1) [meaning of SPECIALIZES] 

Forall p.q. 
SPECIALIZES (p.q) 
-> 
(Forall x. IS(x.p) -> IS(x,q)) 

If a class specializes another class then all members of 
the class are also members of the other class. 

Z) [transitivity of SPECIALIZES] 

Forall x,y,z. 
SPECIALIZES(x,y) * SPECIALIZES(y.z) 
-> 
SPECIALIZES(x,x) 

Specialization is transitive. 

3) [meaning of HAS-SLOT] 

Forall frame.slot.value. 
HAS-SLOT(frame,Blot, value) 
-> 
(Forall x. 
IS(x.frame) & - EXCEPT10NAL(x.slot.frame) 
-> 
HOLDS(slot,x,value)) 

We introduce the predicate HAS-SLOT here as a matter 
of convenience. It makes the rest of the translation 
more readable. 

4) [specialization formula] 

Forall x. frame.. frame2. value,. value2. slot. 
IS (x.frame.) 4c 
HAS-SLOT(frame..slot.value.) & 
SPECIALIZES (frame. ,f rame2) & 
HAS-SLOT (frame2.srot,value2) & 
- value. = value2 

EXCEPTIONAL(x,alot.frame2) 

Intuitively: x is exceptional with respect to a slot of a 
frame if x is an instance of a more special frame, for 
which different information regarding the slot is avail
able. This is the formula representing the specializa
tion principle. 

Now we can easily map frame and instance definitions 
into a set of logical formulas. 

The definition of a frame 

(defframe my-frame 
(supers superframe . ... superframe.) 
(slots J * 

(slot 1 value 1) 

(slot1value1))) 

is translated into the following formulas 

SPEClALIZES(my-frameup*r/romc ;) 

SPECIAUZES(my-/rams .superframe k) 

HAS-SLOT(my-/ram« Mot 1 .value 1) 

HAS-SLOT(my-/ram« tsio*n,voiu«n) 
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remain agnostic. It is very easy to achieve the desired 
behavior in our formalization, since circumscription 
does most of the job automatically. We simply have to 
add 

Forall slot.x,valuel.value2. 
HOLDS(slot,x,Taluel) & 
H0LDS(slot.x.value2) 

With this additional formula we forbid slots having 
different values (of course, we could easily extend our 
frame language and distinguish between different 
types of slots, e.g. multi-valued and single-valued 
slots. In that case we should restrict the above impli
cation to single-valued slots by introducing an addi
tional condition). 

Circumscription is a correct realization of minimal 
entailment. In our formalization ambiguities 
correspond to different minimal models. Since cir
cumscription only allows to derive what is true in all 
minimal models, we get exactly what we want. 

Let us assume we have a frame QUAKER with slot 
POLITICAL-VIEW and value PAClFISTlC and a frame 
REPUBLICAN with the same slot and value NON-
PACIFISTIC. Let us also assume that none of the 
frames specializes the other. If NIXON is an instance of 
both frames, we have minimal models where 
H0LDS(P01JTICAL-VIEW. NIXON. PACIFISTIC) is true and 
HOLDS(POLITICAL-VIEW. NIXON. NON-PACIFISTIC) false 
But there also exist minimal models which make the 
first formula false and the second true. Circumscrip
tion only allows to derive the disjunction of both for
mulas but does not favour one of them. 

VI. FUTURE WORK AND DISCUSSION 

Many frame systems allow additional information to be 
associated with slots (often called facets). For the 
sake of simplicity we did not deal with facets in this 
paper, but it is straightforward to extend our 
approach accordingly and to represent them as well. 
Sometimes the facets are given a special meaning in 
frame systems. For instance, a facet POSSIBLE-
VALUES of a slot could restrict the values that this 
slot may have. If. for instance, the POSSIBLE-VALUES 
facet of SLOT1 of FRAME1 has the value POSS-VAL-
PRED, we can represent this as 

Forall x. y. 
IS(x.Frame) & HOLDS(Slot1 .x.y) 

POSS-VAL-PRED(y) 

Of course, POSS-VAL-PRED has to be defined according 
to its intended meaning. In a more elaborate formali
zation, also values representing unknown or undeter-
mined need special treatment (e.g. if they participate 
in ambiguities). But there are no theoretical 
difficulties. 

Inheritance in general is very hard to deal with. We 
have shown, however, that for simpler classes of inher
itance systems quite natural logical representations 
exist. Of course, it would be fine to see how our for
malization deals with Sandewall's structure types 

[Sandewall 86]. Obviously, we cannot match the frame 
hierarchies definable in our frame language directly 
against Sandewall's examples since he admits only 
defeasible links (i.e. there is no guarantee that every 
royal elephant is an elephant) and we cannot 
represent chains of defeasible inferences. But for 
most of the examples an analogous representation in 
terms of frame hierarchies exists and we get the 
desired results. Let us discuss the example for which 
Touretzky's approach fails: 

To represent this example in our language, we have to 
define Clyde as an instance of a frame RoyalAfri-
canElephant which has RoyalElephant and Afri-
canElephant as superframes. The last two frames each 
have the superframe Elephant. For RoyalElephant and 
Elephant a slot Color must be defined with value Non-
Gray and Gray respectively. Now our formalization 
yields exactly what we expect, i.e. HOLDS(Color. Clyde, 
Non-Gray). 

We have defined the semantics of a frame system with 
exceptions by means of circumscribing a certain 
predicate in a first order theory. Our approach for
malizes the intuition that subclasses and only sub
classes should override superclasses in a very natural 
way. Expressions of our frame language can be 
translated independently from the translation of 
other expressions. Moreover we don't need a compli
cated new mathematical apparatus. It should be men
tioned, however, that most current implementations of 
frame systems (in fact all implementations I know of) 
are not correct with respect to the proposed seman
tics since they favour one inheritance path instead of 
remaining agnostic in case of ambiguities. 
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