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ABSTRACT 
An approach to generalizing number in explanation-based 

learning is presented. Generalizing number can involve generalizing 
such things as the number of entit ies invo lved in a concept or the 
number of times some action is performed. This issue has been 
largely ignored in previous explanation-based learning research. 
Instead, other research has focused on changing constants in to 
variables and determining the general constraints on those variables. 
In the approach presented, generalization to N is triggered by the 
detection of inference rules of a specified syntactic f o r m . When one 
is f o u n d , it is extended into the rule that results f r o m an a rb i t ra ry 
number of repeated applications of the or ig inal rule. If the 
precondit ions of the extended rule are met, the results of mu l t i p le 
applications of the or ig inal rule are immediate ly determined. There 
is no need to apply the under ly ing ru le successively, each t ime 
checking if the preconditions for the next appl icat ion are satisfied. 

I INTRODUCTION 

This paper addresses the important issue in explanation-
based learning of generalizing number. Generalizing number can 
involve generalizing such things as the number of entities 
involved in a concept or the number of times some action is 
performed. This issue has been largely ignored in previous 
explanation-based learning research. Instead, other research has 
focused on changing constants into variables and determining the 
general constraints on those variables. 

Consider the LEAP system [ l ] . The system is shown an 
example of using NOR gates to compute the boolean A N D of two 
OR's. It discovers that the technique generalizes to computing 
the boolean AND of any two inverted boolean functions. 
However, LEAP cannot generalize this technique to al low 
constructing the AND of an arbi trary number of inverted 
boolean functions using a mul t i - input NOR gate. This is the case 
even if LEAP's init ial background knowledge were to include 
the general version of DeMorgan's Law and the concept of 
mul t i - input NOR gates. Generalizing the number of functions 
requires alteration of the original examples explanation. This 
generalization cannot be performed using their goal regression 
algorithm alone. 

E l lmans system [2] also i l lustrates the need for 
generalizing number. From an example of a four-b i t circular 
shift register, his system constructs a generalized design for an 
arbi t rary four-bi t permutation register. A design for an N-bit 
circular shift register cannot be produced. As Ellman points out. 
such generalization, though desirable, cannot be done using the 
technique of changing constants to variables. 

Many other explanation-based generalization algorithms 
[3-6] also cannot alter the structure of their explanations. No 
additional objects nor inference rules can be incorporated into 
the explanation. These algorithms work by changing constants 
in the observed example to variables w i t h constraints. Another 
algorithm [7] al lows for the elimination of easily-reconstructed 
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details. However, extensive augmentation of the explanation can 
be often required to produce the appropriate concept. 

Many important concepts require generalizing number. For 
example, physical laws such as momentum and energy 
conservation apply to arbitrary numbers of objects, bui lding 
blocks-world towers requires an arbi trary number of repealed 
stacking actions, and setting a table involves an arbi t rary 
number of guests. This paper presents an explanation-based 
approach to the problem of "generalizing to N." 

I I A N APPROACH 

Observations of repeated application of a rule or operator 
may indicate that generalizing the number of rules in the 
explanation may be appropriate. However, alone this is 
insufficient. To be conducive to number generalization there 
must be a certain recursive structural pattern. That is. each 
application must achieve preconditions for the next. For 
example, consider stacking blocks. The same sort of 
repositioning of blocks occurs repeatedly, each bui lding on the 
last. We adopt the vocabulary of predicate calculus to 
investigate this notion of structural recursion. The desired form 
of structural recursion is manifested as repeated application of 
an inference rule in such a manner that a portion of each 
consequent is used to satisfy some of the antecedents of the next 
application. Figure 1 i l lustrates the concept of repeated rule 
application. 
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P), as i l lustrated in figure 1. The antecedents of this rule 
involve three qual i tat ively different types of variables. (The 
differences between the three types w i l l become clear when the 
extended version of this rule is described.) Predicate P involves 
a l l three types of variables, whi le predicate R specifies a 
necessary relationship between the (i-1)th and ith collection of 
x 's.* Predicate S constrains the ( i - l ) th collection of x ' s and 
predicate T constrains the uh collection. Last ly, the uh collection 
of y s are part ia l ly defined by terms in the ( i -1 )th application. 

Chaining together several applications of rule 1 produces 
rule le. 

) 

In this extended inference rule al l references to the y i j for 
i >0 are eliminated and the z0 terms remain unchanged f rom one 
application of the original rule to the next. Hence, besides the 
in i t ia l situation, al l that needs to be specified for an arbitrary 
number of applications of rule 1 is a sequence of x, j terms. The 
predicates R. S. and T place constraints on possible sequences of 
x s. In particular, the predicates S and T constrain which terms 
can be members of the sequence, whi le predicate R specifies the 
relationship between successive members of the sequence. 

The general form of a sequence is shown below. It consists 
of an ordered collection of p-ary vectors. 

I I I SOME EXAMPLES 

Two simple examples that concretely il lustrate the above 
procedure are presented below. 

A . Blocks W o r l d 
Imagine an explanation-based learning system that deals 

w i t h the blocks wor ld . Assume that in the course of its 
operation this system has to determine the position of the top of 
block which is resting on a table. Also assume that in the course 
of doing this it produces an explanation structure that can be 
transformed into rule 2 below. (Figure 2 illustrates this rule.) 
This rule is in a form that matches rule 1. Rule 2e is the 
extended form of rule 2. ( In these rules, a l l terms beginning 
w i t h a ? are universally quantified variables.) 

(2) 

' Although not done here for reasons of clarity, the approach presented can 
be extended to situations where there are relations among the (i-k)w through the 
ith collections. 

Figure 2. Determining the Y-Position of a Block 

In rule 2e the sequence is made explicit. For al l consecutive 
pairs of sequence elements, the first must be on the second. In 
addit ion, the function +' is introduced. This recursive function 
has two arguments: a sequence of numbers and a "seed" number. 
It maps these into a single number - the sum of al l the numbers. 
The function derived-sequence takes a sequence and a unary 
function and maps them into another sequence - the one which 
results from applying the function to each member of the 
original sequence. 

The extended rule can be used to find the y -position of a 
block supported by several other blocks when the y -positions of 
the underlying blocks are not directly known. A l l that needs to 
be known is the heights of each block and the y-position of the 
table top (or the y-posit ion of one intervening block). In this 
case the extended rule is obtained from an example that involved 
no repeated actions nor structures. 

An important task for a system that generalizes number is 
to loosen the preconditions of a rule as far as possible while st i l l 
maintaining the veracity of the rule. Also, as much guidance as 
possible should be provided so that a problem solver can most 
easily determine when a rule is both applicable and appropriate. 

Imagine using rule 2e in a backward-chaining fashion. If a 
problem solver is to find the y -position of an object it needs to 
choose a sequence that satisfies the specified constraints. This 
task is simplied if the preconditions are specified in terms of sets 
or bags'. rather than sequences. In this case, there is no need to 
test each permutation of a given collection of elements. If a bag 
satisfies the ru les preconditions, then any sequence derived f rom 
that bag suffices. Other derivable properties, such as the 
cardinality of the bag or the length of the sequence, might also 
usefully constrain a problem solver. 

One case where it is easy to specify the preconditions in bag 
terms occurs when there are no inter-element constraints (i.e., 
predicate R in rule 1 is not used). If an inter-element predicate 
does appear in the preconditions, the properties of that predicate 
determine how loosely the preconditions can be expressed. For 
example, if R is an equivalence relation (that is. R is reflexive, 
symmetric, and transitive), then the elements must form an 
equivalence class, a property that is order independent. 

In the above example, R is (the atransitive version of ) On. 
In bag terms, rule 2e requires a collection of elements where. 
( i ) except for one element {object0,). every element is on one and 
only one other element, ( i i ) except for possibly one element 
(?object„ ). every element has one and only one element on it, 
and ( i i i ) l h e sum of the heights of al l elements other than 
object „ plus the y -position of object 0 equals ?yn . If a bag w i th 
these properties is obtained, the necessary sequence can easily be 
constructed. 

A hag (or mult i set) is an unordered collection of elements in which an 
element can occur more than once. 
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Several other approaches to generalizing number have been 
recently proposed. Prieditis [8] has outlined plans for a system 
which learns macro-operators representing sequences of repeated 
STRIPS-like operators. While we agree very much with the 
spirit of Prieditis' work, we feel that STRIPS-like operators 
impose unwarranted restrictions. For one thing, our use of 
predicate calculus allows generalization of repeated structure 
and repeated actions in a uniform manner. In the FERMI system 
[9], cyclic patterns are recognized using empirical methods and 
the detected repeated pattern is generalized using explanation-
based learning techniques. However, unlike the techniques 
presented in this paper, the rules acquired by FERMI are not 
guaranteed to always work. After a significant amount of work, 
a learned problem-solving strategy may terminate 
unsuccessfully. A third system. Physics 101 [10. 11], differs 
from the above two approaches in that the need for augmenting 
explanation structures is motivated by an analytic justification 
of an example's solution and general domain knowledge. In a 
sample problem, information about number, localized in a single 
physics formula, leads to a global restructuring of a specific 
solution's explanation. However. Physics 101 takes advantage 
of properties of mathematical calculations. To be a broad 
solution of the generalization to N problem. non 
mathematically-based domains must also be handled. 

V CONCLUSION 
Most research in explanation-based learning involves 

relaxing constraints on the entities in a situation, rather than 
generalizing the number of entities themselves. This paper 
presents an approach to generalizing to N in explanation-based 
learning. Generalization is triggered by the detection of rules of 
a certain syntactic form (i.e.. rule 1), and a technique for 
extending these rules is presented. The extended versions are 
modified so that a problem solver can efficiently apply them. 
This involves attempting to expression the preconditions for 
these rules in terms of order-independent data structures such as 
sets and bags. If the preconditions of the extended rule are met. 
the results of multiple applications of the underlying rule are 
immediately determined. There is no need to apply the rule 
successively, each time checking if the preconditions for the next 
application are satisfied. 

A first computer implementation of the ideas presented 
here has been developed. The BAGGER system [12] analyzes 
explanation structures and attempts to construct inference rules 
of the form of rule 1. When one is found, it is extended into the 
rule that results from an arbitrary number of repeated 
applications of the original rule. This system is being tested on 
problems from various domains, including the blocks world, 
digital circuit design, and mathematical problem solving. 

REFERENCES 
1. T. M. Miichell, S. Mahadevan and L. 1. Steinberg, "LEAP: A 

Learning Apprentice for VLSI Design," Proceedings of the Ninth 
International Joint Conference on Artificial Intelligence, Los 
Angeles, CA, August 1985, pp. 573-580. 

2. T. Ellman, "Generalizing Logic Circuit Designs by Analyzing 
Proofs of Correctness," Proceedings of the Ninth International 
Joint Conference on Artificial Intelligence, Los Angeles, CA, 
August 1985, pp. 643-646. 

3. R. F.. Fikes, P. F. Hart and N. J. Nilsson, "Learning and Executing 
Generalized Robot Plans," Artificial Intelligence 3, (1972), pp. 
251-288. 

4. T. M. Mitchell, R. Keller and S. Kedar-Cabelli, "Explanation-
Based Generalization: A Unifying View," Machine learning I, 1 
(January 1986), pp. 47-80. 

5. R. J. Mooney and S. \V. Bennett, "A Domain Independent 
Explanation-Based Gencralizer," Proceedings of the National 
Conference on Artificial Intelligence, Philadelphia, PA, August 
1986, pp. 551-555. 

6. P. Rosenbloom and J. Laird, "Mapping. Explanation-Based 
Generalization into Soar," Proceedings of the National Conference' 
on Artificial Intelligence, Philadelphia, PA, Augusl 1986, pp. 
561-567. 

7. G. F. Dejong and R. J. Mooney. "Explanation-Based Learning: An 
Alternative View," Machine Learning I, 2 (April 1986), pp. 145-
176. 

8. A. E. Prieditis, "Discovery of Algorithms from Weak Methods," 
Proceedings of the International Meeting on Advances in 
learning, Les Arcs, Switzerland, 1986, pp. 37-52. 

9. P. Cheng and J. G. Carbonell, "The FERMI System. Inducing 
Iterative Macro-operators from Experience," Proceedings of the 
National Conference on Artificial Intelligence, Philadelphia, PA, 
August 1986, pp. 490-495. 

10. J. W. Shavlik and G. F. Dejong, "Building a Computer Model of 
Learning Classical Mechanics," Proceedings of the Seventh Annual 
Conference of the Cognitive Science Society, Irvine, CA, August 
1985. pp. 351-355. 

11. J. W . Shavlik and G. F. Dejong, "Analyzing Variable 
Cancellations to Generalize Symbolic Mathematical Calculations," 
Proceedings of the Third IEEE' Conference on Artificial 
Intelligence Applications, Orlando, FL, February 1987. 

12. J. W . Shavlik and G. F. Dejong, "BAGGER: An EBL System that 
Extends and Generalizes Explanations," Proceedings of the 
National Conference on Artificial Intelligence, Seattle, WA, July 
1987. 

238 KNOWLEDGE ACQUISITION 


