
C o n t r o l l i n g S e a r c h i n F l e x i b l e P a r s i n g

Steven Minton , Philip J. Hayes, and Jill Fain

Computer Science Department
Pittsburgh, PA

A b s t r a c t

Most natural language parsers require their input to be
grammatical. This significantly constrains the search space that
they must explore during parsing. Parsers which attempt to recover
from extragrammatical input contend with a search space that is
potentially much larger, since they cannot necessarily prune
branches when grammatical expectations are violated. In this
paper we discuss the control structure of the experimental
MULTIPAR parser, which directs its search by exploring potential
parses in order of their degree of grammatical deviation/
1 Introduction

Most natural language processing systems parse their input by
searching through a space of partial parses. They operate this way
because, even though complete utterances alone or in context may
be quite unambiguous, natural language is highly ambiguous
locally. For instance, individual words can be ambiguous in their
meaning or part of speech (e.g. "bank"), or components of
utterances can fit together in more than one way (e.g. "look at the
man with the telescope"). A parser's search space for a given input
is defined by the relevant set of local ambiguities. A search
succeeds if a globally acceptable parse is found that accounts for
all the input. There are various techniques to reduce search in
parsing, including looking ahead to resolve local ambiguities [5], or
ignoring local alternatives that are inconsistent with domain
specific semantic constraints |2, 4]. However, no techniques can
completely eliminate search from natural language parsing.

The search problem becomes much worse if we require a parser
to cope with extragrammatical input. For practical natural
language interface systems, this requirement is a real one [1]. Such
interfaces must contend with the grammatical errors that inevitably
arise when people use natural language interactively. Moreover,
they also must cope with input that is correct, but outside their
domain restricted grammars.3 We use the term flexible parser for a
parser that can handle extragrammatical input.

The major search problem in flexible parsing lies in the criterion
for identifying failing branches of the search — normally the
violation of some syntactic or semantic expectation. While parsers
that require grammatical input can employ this constraint to prune
the search tree, flexible parsers must act more cautiously. If a
candidate parse violates an expectation, it may mean that the
candidate parse is incorrect and should be abandoned, or it may
mean that the input really does violate the parser's expectations in
the way that has been detected. In the latter case, the parser
should not abandon the branch, but should try to recover from the
deviation and complete the parse along that branch.

, Carnegie-Mellon University
15213, USA

One approach to this problem is to abandon a search branch only
when the flexible parser has run out of correction techniques to
apply. This, in effect, enlarges the grammar of the parser to cover
not only the inputs originally considered grammatical, but also
those that can be recognized by any combination of available
recovery methods. Although straightforward, this approach is
unlikely to produce acceptable results. First, given the range of
possible recovery techniques [1], the search space will quickly
become unmanageably large. Second, the recovery techniques
may generate spuriously corrected" parses of grammatical input.
Finally, the described approach provides no way to distinguish
between parses that involve widely varying degrees of correction
(e.g. simple spelling corrections versus hypothesization of entire
phrases).

What is needed, then, is a control structure that allows the normal
criterion of extragrammaticality to cut off failing searches, but also
accommodates the application of recovery techniques to reactivate
failed search branches if no grammatical parse can be found.
Moreover, the recovery techniques should be ordered across all
search branches according to the degree of ungrammatically their
use implies, i.e. the simpler ones (like spelling correction) must be
tried in all branches of the parse before the more complex and
unlikely ones (like missing word insertion) are tried in any branch.

This paper presents a control structure which satisfies these
goals. The next section describes the control structure from the
point of view of the programmer constructing a parser that uses it.
Section 3 discusses some efficiency issues that arose in
implementing the control structure.

2 A Programmer's View of the Control Structure
The control structure described in this paper was developed in

the context of a restricted domain parser consisting of a collection
of caseframe instantiation strategies. We have previously used the
phrases multi strategy [3] and entity oriented [2] to describe this
approach. There is no space here to describe this parser, called
MULTIPAR, in detail. The most important characteristic of
MULTIPAR from the control structure point of view is that its
caseframe interpretation strategies are programmed directly, rather
than being driven by a declarative formalism such as a transition
network. We will refer to the person who writes strategies as the
strategy programmer. In some sense, the strategy programmer is
the user of the control structure.

Each strategy is an expert at parsing certain types of constructs.
Strategies cooperate by calling upon each other to parse sections
of the input sentence. When a strategy encounters particular
difficulties (violated expectations) while parsing its input, several
options are typically available. The options always include simply

AT&T Bell Laboratories Scholar
This research was sponsored in part by the Air Force Office of

Scientific Research under Contract AFOSR 82-0219.

"We use the term grammar broadly here to cover the semantic
expectations used by many restricted domain systems in addition to
syntactic ones.

reporting failure, but may also include recovery methods to resolve
the violated expectation. The MULTIPAR control structure provides
the programmer with a method of specifying the alternative ways of
proceeding, and indicating how much of a deviation each option
would represent, without requiring him to schedule the
investigation of the options explicitly. This scheduling is taken care
of by the control structure automatically

The construct provided4 by the control structure to specify
alternative ways of proceeding in the face of violated expectations
is the SPLIT statement A SPLIT statement splits the computation
into parallel branches --- one branch for each option. For each
branch, the programmer specifies a flexibility increment indicating
the degree of grammatical deviation implied by producing a
successful parse via that branch. For instance, if a violated
expectation could be resolved by a spelling correction or by
hypothesizing a missing word, these two options would be specified
as different branches of a SPLIT. The control structure would then
pursue the two options independently. However, the spelling
•correction option would have a lower flexibility increment than the
missing word hypothesization, and so it would be pursued first. If it
led to a complete parse, the missing word hypothesization would
never be tried.

A stylized example of a split statement is:
(Spli t (+0 actionA)

(+1 actionB)
(+3 actionC))

Execution of this SPLIT statement produces a three-way branch in
the search tree. Action A has a zero flexibility increment, implying
no grammatical deviation along this branch. Actions B and C have
flexibility increments of 1 and 3 respectively. This means that
Actions B and C would be scheduled for later investigation, while
Action A would be pursued immediately.

The system maintains a global Current Flexibility Level whose
value is equal to the flexibility level of the least deviant partial parse
that remains to be investigated. In this way, the control structure
can guarantee that parses are attempted in strict flexibility order
and can generate all anc' only parses at the lowest flexibility level at
which a global parse succeeds. In particular, if a grammatical
parse can be found, then all and only grammatical parses will be
generated.

It is important to note that the flexibility level of a parse is the sum
of all flexibility increments of all SPLIT statement branches used to
achieve the parse. In terms of the stylized example above, this
means that other branches in entirely different parts of the tree may
be tried between trying Actions B and C. It also means that Actions
B and C may be tried, even if Action A succeeds locally, so long as
the parse fragment produced by Action A does not participate in a
complete global parse. This global comparison of the sums of the
local flexibility increments is crucial in ensuring that recovery
techniques are attempted in order of drasticness across the entire
search space of a parse. It also ensures that improbable
combinations of recovery techniques are not applied if simpler
parses can be found.

Another advantage provided by the SPLIT statement is that
recovery actions can be closely integrated with the normal parsing
process. Instead of having a separate recovery phase that occurs
independently of normal parsing, recovery actions occur within the
local context of strategies. Therefore, only recovery actions
appropriate to the context need be applied. This is important for
recovery strategies such as spelling correction, where availability of

the local context can provide information that constrains the range
of possible corrections.

Let us now look at a less stylized use of SPLIT. The following
algorithm is a simplified version of the strategy MULTIPAR uses for
parsing imperative sentences.

Imperative Caseframe Strategy
1. Find the head verb of the sentence.
2. Retrieve an unmstantiated caseframe for the action

associated with this verb.
3 Identify the semantic type of the syntactic direct object.

Call the Nounphrase Strategy to find an object of that
type at the begining of the unparsed segment.

4. Determine the unnued marked cases and SPLIT
0 Alternative!: Recognize next word as a case-

marker for an unfilled marked case; attempt to
fill that case with the remaining segment.

+ 5 Alternative 2: Hypothesize that a case marker for
an unfilled marked case is missing; attempt to
fill the case with the remaining segment.

5. If sentence has not been completely parsed, go to 4.

Let us assume that MULTIPAR is being used as the front end to a
mail system, and that the user has just composed a message to be
sent. To parse a command such as "Mail message to
Paul@CMUA", the strategy would first identify "Mail" as the head
verb, and SEND as its corresponding action, and then call the
Nounphrase Strategy to recognize a potential MSG-OBJECT as
the direct object. Assuming this lower level strategy parses
"message" correctly, the imperative strategy then reaches the
SPLIT statement. At this point, two branches of the search tree are
created with flexibility levels equal to the sum of the Current-
Flexibility-Level (which is 0) and the corresponding flexibility
increments. The branch corresponding to Alternative2 is
scheduled by the control structure at flexibility level 5 (0 plus 5).
The branch corresponding to Alternativel still has flexibility level 0
(0 plus 0), and so it continues immediately. Alternativel would
successfully recognize "to" as a marker for SEND's destination
case, and call a lower-level strategy to parse ''Paul@CMUA" as the
MSG-DESTINATION. Thus, this branch of the parse succeeds
and the other branch spawned by the SPLIT is never tried.

A common error in spontaneous input is to omit case markers, so
let us suppose now that the input reads "Mail message
Paul@CMUA". As before, after "message" is recognized as the
direct object, the SPLIT statement is encountered. However, this
time Alternativel reports failure. If the control structure finds no
other branches of the tree suspended at flexibility level 0 (the
Current Flexibility Level), it will look for suspended branches at
higher flexibility levels. In our present example, it will find the
branch suspended earlier at level 5. The Current Flexibility-Level is
set to 5, and computation is restarted at Alternative2. This means
that the imperative strategy will now hypothesize that a case-marker
has been omitted, and will try to parse "Paul@CMUA" as one of the
unfilled cases for SEND. When "Paul@CMUA" is recognized as a
possible MSG-DESTINATION, the input will have been completely
accounted for, and the parse would be the same as for the first
example.5 Notice that this recovery action is specific to the violated

MULTIPAR is implemented in Common Lisp.
A complete interface system might want to confirm its interpreptation

with the user.

S. Mintonetal. 787

expectation of finding a case marker. Because the action is
context-dependent, it would have been more difficult to achieve in a
completely separate recovery phase

Even with this simple example, it will be clear that the size of the
search tree can grow rapidly when recovery is attempted. If
"Paul@CMUA" qualified as both a MSG-SOURCE and a
MSG-DESTINATION, Altemative2 above would have to split again,
and two alternative corrected parses would be produced. Then
too, Paul@CMUA might be the name of a misspelled message-
header. Exploring this alternative would be the responsibility of one
of the strategies called while parsing the direct object. Note that
spelling correction can potentially generate many alternatives,
especially if words in the parser's lexicon can be considered as
potential misspellings of other words in the lexicon (perhaps the
user intended "Make" instead of "Mail").

These examples may make clearer the importance of exploring all
potential parses at lower flexibility levels before any of those at
higher levels. Witness the computational expense inherent in
recovering a missing case marker, i.e. trying all unfilled cases. If
there is still a possibility that branches of the search requiring less
drastic recovery techniques might yet succeed, they must be
attempted first. For example, the sentence "Mail message should
be saved" will be recognized by a strategy for declarative
sentences that is invoked in a branch parallel to the imperative
strategy. Since this branch succeeds at level 0, it should be
examined in its entirety before the imperative strategy attempts to
hypothesize a missing case marker

This best-first order of exploring the search tree implies that
grammatical parses will be discovered relatively quickly. (A
disadvantage, of course, is that ungrammatical, but recoverable
parses may be produced significantly more slowly.) Equally
important, the use of flexibility levels imposes a partial order on
deviant parses, so parses that are highly undesirable will never be
discovered if better alternatives exist. For example, a parse with
two spelling corrections will not be generated if a parse with a
single spelling correction can be found. At times, the ordering may
be rather arbitrary (e.g. is a missing case marker worse than a
single spelling mistake?). However, such arbitrary judgments tend
to overconstrain the search rather than underconstrain it, which
seems appropriate.
3 Implementing the Multipar Control Structure Efficiently

In order for the control structure outlined in the previous sections
to be of practical use, it must implement the best-first search in an
efficient manner, and it must be convenient for the strategy
programmer to use. In this section we outline some of the
engineering considerations that proved to be crucial in achieving
these goals.

• Usability: MULTIPAR consists of many communicating
strategies, each of which may involve a complex computation.
The control structure provides a standard interface for one
strategy to call upon another and controls the pseudo parallel
exploration of the search tree. An important attribute of the
control structure is its unobtrusiveness; the strategy writer is
provided with a small set of facilities for executing strategy
calls and parallel actions

• Efficient Context Re-creation: To return to an alternative on
the agenda, the local context at the SPLIT statement must be
re-created. Rather than saving the complete state of the
computation, context recreation is effected by re-executing
the local strategy from its inception. This seemingly
inefficient mechanism is quite practical due to two factors:
most scheduled alternatives are never attempted during a

typical parse, and a caching mechanism is used to store
substrategy results.

• Sharing Strategy Results: It is often the case that parallel
branches will duplicate each other's work, since they may
differ only in a few respects. This is especially true when
recovery actions are initiated, since the number of branches
tends to grow dramatically as higher flexibility levels are
reached. Because of this, the mechanism for caching
substrategy results has a dual purpose. In addition to
enabling rapid context re-creation, it makes the overall
operation of the parser more efficient by allowing strategies to
share results.6 For example, to recover from a missing case
marker, the lower-level case filler strategy has to be called
once for each case that could possibly be filled. Each time it
is called it may have to operate somewhat differently
depending on the constraints for that case (e.g. call a name-
recognizing sub strategy or check to see whether the input
can be found among current message headers). However,
much of the work may be identical in each instance, and so
caching produces considerable savings.

4 Conclusion
All natural language parsers must perform some search, but when

a parser is intended to handle ungrammatical as well as
grammatical input, its search space becomes very large. The
control structure described in this paper allows a large, complex
search space of this kind to be explored in an orderly manner.
Efficiency is improved by a caching mechanism that takes
advantage of the significant amount of redundancy present in the
search space. The control structure provides convenient facilities
for specifying the search space, while automatically performing the
bookkeeping necessary for an efficient search.

We have built a version of MULTIPAR that parses natural
language commands to an operating system. Experience with both
grammatical and deviant sentences in this domain suggests that the
control structure adequately fulfills the requirements for a flexible
parser outlined earlier.

5 Acknowledgements
We thank Jaime Carbonell for his help and participation in all

phases of this project.
R e f e r e n c e s

1. Carbonell, J. G. and Hayes, P. J. "Recovery Strategies for
Parsing Extragrammatical Language." Computational Linguistics
70(1984).
2. Hayes, P. J. Entity Oriented Parsing. COLING84, Stanford
University, July, 1984.
3. Hayes, P. J. and Carbonell, J. G. Multi Strategy Parsing and its
Role in Robust Man Machine Communication. Carnegie-Mellon
University Computer Science Department, May, 1981.
4. Hendrix, G. G. Human Engineering for Applied Natural
Language Processing. Proc. Fifth Int. JI. Conf. on Artificial
Intelligence, MIT, 1977, pp. 183-191.
5. Marcus, M. A.. A Theory of Syntactic Recognition for Natural
Language. MIT Press, Cambridge, Mass.. 1980.

A relatively sophisticated caching mechanism is required to support
this functionality. Due to the parallelism introduced by the SPLIT
statement, a strategy may return different results at different flexibility
levels, or even at the same flexibility level. The caching mechanism must
not only record the various results, but also keep track of which strategies
access the cache. This allows the control structure to create appropriate
additional branches of the search tree if the cached set of results for a
strategy is updated (with a new value at a higher flexibility level) after it has
been previously accessed by one or more other strategies.

