
A LOGIC PROGRAM SCHEMA AND ITS APPLICATIONS

Takashi Yokomori
I n t e r n a t i o n a l I n s t i t u t e f o r Advanced Study of
Social Information Science, F u j i t s u Limited
140 Miyamoto, Numazu, Shizuoka 41O-03 JAPAN

ABSTRACT

In t h i s paper we cons ide r a . spec i f i c type of
l o g i c programs ca l led recursive-schema programs and
show t h a t the c l ass of r ecu rs i ve -schema programs
has s u f f i c i e n t e x p r e s s i v e c a p a b i l i t y , which
provides an a l t e r n a t i v e simple proof fo r the result-
by Tarnlund concerning the computat ional power of
Horn c lause programs. F u r t h e r , i t i s shown t h a t
any T u r i n g c o m p u t a b l e l o g i c p rog ram can be
e x p r e s s e d as a c o n j u n c t i v e f o r m u l a o f t h r e e
recursive-schema programs. Some app l i ca t i on issues
are a l so d iscussed in the con tex t s o f program
transformat ion and synthes is .

1. INTRODUCTION

I n r e f e r e n c e t o r e c e n t a t t e m p t s concern ing
what i s c a l l e d the f i f t h g e n e r a t i o n computer
p r o j e c t , the research area o f l o g i c programming
languages has l a t e l y been a t t r a c t i n g c o n s i d e r a b l e
a t t e n t i o n . Since a l o g i c programming language
P r o l o g was . i n i t i a t e d b y t h e w o r k o f
Co l meraure(Colmeraure 1970) and Kowalski(Kowalski
1974.), in tens ive work on Prolog has been done t h i s
decade because of i t s g rea t f e a s i b i l i t y as an Al
language. Among o t h e r s , t he re are a few papers
d e v o t i n g t o t he t h e o r e t i c a l i s s u e s o n l o g i c
programming languages. Tt was shown by Tarn lund
(Tarnlund 1977) tha t any Turing computable func t ion
is computable in binary Horn clauses, which ensures
the s u f f i c i e n t c o m p u t a t i o n a l power o f Horn l o g i c
programs.

Th is paper concerns a subc lass of Horn l o g i c
programs. F i r s t we i n t r o d u c e a c e r t a i n type of a
l o g i c program c a l l e d "recurs ive-schema", and then
def ine a class of "recursive-schema programs" in a
recurs ive manner. A recursive-schema program has
very simple s t ruc tu re and property common to many
convent ional l og i c programs, and i t is explained by
the f o l l o w i n g example.

Suppose one w i s h t o d e f i n e t h e c o n c e p t
" a n c e s t o r " , then he may express it as a b ina ry
predicate as f o l l o w s :

ancestor(X,Y) holds t rue i f and only i f
X is a pa ren t of Y, or t h e r e e x i s t s Z such t h a t
X is a parent of Z and ancestor(Z,Y) holds t rue

I n a c o n v e n t i o n a l l o g i c f o r m u l a t h i s i s
represented, us i ng a " p a r e n t " p r e d i c a t e , l i k e

ancestor(X,Y) <- parent (X,Y)
ancestor (X,Y) <- pa ren t (X ,Z) , ancestor(Z,Y).

On the other hand, one may also express the concept
in a d i f f e r e n t fash ion , tha t i s ,

ancestor(X,Y) <- t r a n s i t i v e - c l o s u r e (p a r e n t , (X,Y))
where

t r a n s i t i v e - c l o s u r e (P , (X , Y)) <- P(X,Y)
t r a n s i t i v e - c l o s u r c (P , (X , Y)) <- P(X,Z),

t r a n s i t i v e - c l o s u r e (P , (Z , Y)) .

The in t roduc t i on of a recursive-schema program is
motivated by the l a t t e r v iewpoint of fo rmu la t ing a
concept.

In the next sect ion we int roduce a f ixed l og i c
program ca l led "recursive-schema" which is a simple
g e n e r a l i z a t i o n o f " t r a n s i t i v e - c l o s u r e " mentioned
above, and d e f i n e a c l ass of r ecu rs i ve -schema
programs. I t i s shown t h a t the c l ass o f
recursive-schema programs has s u f f i c i e n t expressive
power in tha t any recu rs i ve ly enumerable language
can be computed by a recursivn-schema program.
This r e s u l t gives an a l t e r n a t i v e simple proof f o r
the Tarn lund 's r e s u l t p r e v i o u s l y m e n t i o n e d .
Preced ing conc lud ing remarks in Sec t i on 4 , in
reference to program t ransformat ion and s y n t h e s i s ,
some app l i ca t ion issues are discussed in Section 3.

2. A CLASS OF LOGIC PROGRAMS RECURSIVE SCHEMAS

I t is genera l ly understood tha t Prolog, a
l og i c programming language, is one of nonprocedural
programming languages. Nonprocedural programming
has many d e s i r a b l e f e a t u r e s , because i t can
suppress unnecessary d e t a i l s of l o w - l e v e l constructs
the procedures bears , and i t enables one to w r i t e
programs in more concise manner (Leavenworth 1975).
The s i m p l e r a program i s , the e a s i e r i t i s under
stood, debugged, and modi f ied.

Now, l e t a p r e d i c a t e " r e c u r s i v e - s c h e m a " be
def ined as f o l l o w s :

Since we are concerned w i t h l o g i c programs, i t
should be noted t h a t the second c lause (2) is
l o g i c a l l y equivalent to
(2 ') recursive-schema(A,B,F,G,X) <-

B(G(X)),recursive-schema(A,B,F,G,F(X)).

724 T. Yokomori

Hence, In e i ther case we simply re fer to it as
"recursive-schema".

A class of logic programs denoted by REC is
defined in a recursive fashion as follows: (Tn what
fo l lows we i den t i f y a predicate wi th i t s program
implied. Further, a predicate is sometimes ident i
f ied with i t s predicate name.)
(i) a f i n i t e number of predicates cal led p r i m i
t ive ! including true,false,unif) are in REC,
(i i) i f p is in REC, then not(p) is in REC,
(i i i) i f p 1 , . . . , p n are in REC and p <-
p 1 . . . , p n , then p is in REC,
(i v) i f P1p2 are predicate (names) in REC and p <-
recursive-schema (P1,F,G,X), then p is in REC,
(v) nothing else is in REC.
A logic program in REC is termed "recursive-schema
program".

[Notes]
(1) A p red i ca te uni f (X.Y) is the u n i f i c a t i o n
predicate. Predicates " t rue" , " fa l se" are l og i ca l
costants holding true and false, respectively.
(2) not(p) is the l og i ca l negation of p.
(3) The class REC is the smallest class of Horn
l o g i c programs cons t ruc ted from p r i m i t i v e
predicates by rules (i i) - (v).

3. PROGRAM TRANSFORMATION AND SYNTHESIS

One can argue the issues on recursive-schema
programs from the view points of program transfor
mation and synthesis. As we have already seen, the
c lass of recurs ive-schema programs REC has
suff ic ient expressive capab i l i t y , and any program
in REC can be constructed from a small set of

T. Yokomori 725

pr imit ive predicates by using some rules.
It would be useful to point out the following

facts :
(1) any program in REC can be transformed in to

several assertions and one fixed program, and
(2) start ing with the fixed program and translating

those assertions, one can synthesize a program
in REC.

This is i l lus t ra ted by Figure 1.
When we compare the two databases, it is

easily seen that DR2 consisting of one fixed rule (
recursive-schema program) and assert ions of facts
is much simpler and more effective than DB1 in the
fo l l ow ing sense. That i s , each program in DB2 is
demand-driven, so that it is not un t i l when called
that it is embodied. Hence, DB2 can save much
space.

4. CONCLUDING REMARKS

By introducing a specific logic program called
"recursive-schema", we have defined the class of
"recursive-schema programs" in a recursive fashion.
A recursive-schema program was proposed to capture
the common and simple structural property of logic
programs, and it has been shown that the class of
recursive-schema programs has s u f f i c i e n t computa
t ional power to compute any recursively enumerable
language. It should be noted that from the way of
constructing the class of recursive-schema programs
and the result on computational power just mention
ed above, one can conclude that any Turing comput
able logic program can be obtained from a small set
of pr imit ive predicates and the "recursive-schema"
by applying a few rules.

Further, we have discussed some applica-
t i on issues of recursive-schema programs from
rather new view-points of program transformation
and synthesis. It was demonstrated that a program
transformation in terms of "recursive-schema" can
provide a spacially e f f ic ient method for database
design, while a program systhesis in our sense can
be useful for generating new predicates.

The proposed methods in th i s paper can be
easi ly implemented in Prolog and incorporated in
the phase of database design.

ACKNOWLEDGEMENTS

The author would l i ke to express his gratitude
to Dr. Toslo Kitagawa, the president of IIAS-S1S,
Fu j i t su Ltd. , for warm encouragement and useful
suggestion he has been giving through his work.

Also many thanks to Hajime Sawamura for very
constructive comment.

REFERENCES

[1]Burstall,R.M. and Darlington, "A Transformation
System for Developing Recursive Programs", J. of
ACM 24:1(1977) 44-67.

[2]Colmeraurer,A., "Les systemes-Q ou un formalisme
pour analyser et synthet iser des phrases sur
ordinatour, Internal publication no.43, Depart-
ment d ' ln format ique, Universi te de Montreal,
Canada, September, 1970.

[3]Harrison,M.A., In t roduct ion to Formal Language
Theory, Addison-wesley, 1978.

[4] Kowalski,R., "Predicate log ic as a programming
language," in Proc. IFIF-74, 1974, 569-574-

[5lLeavenworth,B.M.,"NonproceduralProgramming",in
Lecture Note in Computer Science 23, Springer,
1975,362-385.

[6]Salomaa,A., Formal Languages, Academic Press,
1973.

[7]Sato,T. and Tamaki,H.,"Transformational log ic
program synthesis", in Proc. of Interna. Conf.
on F i f th Generation Computer Systems '84,Tokyo,
November, 1984, 195-201.

[8]Tarnlund,S.A.,"Horn clausecomputabi l i ty" , BLT
17:2 (1977) 215-226.

[9]Yokomori,T., "Using higher-order inference for
knowledge generation", in Proc. of Informat ion
System Symposium, at IIAS-SIS, Fu j i t su L td . ,
November, 1984, 6-13.

Thus , a p r o g r a m " p l u s " can be o b t a i n e d f r o m
"append" by one-to-one mapping T. This means tha t
any program in REC whose domain is the se t of
n a t u r a l numbers can be ob ta ined by us ing on ly the
t r a n s f e r mapping T and a few p r i m i t i v e s in the
" L i s t w o r l d " . In g e n e r a l , the same t h i n g goes to
the recu rs i ve -schema programs whose domain world
has a one-to-one mapping to the L i s t wor ld .

