
Term D e s c r i p t i o n :
A S i m p l e P o w e r f u l E x t e n s i o n t o P r o l o g D a t a S t r u c t u r e s

H i d e y u k i Nakash ima

E l e c t r o t e c h n i c a l L a b o r a t o r y
Umezono 1 - 1 - 4 , I b a r a k i , Japan

ABSTRACT

Term d e s c r i p t i o n is a s imple , powerfu l
extens ion of terras. For example, f u n c t i o n a l
n o t a t i o n and l azy execut ion of a program is
in t roduced in a ve ry n a t u r a l manner w i thou t
changing t he bas ic mechanism of t he computat ion,
such as u n i f i c a t i o n and back t rack ing . Espe-
c i a l l y , t he r e a d a b i l i t y o f f u n c t i o n a l languages
i s in t roduced w i thou t a c t u a l l y i n t r oduc ing func
t i o n a l concepts.

X I n t r o d u c t i o n

A. Term Desc r i p t i on

A term d e s c r i p t i o n is an ex tens ion to Pro log
data s t r u c t u r e . A term d e s c r i p t i o n is a term
w i t h some d e s c r i p t i o n (c o n s t r a i n t s) on i t :

<term> : <descr±ption>
I t means t h a t <term> must s a t i s f y <descr ip t ion>
which is a p r e d i c a t e . In o the r words, whenever
the term i s u n i f i e d w i t h another term, the sub-
s t i t u t i o n must s a t i s f y the d e s c r i p t i o n .

B. M o t i v a t i o n

Al though u n i f i c a t i o n i n Pro log i s a use fu l
t o o l f o r man ipu la t ing s t r u c t u r e s , i t lacks the
a b i l i t y to express complex pa t te rns and opera
t i o n s over them. I n Pro log , d i v i d i n g a l i s t i n t o
i t s f i r s t element and the r e s t , and cons t ruc t i ng
a l i s t f rom i t s f i r s t element and the r e s t are
ve ry easy. There is no need to c a l l a procedure
t o per form the ope ra t i on . A s imple l i s t no ta
t i o n , [Carl Odr] does bo th o f them. However, i t
i s no t s o easy t o d i v i d e a l i s t i n t o two l i s t s o r
cons t ruc t a s i n g l e l i s t f rom two l i s t s . Th is
opera t ion i s u s u a l l y c a l l e d "append" and requ i res
a spec ia l program.

Some opera t ions are expressed as pa t te rns
and o thers are expressed as procedures. Th is
dest roys the r e a d a b i l i t y and coherence of program
n o t a t i o n s . The d i s t i n c t i o n i s no t t h e e s s e n t i a l
p a r t o f the programming.

Using term d e s c r i p t i o n , a p a t t e r n f o r
l a descr ibed as :

Z:cons(X,Y,Z)
as w e l l as a p a t t e r n f o r t he concatenat ion of two
l i s t s , X and Y:

Z:append(X,Y,Z)

The d e f i n i t i o n o f "cons" i s :
cons(X,Y,cons(X,Y)) .

And the d e f i n i t i o n o f "append" i s :
append(n i l ,X ,X) .
append(axis(A,X),Y,oons(A,Z) :append(X,Y,Z)) .

I d i d no t use t he l i s t n o t a t i o n , [X , Y] , I n t h i s
example on purpose. The n o t a t i o n is s imply a
syntax sugar f o r a term cons(X,Y). We cou ld
s i m i l a r l y g i ve a syntax sugar f o r
Z:append(X,Y,Z), eg . X : :Y .

XI Semantics of Term Desc r i p t i on

a term d e s c r i p t i o n ,
<term>:<constra ints> i s u n i f i e d w i t h another term
T, <term> is f i r s t u n i f i e d w i t h T and then <con-
s t r a i n t s > i s checked. A c o n s t r a i n t i s descr ibed
as a Pro log program, and executed as i f i t were
w r i t t e n a t the t o p - l e v e l . I f the execut ion o f
t he c o n s t r a i n t f a i l s , t he u n i f i c a t i o n a l so f a i l s .

A c o n s t r a i n t i s executed o n l y when i t i s
necessary, i e . , o n l y when the term d e s c r i p t i o n i s
u n i f i e d w i t h non-var iab le terms.

When two term desc r i p t i ons are u n i f i e d , o n l y
one of them is executed f i r s t . For example, when
two term d e s c r i p t i o n s : X:p(X,Y) and Z:g(Z) are
u n i f i e d , X i s u n i f i e d w i th Z:q(Z) f i r s t * , and
p (Z :q (Z) ,Y) i s executed. Then Z:q(Z) i s i n t u r n
u n i f i e d w i t h t he f i r s t argument o f ' p ' .

A term d e s c r i p t i o n may be used to produce a
va lue . For example, X : p l u s (l , 3 , X) behaves j u s t
as 4 .

The term d e s c r i p t i o n i s s i m i l a r t o the macro
In ESP [Chikayama 83] in i t s e f f e c t . ESP p r o
v ides two d i f f e r e n t expansion orders t o d i s t i n -
gu ish va lue -cons t ra i n i ng macros and va lue -
genera t ing macros. The same e f f e c t is achieved
I m p l i c i t l y i n term d e s c r i p t i o n s because o f i t s
demand d r i v e n execu t ion .

* The s e l e c t i o n is a r b i t r a r y
t i o n dependent.

and implementa-

H. Nakashima 709

I I I Features Provided by the Term Description

A. Typed Variables

We could type variables by adding a con
stra int as:

X:integer(X)
The above term description is unif iable only with
integers. Hence we oould regard X as having the
type integer.

B. Functional Natations

The term description is useful to simulate
"functional" notations, for example, a sequence
of function applications:

(h (g (f x)))
is wri t ten as:

W:h(Z:g(Y:f(X,Y),Z),W)

If we follow the convention to place the
result at the last argument position, we can
further introduce a special syntax:

!f(X)
which stands for

Y:f(X,Y).
Now the previous example becomes:

!h(!g(! f (X)))
This form is translated into a normal term
description at read-in time. A unique variable
names are attached to each pattern.

Using the notation, a function factor ia l is
defined as:

f ac to r i a l (0 / l) .
factorial(N, !times(N/ ! factorial(!subl(N)))).

C. Equality for Terms

1. Equality and Reducibility

Term descriptions introduce equality for
terms in a very ef f ic ient way compared with other
approaches [Kahn 81, Kbrnfeld 83]. Checking the
equality is nothing more than executing a pro
gram.

Let us consider defining more than two terms
equal. To assert that morning star and
eveningstar in fact refer to the same object
"Venus", we may say:

morning_star (venus).
evening_star (venus).

Then the three terms: "! morning-star",
"!evening-star" and "venus" become unif iable. A
term description !p may be thought of as an
intention of p (thus ! may be regarded as an
intentional operator).

Let us consider another example. What is
expressed by a program such as:

animal(X) :-bird(X).
animal(X):-mammal(X).

bird(X):-penguin (X).
b i rd (X):-canary (X).

panguin(pOOl).

is not equality but reducibi;ity [Tamaki 84,
Shibayama 84]. A term, !animal is reducible to
b i rd , which is further reducible to ! penguin,

which is f i na l l y reducible to pOOl. A set of
reducible terms (intentions) of !animal is a
super set of the set of reducible terms of Ib i rd.

In tne case of "morningstar" and
"eveningstar", two dif ferent terms are unif ied
through a unique individual "venus". This can be
done very e f f i c ien t ly . In the case of "birds" on
the other hand, the numbers of individual is much
larger than the or iginal terms. Therefore unify
ing 'animal and Ibird usually requires lots of
backtracking. Further research is required here.

2. Equations

In KRC [Turner 81], equations in which the
same term appear on both sides such as

integers = l :(addl integers)
are allowed*. The term description also covers
th is kind of equations. Since "integers" is a
function with no argument, it is translated into
Prolog predicate with one argument to return i t s
value:

integers([1! !map(addl,!integers)]).
"Map" is used to apply "addl" to a l l the elements
of a l i s t , and defined as:

map(Pred, [X, Y] , [IPred(X): Imap(Pred,Y)]).

The computation is i n f i n i t e and hence we
need "lazy execution."

D. Lazy Execution and In f i n i t e Data Structure

A demand driven lazy execution is realized
naturally as "lazy unif icat ion" of term descrip
t ions. Since a variable is unif iable to any
term, it is also unif iable to any term descrip
t ions. Therefore, there is no need to execute
the constraint when a term description is unif ied
with an uninstantiated variable. The description
is executed only when the result is actually
necessary.

As the direct consequence of the lazy execu
t ion, indef ini te data structure is manipulatable.
The following example depicts the use of the
i n f i n i t e l i s t in "Sieve of Eratosthenes".

The predicate "integers" produces an i n f i n
i t e l i s t of integers beginning N.

integers(N, [M !integers(!addl(N))]).
Note the recursive ca l l of "integers" i t s e l f as
the term description in the second argument. If
th is ca l l is moved to the body, a ca l l for
"integers" runs i n f i n i t e l y and never returns.
When the term description is used, only the
minimum part required is computed (demand driven
computation).

* " : " is the concatenation operator.

710 H.Nakashima

The predicate " s i f t " f i l t e r s a l i s t of
integers using "sieve". Only those which are not
products of the previous elements remain in the
second argument.

s i f t ([P! Rest], [P: !s i f t (!s ieve(P,Rest))]) .

"Sieve" removes those which are products of P.
sieve(P, [X:remainder(X,P,0)l Y], !sieve(P,Y)).
sieve(P, [X Y],[X2 !sieve(P,Y)]).

Now a ca l l
integers(2,1) , s i f t (I ,P) .

returns P an i n f i n i t e l i s t of prime numbers.

There are other, special purpose, primitives
to deal with i n f i n i t e data structures: Prolog-II
[Oolmerauer 1982] has 'geler' (freeze) to manipu
late i n f i n i t e data structures; Par log [Clark and
Gregory 1984] and Concurrent Prolog [Shapiro
1983] have read only annotations for variables
which provides synchronization among processes.

IV Implementation

A subset of the term description is imple
mented on Uranus, a successor of Prolog/KR
[Nakashima 82]. Only those which is wri t ten in
functional notations are supported. A term
description !p(X) is wri t ten in Uranus as [p * x] .

This notation is extended to the top-level
of Uranus. A user can type in a predicate ca l l
just as if it is a function. For example,

[+ 1 3]
echoes back 4. If we define primit ive l i sp func
tions as predicates, then the user can use the
system just as if it were Lisp, just by using " ["
and "] " instead of " (" and ") " . Here are some
examples:

Note that we do not need " ' " . We can simply use
" (" and ") " to denote a quoted l i s t .

In usual, the description is replaced by the
result once it is executed. Thus the multiple
execution of the same description is avoided.
However, in some cases, it is impossible to
optimize the execution automatically. User
should be careful and responsible for the e f f i
ciency.

As the f ina l comment on implementation, it
is worth noting that the implementation of lazy
unif icat ion on Prolog with structure sharing is
e f f ic ient . Since the form is shared, delaying
the uni f icat ion does not require extra storage.
The storage required for saving the environment
is just as large as is required for backtracking.

If Prolog ever needs any extension such as
introducing functions, it should be kept as small
as possible and that the term description is one
of the smallest solutions.

ACKNOWLEDGMENTS

The author gives many thanks to Satoru Tomura and
Kokichi Putatsugi at ETL, Koichi Furukawa at
ICOT, Taku Takeshima at Fuji tsu, Kazunori ueda at
NEC, and members of IOOT WG2, especially Etsuya
Shibayama, for the i r detailed discussions.

REFERENCES

[1] Takashi Chikayama: ESP — Extended Self-
contained PROLOG — as a Preliminary Kernel
Languages of Fifth Generation Computers New
Generation Computing, Vol. 1, No. 1, pp.11-
24 (1983)

[2] Keith L. Clark, Steve Gregory: PARLOG;
Parallel Programming in logic, Research
Report, Dept. of Computing, Imperial College
(1984)

[3] Kenneth M. Kahn: Uniform — A Language
Based upon Unification which Unifies (Much
of) LISP, Prolog and Ret 1, IJCAI-VII, pp.
933-939, (1981)

[4] William A. Kornfeld: Equality for Prolog,
Proc. of IJCAI-VIII, pp. 514-519 (1983)

[5] Hideyuki Nakashima: Prolog/KR - Language
Features, Proc. of the Fi rs t International
Logic Programming Conference, pp. 65-70
(1982)

[6] Ehud Shapiro: A Subset of Concurrent PROLOG
and Its Interpreter, IOOT TR-003 (1983)

[7] Etsuya Shibayama: personal communication
(1984)

[8] Hisao Tamaki: Semantics of a Logic Program-
ming Language with a Reducibility Predi
cate, Proc. of the 1984 International Sym
posium on Logic Programming, pp. 259-264
(1984)

[9] D. A. Turner: The Semantic Elegance of
Applicative Languages, Proc. Conf. on Func-
t ional Programming Languages and Computer
Architecture, pp. 85-96 (1981)

[10] David H. D. Warren: Higher-Order Extensions
to Prolog - Are they Needed?, D.A.I.
Research Paper No. 154, University of Edin
burgh (1981)

V. Conclusion
Prolog with term description may not be pure

Prolog any more. However, the basic mechanism of
the computation such as unif icat ion and back
tracking are the same.

