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ABSTRACT 
A system has been designed in which explanation-based 

learning is applied to classical mechanics. An overview of the 
fully-implemented system and an example run by it are presented. 
From the example the system acquires a general formula 
describing how the momentum of a collection of objects changes 
over time. The derivation of this formula is prompted by the 
analysis of a human's solution to a simple two-body, one-
dimensional collision. The human's solution is based on the 
principle of momentum conservation. The acquired formula serves 
to solve a three-dimensional collision in the presence of external 
forces, a situation where momentum is not conserved. 

I INTRODUCTION 
Explanation-based learning [DeJong8l] is a knowledge 

acquisition method that utilizes deep domain models. This type of 
learning involves generalizing a single problem solution into a form 
that can be later used to solve conceptually similar problems. The 
generalization process is driven by the explanation of why the 
solution worked. It is the deep knowledge about the domain that 
allows the explanation to be developed and then extended. This 
approach to learning has much in common with [Mitchell85l 
[Silver83l and [Winston83]. See [DeJong85] for a fu l l discussion. 

A system has been designed and implemented in which 
explanation-based learning is applied to classical mechanics. 
Initially this system is capable of performing many of the 
mathematical manipulations expected of a college freshman and is 
provided a representation of Newton's laws. Physical concepts 
taught in a first semester physics course are to be acquired; hence 
the name of the system, Physics 101. Newton's laws - which 
constitute the initial domain model - suffice to solve all problems in 
classical mechanics, but the general principles that are consequences 
of Newton's laws are interesting for their elegance as well as their 
ability to greatly simplify the solution process. Since the system's 
physical knowledge rests on the strong foundation of Newton's 
laws, only its mathematical sophistication wi l l limit the physical 
concepts it can acquire. 

System Overview 
The operation of the system can be seen in figure 1. After a 

physical situation is described and a problem is posed, Physics 101 
attempts to solve the problem, reporting its solution if one can be 
found. When its knowledge is not adequate to solve a problem, the 
system requests a solution from the human user. It then verifies the 
correctness of the answer (relative to its current knowledge level). 
The human-provided solution need not ful ly specify the solution 
steps; some "reading between the lines" is possible. If the system 
cannot verify the human's solution, or if an erroneous step was 
detected, more details are requested. Once a satisfactory answer to 
the posed problem is obtained, the system determines why the 

human's solution worked and attempts to extend the solution 
technique. Any resulting generalizations are recorded and can be 
used to solve future problems. 

This research was supported by the Air Force Office of Scientific Research under 
grant F49620-82-K-0009. 

F igu re 1 . T h e O p e r a t i o n o f Physics 101 
Section II contains an example of this process. Conservation of 

momentum is used (by a human) to solve a one-dimensional, two-
body collision problem that the system could not solve. The 
human's solution is verified and then generalized, during which the 
system discovers that momentum is only conserved in the absence 
of any net external force. A general equation describing how 
external forces affect momentum is derived by the system. A 
second problem, which involves three bodies under the influence of 
an external force, has been solved by Physics 101 using this 
generalized result 

Explaining Human Solutions 
The system classifies human solution steps into one of four 

categories 
(1) A known formula could have been used; 

force = mass X acceleration is an example of this type. 
(2) New variables can be defined in order to shorten later 

expressions. A formula such as 
momentum = mass X velocity would fall into this class. 

(3) Equations can be algebraic variants of previous steps. The 
replacement of variables by their values also falls into this 
category. 

(4) The user can specify an equation that states a relationship 
among known variables, yet the system knows of no 
algebraically equivalent formula. These steps require fu l l 
justification, which the system does by using its abilities to 
symbolically reason with calculus. Only the equations falling 
in this category are candidates for generalization. 
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Represent ing Phys ica l S i tua t ions 

Physical situations are represented as worlds, wh ich comprise 
a number of objects. Objects have four measurable attributes; mass, 
position, velocity, and acceleration. A l l but mass are t ime-
dependent, three-dimensional vectors. The relationships among 
these attributes, w i t h respect to symbolic differentiation and 
integration, are known to the system. 

Newton's second and th i rd laws are also known to the system. 
(Newton's first law is a special case of his second law.) His second 
law says that an object's acceleration is determined by the net force 
acting on the object, divided by its mass. The net force can be 
decomposed into t w o components; the external forces (due to 
sources outside the physical system), and the internal forces (due to 
each of the other objects w i t h i n the system). These inter-object 
forces are constrained by Newton's th i rd law, which says that 
every action has an equal and opposite reaction. 

When solving physics problems it often proves useful to 
represent the instantaneous state of a wor ld at two separate times 
(eg., the in i t ia l and final states). For this reason a l l variables in the 
wor ld can have known values at two specific times, as we l l as a 
value (which may also be unknown) for a l l time. A constraint 
system [Shavlik84] maintains the known algebraic relationships 
among these values. Several of these values - for object attributes 
or any of the forces - are set by the user to characterize a physical 
situation. 

I I I L L U S T R A T I V E E X A M P L E 

In the one-dimensional problem shown in figure 2, there are 
two objects moving in free space, w i thout the influence of any 
external forces. (Nothing is known about the forces between the 
two objects. Besides their mutual gravitational attraction, there 
could be a long-range electrical interaction and a very complicated 
interaction dur ing the collision.) In the in i t ia l state (state A) the 
first object is moving toward the second, wh ich is stationary. Some 
time later (state B) the first object is recoiling f rom the resulting 
collision. The task is to determine the velocity of the second object 
after the collision. 

As there is insufficient information for the constraint sub
system to determine this velocity, Physics 101 attempts to 
determine an expression for object two's velocity as an explicit 
function of t ime. The resulting expression could then be evaluated 
in state B. Progress past the last l ine in figure 3 can not be made 
though, as the time-dependence of the inter-object force is not 
known. ( A l l of the calculus in figures 3 and 5 is generated by 
Physics 101. Several minor intermediate expressions have been 
excised, for the sake of brevity.) 

Figure 3. The Computer's Failed Solution Attempt 

At this point the system requests a solution from the user. 
The solution provided can be seen in figure 4. Without explicitly 
stating it, the user took advantage of the principle of conservation 
of momentum, as the momentum of the world at two different 
times was equated. After that, various algebraic manipulations 
lead to the answer. In order to accept the answer, the system has to 
verify each of the steps in this solution. 

The last three steps are easily verified, as they are simple 
algebraic manipulations. The hard part is determining a 
justification for the first equation in figure 4. Physics 101 must 
ascertain that this equation is consistent with its physical 
knowledge. Since the two sides of the equation only differ as to the 
state in which they are evaluated, an attempt is made to determine 
a time-dependent expression describing the general form of one side 
of the equation. Figure 5 presents the calculus involved in 
determining how the general expression explicitly depends on time. 
This calculation can go to completion because the unknown force 
that was an obstacle in figure 3 is now cancelled by the other 
inter-object force. Even though the values of these two forces are 
unknown, Newton's third law constrains them so that they cancel. 
Since the expression is constant, its value in any two states can be 
equated. The initial step has been validated. 

Next, the system attempts to generalize the initial equation in 
the human's solution. In the initial equation of figure 4, four 
variables are used to determine the value of object two's velocity. 
The system ascertains that the first object's velocity produces the 
inter-object force that cancels the force that had been an obstacle in 
figure 3. Physics 101 also determines that the two mass terms are 
needed for this additive cancel to occur. Now that the system has 
explained why the human's attempt worked, it can generalize the 
technique to situations with more than two objects. Any object in 
a world may exert a force on any other object So to cancel the 
total inter-object force in the general case, a mass x velocity 
contribution must come from every object in the world. 
Physics 101 produces the left-hand side of equation 1, and then 
uses its knowledge of physics and calculus to arrive at the right* 

Figure 2. A Two-Body Collision Problem Figure 4. The Human's Solution 
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Figure 5. Ver i f y ing the First Step in the Human Solution 

hand side. In the general case, a l l the internal forces cancel but the 
external ones remain. 

(1) 

This formula says The total momentum of the objects in a world 
is determined by the integral of the sum of the external forces on 
those objects. 

III CONCLUSION 
By analyzing a worked example, Physics 101 is able to 

derive a formula describing the temporal evolution of the 
momentum of any arbitrary collection of objects. This formula can 
be used to solve a collection of complicated collision problems. 

Others [Forbus83l [Lang ley8 l l [Lark in8 l ] have investigated 
the learning of physical concepts. Larkin's ABLE system learns 
how to algebraically apply principles of physics. Langley's work 
involves the analysis of mult iple data measurements and does not 
util ize deep knowledge about the physical wor ld . Forbus and 
Gentner consider learning qualitative physics by analogical 
reasoning. Unl ike any of these systems, Physics 101 reasons w i t h 
calculus to explore the implications of Newton's laws. 

There are several possible long-term applications of this 
research. From the viewpoint of the development of expert 
problem solvers, the techniques outlined here could be used to 
"train" programs in domains that are based on the selection and 
manipulation of formulae. Their analogs of Newton's laws could 
be encoded and then sample solutions to various problems could be 
presented, much in the way technical textbooks are organized. This 
system should also prove applicable to cognitive modelling and 
intelligent computer aided instruction, as it is able to recognize 
incorrect applications of physical principles (e.g., assuming 
momentum is conserved in the presence of an external gravitational 
field). 
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A B S T R A C T 

We explore the use of learning schemes in training and adapting 
performance on simple coordination tasks. The tasks are 1-D pole bal
ancing. Several programs incorporating learning have already achieved 
this (1, S, 8]: the problem is to move a cart along a short piece of track 
to at to keep a pole balanced on its end; the pole is hinged to the cart 
at its bottom, and the cart is moved either to the left or to the right 
by a force of constant magnitude. The form of the task considered 
here, after (3), involves a genuinely difficult credit-assignment prob
lem. We use a learning scheme previously developed and analysed 
(1, 7] to achieve performance through reinforcement, and extend it to 
include changing and new requirements. For example, the length or 
mast of the pole can change, the bias of the force, its strength, and so 
on; and the system can be tasked to avoid certain regions altogether. 
In this way we explore the learning system's ability to adapt to changes 
and to profit from a selected training sequence, both of which are of 
obvious ut i l i ty in practical robotics applications. 

The results described here were obtained using a computer sim
ulation of the pole-balancing problem. A movie w i l l be shown of the 
performance of the system under the various requirements and tasks. 

I INTRODUCTION 

The importance of good training experience it well recognised in 
pattern classification and inductive inference, where careful choice of 
rule exemplars and counter-exemplars clearly affects learning progress 
(e.g., ref. [9]). It is also important for learning in symbolic problem 
solving as illustrated by the problem generation component of LEX [5]. 
Here we show that similar pedagogic care can be significant in non-
symbolk problem solving of the kind that is important in robotics; 
namely, problems of learning to control physical dynamical systems. 

It is sometimes faster for a system to Warn to solve a different 
problem from the one assigned and then to adapt that solution once 
it it learned. And it it usually far fatter for a system to adapt to 
new requirements by modifying old solutions than for it to start again 
from scratch. In the case of learning to control a physical system, it 
may be much easier, for example, to first learn to control a related 
system wi th simpler dynamics, and then to continue to learn at that 
system is deformed, continuously or by a sequence of steps, into the 
system required. This it no i an approach that lends itself to orthodox 
control theory due to the difficulty of adjusting to nnforeseen changes 
in dynamics and task requirements. 

A related issue is that the ability of a system to adjust to unfore-
seen changes in circumstances and requirements it important even if it 

* This research was supported by the Air Force Office of Scientific 
Research and the Avionks Laboratory (Ai r force Wright Aero-
nautical Laboratories) through contract F33615-83-1078. 

does not lead to increased learning speed through training. Although 
an obvious role of learning is to construct a knowledge base through 
experience in domains where there is l i t t le a priori knowledge, another 
role that receives less attention is to track a moving optimum, either 
incrementally or non-incrementally, as unforeseen changes take place. 

Here we show how both training and tracking can be done wi th 
a learning system that was described by Barto, Sutton, and Ander
son [1]. Our domain is the classic problem of balancing a pole in one 
dimension. This problem has the advantage that it has been consid
ered by several researchers [3, 8], and it can be made quite difficult by 
adopting certain assumptions. Specifically: 

A rigid pole is hinged to a cart, which is free to move within 
the limits of a 1-D track. The learning system attempts 
to keep the pole balanced and the cart within i t i l imits by 
applying a force of fixed magnitude to the cart, either to the 
left or to the right. 

This task is susceptible to a number of different learning schemes de
pending on the quality of the evaluative feedback provided to the learn
ing system. Here we consider a version of the task similar to the one 
studied by Michie and Chambers [3] in which the only evaluative feed-
back occurs on failure—hitting the stops wi th the cart, or having the 
pole fal l over. This sparsity of evaluative feedback create! a genuinely 
difficult credit-assignment problem. Since a failure usually occurs only 
after a long sequence of individual control decisions, it is difficult to 
determine which decisions were responsible for i t . To solve this prob
lem, the system identifies certain regions as being in some sense "close" 
to failure, and w i l l t ry to avoid them as well. The back-propagation 
method for generating this internal evaluation is like Samuel's method 
(6), but refined and improved by Sutton [7]. 

The learning system usually starts wi th an empty experiential 
knowledge base, and it takes some time to fill it wi th enough data 
for the system to perform well. We first show that to learn a new 
task—for example, one wi th very different parameters, like a vastly 
heavier pole—can be easier when the system adjusts its knowledge base 
from a successful state than from scratch. While it is obvious that a 
suitably primed knowledge base ought to facilitate learning compared 
to "tabula rata" learning, our point is that the ini t ial knowledge can be 
that acquired from learning to solve an easier task, which may itself 
have been learned at a result of facing an even easier task. Other 
results show this explicitly. 

We also consider tasks that add a constraint, such as avoiding 
particular pole positions. In these tasks, the learning system must 
adapt to the constraint without explicit instruction as to how to do i t . 
Systems capable of discovering "how" to accomplish a goal, specified 
only in terms of "what" , are more powerful than those that require 
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more explicit specifications. Such "operationalization* capabilities are 
ihown by systems like ours that modify behavior without performing 
adaptive model reference system identification, as is usual in adaptive 
:ontrol theoretic techniques. That is, what is used here is a "learn
ing by discovery" method that owes more to AI than to conventional 
adaptive control. 

II TECHNICAL APPROACH AND EXPERIMENTAL RESULTS 

Although the state space of the cart-pole system is continuous— 

-hat is, the state variables are continuous—we divide the four of them 

discretely, as in [3]: 

which yield together 162 regions corresponding to the combinations. 
The system is always in just one region. The job of the learning 
system, then, is to assign the proper action to each region, so that 
the system wil l act correctly. The learning algorithm is given in the 
appendix and is discussed in detail in refs. [1] and [7]. 

The cart-pole system was simulated on a VAX-11/780, using the 
equations of motion given in [2] and the following init ial parameter 
values: 

There are two small coefficients of friction, one for the cart and the 
other for the pole. In the init ial state the pole is stationary and 
upright, and the cart is stationary in the middle of the track. Since 
there is always a force, the pole wi l l not long stay upright. The time 
from init ial position to failure—the cart or pole hitt ing a stop—is 
considered one learning tr ial. Time was discretised to a fiftieth of a 
second. The system was judged to have succeeded in balancing the 
pole when it achieved a tr ial that continued without failure for 10,000 
time steps, corresponding to some 3.3 minutes real time. We used 
the number of failures before reaching this criteria of success as some 
measure of the power and efficiency of learning. A run using the 
standard parameters listed above typically might have 70 trials before 
a criterion tr ial is achieved. 

In the first set of tasks the system was required to adapt to 
changes in the parameters of the cart-pole system. One task required 
adaptation to bias in the force, which changed from +10 and —10 
newtons to +12 and - 8 , and to +8 and —12. This can be consid
ered an (inaccurate) approximation to t i l t ing the track right and left. 
That problem was solvable: the control surface learned was specific to 
the direction of the t i l t , and a system trained for one t i l t did not work 
well for another. However, after several switches of the direction of 
t i l t , wi th training to criterion for each, the system was eventually able 
to balance the pole each way without failure. That is, the system had 
generalised its solution to satisfy all the problems simultaneously. 

The second task required adaptation to an increase in the mass 
of the pole. The init ial training used the standard .1kg pole to the 
criterion of 10,000 steps without failure. Then the mass of the pole 

was increased one order of magnitude (to 1kg). This made the prob
lem much harder, and performance dropped accordingly. However, 
criterial performance was soon regained: initial training took an aver
age of 68 failures; subsequent adaptation to the heavier pole took only 
20. On the other hand, without pre-training, learning to balance the 
heavier pole took an average of 86 failures. It is clearly more efficient 
to use a previous solution as the starting place for this new task than 
to start from scratch. 

The system finds it harder to learn to handle shorter poles. If we 
started training with a pole reduced in length and mass to two-thirds 
of the original l m / . l k g pole, it took 119 failures on average to reach 
criterion, compared to 67 with the full-sise pole. When the system 
was first trained to criterion on the full-sise pole and then switched 
to the short pole, however, only 6 additional failures were incurred 
on average after the switch, for a total of 73 failures overall. This 
result shows not only adaptability to changing requirements, but also 
improvement in learning rate with "directed* training. 

Directed training resulted in a larger advantage in switching to 
a shorter track. Wi th the track length 2 meters (instead of 4.8m), 
learning took more than 250 failures on the average. But training first 
at 4.8m, then at 4m, 3m, and finally at 2m (each to criterion) took 
merely 64 + 4 + 9 + 5- 82 failures. 

The final task required learning to avoid some region of state 
space; namely, the region in which the pole is near vertical ( ± 1 ° ) . 
We added a penalty, equal to 1/10 the penalty for failure, for being 
within this region. Despite the fact that remaining in this state is the 
"natural" way to balance the pole, the learning system reduced the 
proportion of time spent there from 22% to 8%. Increasing the penalty 

reduced the fraction stil l further, but then hitting the stops became 
more attractive relatively, and balancing failures occurred more often. 

I l l ANALYSIS AND DISCUSSION 

The training illustrated in these results consists of selecting a 
sequence of control tasks that ends with the required task and that 
presents a graded series of difficulties. Since this kind of sequence 
consists of entire problem-solving tasks, rather than exemplars and 
counter-exemplars of a pattern class, it is quite different from the 
usual training sequence in'supervised learning pattern classification or 
concept formation. The potential uti l i ty of this type of training seems 
clear; these results show that the learning system considered here is 
in fact able to benefit from it . The learning system treated here is, 
moreover, a simple one; it does not deal with hierarchical control at 
al l , nor does it take advantage of a specific accessible knowledge base. 

Part of the ut i l i ty of the training in our examples is due to the 
fact the external evaluative feedback is in the form of a binary signal— 
failure or not. Such systems are always subject to what has been 
termed the "mesa phenomenon" [4]. What is needed is a more contin
uous feedback so that the system can become better and better, rather 
than merely satisfy some set of binary constraints. One observes this 
constantly in people performing physical tasks; it would obviously be 
desirable in robotics as well. One mechanism used by the learning 
system to provide a more continuous evaluation is the part of the 
algorithm that constructs an internal evaluation signal. Training pro
vides another way of reducing the effect of the mesa phenomenon by 
effectively leading the system to better regions of the solution space. 
Significantly, this can be done by manipulating aspects of the task 
without using detailed knowledge of what the performance surface is 
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like. 

Another way to ease the problems caused by the mesa phe
nomenon is to provide our robotics systems not wi th just one purpose, 
but wi th a structure of purposes: the first purpose to be satisfied is 
to fulf i l l the constraints and avoid outright failure—that is, to keep 
the pole upright and to avoid allowing the cart to crash into the ends 
of the track. Next the system might try to keep the pole upright, by 
reducing the average magnitude of 6 ; after that, it might try to min
imise the angular velocity, so as to keep the pole sti l l . Beyond that, 
we can imagine a universal purpose of wanting to do all the above 
wi th minimum work, just as people's physical efforts become more 
and more efficient wi th practice. 

Related to the issue of training, and equally important, is the 
ability of the learning system to track a changing optimum for the 
control parameters. In robotics, there are practical reasons for this: 
the dynamics change wi th time, sises and viscosities change wi th tem
perature, bearings and surfaces suffer wear, and so on. Such problems 
are clearly not feasible to solve analytically, and in any case, the point 
is to provide systems whose behavior is robust enough to handle un
expected as well as expected situations. 
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