
A r c h i t e c t u r e a n d A p p l i c a t i o n s o f DADO:
A L a r g e - S c a l e P a r a l l e l C o m p u t e r f o r A r t i f i c i a l I n t e l l i g e n c e *

Salvatore J. Stolfo
Daniel Miranker

David Elliot Shaw

Columbia University

A b s t r a c t

As part of our research on very high performance parallel
architectures, we have been investigating; machine
architectures specially adapted to the highly efficient
implementation of artificial intelligence (AI) software. In
the course of our research we designed DADO, a highly
parallel, VLSI-based, tree-structured machine, and
implemented a high-speed algorithm for production
systems on a simulator for DADO. Subsequent research
has convinced us that DADO can support many other AI
applications, including the very rapid execution of
PROLOG programs, and a large share of the symbolic
processing typical of contemporary knowledge-based
systems. In this brief report, we outline the hardware
design of a moderate size DADO prototype, comprising
1023 processing elements, which is currently under
construction at Columbia University. We then sketch the
software base being implemented on a small 15 processing
element prototype system including several applications
written in PPL/M, a high-level language designed for
specifying parallel computations on DADO.

1 . I n t r o d u c t i o n

As knowledge-based systems begin to grow in size
and scope, they will begin to push conventional
computing systems to their limits of operation. Even for
experimental systems, many researcher:: reportedly
experience frustration based on the length of time
required for their operation. For applications requiring
real-time response from an expert system (for example,
electronic warfare) conventional implementations may not
be practical. Recently, several AI researchers (see
[Nilsson 1980], for example) have suggested that
significant increases in the performance of contemporary

*This research was supported in part by the Defense
Advanced Research Projects Agency under contract
NOOO39-82-C-0.127, as well as Intel Corporation, Digital
Equipment Corporation. IBM Corporation and Valid
Logic Systems We gratefully acknowledge their support.

AI systems might be realized through distributed
processing or the use of specialized parallel hardware.
Some attention has been given to issues of parallelism in
system organizations for cooperating distributed AI
subsystems [Lesser and Corkill 1070]; special hardware for
high speed property inheritance and related operations in
systems based on semantic network-like formalisms
[Fahlman 1070, Hillis 1082]; and the design of machines
supporting the parallel execution of certain relational
algebraic operations having practical importance in large-
scale knowledge-based systems [Shaw et al. 1081]. The
potential applications of very large scale hardware
parallelism to the execution of AI systems, however, has
remained largely unexplored.

In this paper, we describe DADO [Stolfo and Shaw
1082], a tree-structured, multi-processor based
architecture that utilizes the emerging technology of VLSI
systems in support of the highly efficient parallel
execution of large-scale AI systems. In [Stolfo and Shaw
10X2], we reported a high-speed algorithm for Production
System programs, which has been implemented on a
simulator for DADO. Production Systems form the basis
for a wide range of approaches to building knowledge-
based expert systems. Subsequent research has convinced
us that DADO may support many other AI applications
including the very rapid execution of PROLOG programs
and a large share of the symbolic processing typical of
knowledge-based systems. A small (15 processor)
prototype of the machine, constructed at Columbia
University from components supplied by Intel
Corporation, is operational. Based on our experiences
with constructing this small prototype, we believe a larger
prototype, DAD02, comprising 1023 processors and
capable of significant performance improvements over
implementations based on von Neumann machines, to be
technically and economically feasible for implementation
using current technology. We believe that this
experimental device will provide us with the vehicle for
evaluating the performance, as well as the hardware
design, of a full-scale version of DADO implemented
entirely with custom VLSI circuits.

2 . T h e DADO M a c h i n e A r c h i t e c t u r e

A full-scale production version of the DADO
machine would comprise a very large set (on the order of
hundreds of thousands) of processing elements (PE's),

S. Stolfo et al. 851

each containing its own processor, a, small amount (2K
>ytes, in the current design of the full-scale version) of
ocal random access memory (HAM), and a specialized
/ () switch, which will he implemented using a custom

integrated circuit. The PK's are interconnected to form a
complete binary tree.

Within the DADO machine, each PK is capable of
executing in either of two modes. In the first, which we
will call SIMD mode (for .single instruction stream,
mulltiple data stream), the PK executes instructions
broadcast by some ancestor PK within the tree. In the
second, which will be referred to as MIMD mode (for
//ultiple instruction stream, multiple data stream), each
K executes instructions stored in its own local RAM,

'ndependently of the other PK's. A single control
processor (CP), adjacent to the root of the DADO tree,
controls the operation of the entire ensemble of PK's.

When a DADO PK enters MIMD mode, its logical
state is changed in such a way as to effectively
'disconnect" it and its descendants from all higher-level

PE's in the tree. In particular, a PE in MIMD mode does
not receive any instructions that might be placed on the
■ree-structured communication bus by one of its
ancestors. Such a PK may, however, broadcast
instructions to be executed by its own descendants,
providing all of these descendants have themselves been
switched to SIMD mode. The DADO machine can thus
be configured in such a way that an arbitrary internal
mode in the tree acts as the root of a tree-structured SIMD
:levice in which all PK's execute a single instruction (on
different data) at a given point in time. (A PK in SIMD
mode may also be instructed to disable itself, in which
•ase instructions placed on the broadcast bus will be
ignored by the PK, while descendants of the PK who
remain enabled will receive and execute such instructions.)
Thus, DADO provides direct support for large-scale
MSIMD (multiple SIMD) execution. This flexible
architectural design supports the logical division of the
machine into distinct partitions, each executing a distinct
ask.

The DADO I /O switch, which will be implemented
n custom VLSI and incorporated within the 1023
processing element version of the machine, has been
lesigned to support communication between physically
djacent tree neighbors, as well as communication
between PK's that are adjacent in a logical linear ordering
•mbeddod within the tree. In addition, a specialized
combinatorial circuit incorporated within the I /O switch
vill allow for the very rapid selection of a single
listinguished PK from a set of candidate PK's in the tree,
'urrently, the 15 processing element version of DADO

performs these operations with the sequential logic
mibodied in its off-the-shelf components.

In the following sections we outline the hardware
esign of the DADO prototypes and then describe

PPL/M, a variant of the PL/M language, providing
several primitives for specifying parallel computation on
DADO. In the concluding sections we overview the
applications currently under active investigation for
implementation on DADO.

3. T h e DADO P ro to t ypes

A 15-elemcnt DADO prototype, constructed from
(partially) donated parts supplied by Intel Corporation, is
currently operational. The 15 PE's are integrated on two
wire-wrap prototype boards supplied by Valid Logic
Systems. A much larger version, DADO2, is under
construction which wil l incorporate 1023 PK's constructed
from two commercially available Intel chips. The
DADOS prototype consists of 32 printed circuit boards,
each containing 32 PK's, housed in a rack which can fit in
either a DKC VAX 11/750 cabinet, or an IBM Series I
cabinet.

3 . 1 . T h e P r o t o t y p e Process ing E l e m e n t

Kach VK in the prototype systems incorporate an
Intel 8751 microcomputer chip, serving as the processor
and an 8K X 8 Intel 2186 RAM chip, serving as the local
memory. ('Two simple logic gates are used to properly
integrate the RAM and processor.) Although the full-
scale version of DADO has been designed to incorporate a
2 l \ RAM within each PK, an 8K RAM was chosen for the
prototype PK to allow a modest degree of flexibility in
designing and implementing the software base for the full
version of the machine.

The Intel 8751 is a powerful 8-bit microcomputer
incorporating a IK eraseable programmable read only
memory (KPROM), and a 256-byte RAM on a single
silicon chip. One of the key features of the 875] processor
is its I /O capability. The four parallel, 8-bit ports
provided in a 4O pin package has contributed
substantially to the ease of implementing a binary tree
interconnection between processors.

In the 15-element prototype design, the
communication primitives and execution modes of a
DADO PK are implemented by a small kernel system
resident within each processor KPROM. The specialized
I/O switch envisioned for DADOS is simulated in the
smaller version by a short sequential computation. Based
on our estimates of minimum clock speed, DADOS wil l be
capable of executing in excess of 600 million instructions
per second, assuming inter-processor communication to be
implemented with a combinational logic I /O switch.
Although pipelined communication is employed in the
kernel design, it is expected that only 150 million
instructions per second would be achieved using the
current design. Thus, the design and implementation of a

852 S. Stolfo et al.

custom I/O chip forms a major part of our current
research activities.

3.2. The PE kernel

As noted, the 4K EPROM of the Intel 8751 stores
the system kernel of a PE, which includes code
performing the most basic communication and
synchronization functions as well as the simulation of
SIMD and MIMD modes of execution. The kernel system
is designed in such a way as to logically divide the 8K
RAM space of the Intel 2186 chip into two portions for
each of the execution modes. The initial IK portion,
referred to as SIMD RAM, is a reserved data space for
variables and constants operated upon by a PE while in
SIMD mode. The remaining 7K portion of RAM is used
for storage of code, as well as the local variables used
during the MIMD mode of operation.

4 . P r o g r a m m i n g D A D O

PL/M [Intel 1982] is a high-level language designed
by Intel Corporation as the host programming
environment for applications using the full range of Intel
microcomputer and microcontroller chips. A superset of
PL/M, which we call PPL/M, has been implemented as
the system-level language for the DADO prototypes.
PPL/M provides a set of facilities to specify operations to
be performed by independent PE's in parallel.

Intel's PL/M language is a conventional block-
oriented language providing a full range of data structures
and high-level statements. The following two syntactic
conventions have been added to PL/M for programming
the SIMD mode of operation of D.ADO. The design of
these constructs was influenced by the methods employed
in specifying parallel computation in the GLYPNIR
language [Lowrie et al. 1975] designed for the ILLIAC IV
parallel processor. The SLICE attribute defines variables
and procedures that are resident within each PE. The
second addition is a syntactic construct, the DO SIMD
block, which delimits PPL/M instructions broadcast to
descendent SIMD PE's. (In the following definitions,
optional syntactic constructs are represented within
square brackets.)

The SLICE attribute:

DECLARE variable[(dimension)] type SLICE;

name: PROCEDURE[(params)] [type] SLICE;
Each declaration of a SLICEd variable will cause an

allocation of space for the variable to occur within the
SIMD RAM of each PE (the initial IK portion). SLICEd
procedures are automatically loaded within the 7K MIMD
portion of RAM (by an operating system executive

resident in DADO's CP).

Within a PPL/M program, an assignment of a value
to a SLICEd variable will cause the transfer to occur
within each enabled SIMD PE concurrently. A constant
appearing in the right hand side will be automatically
broadcast to all enabled PE's. Thus, the statement

X=5 ;
where X is of type BYTE SLICE, will assign the value 5
to each occurrence of X in each enabled SIMD PE.
(Thus, at times it is convenient to think of SLICEd
variables as vectors which may be operated upon, in
whole or in part, in parallel.) However, statements which
operate upon SLICEd variables can only be specified
within the bounds of a DO SIMD block.

DO SIMD block:

DO SIMD;
r-statement 0

r-statement ;
END;

The r-statement is restricted to be any PL/M statement
incorporating only SLICEd variables and constants.

In addition to the full range of instructions available
in PPL/M, a DADO PE in MIMD mode will have
available to it a set of built-in functions to perform the
basic tree communication operations, in addition to
functions controlling the various modes of execution. The
interested reader is referred to [Stolfo et al. 1982] for the
details of these primitives, as well as a complete
specification of the PPL/M language.

5 . A p p l i c a t i o n s

Thus far, 12 people have written PPL/M programs
for DADO. The applications that have been written, at
various stages of completion, include system-level
diagnostics, numeric processing and Al applications. The
largest share of our software effort, though, has
concentrated on parallel implementations of various Al
applications.

The most important of these is an algorithm for the
parallel execution of production system programs. A
restricted model of production systems has been
implemented in PPL/M using this algorithm and is
currently being tested.

In its simplest form, the algorithm operates in the
following way:

J. By assigning a single rule to a unique PE at a
fixed level within the tree (referred to as the

S. Stolfo et al. 853

PM-level), executing in MIMI) mode, each rule
in the system is matched concurrently. Thus,
the time to calculate the set of matching rules
on each cycle is independent of the number of
productions in the system.

2. By assigning a data item in Working Memory
(WM) to a single PE below the PM-level
executing in S1M1) mode, WM is implemented
as a true hardware content-addressable
memory. Thus, the time required to match a
single pattern element is independent of the
number of facts in WM.

3. Lastly, the selection of a single rule for
execution from the conflict set is also
performed in parallel. Thus, the logarithmic
time lower bound of comparing and selecting a
single item from a collection of items is
achievable on DADO as well.

This algorithm offers a number of advantages over
the highly efficient PETE match algorithm reported by
Forgy, while maintaining much of its inheritently efficient
capabilities. We quote from [Porgy 1982]:

...Certainly the [RETE] algorithm should not
be used for all match problems; its use is
indicated only if the following three conditions
are satisfied.

- The patterns must be compilable [to
more primitive match tests] ...

- The objects must be constant. They
cannot contain variables or other non-
constants as patterns can.

- The set of objects must change relatively
slowly. Since the algorithm maintains
state between cycles, it is inefficient in
situations where most of the data
changes on each cycle.

In its current form, the IXADO algorithm does not provide
a means to compile patterns into primitive match tests,
although it does not directly exclude this possibility.
However, the ability of a DADO PE to execute code
independently of other PE's permits pattern matching
tests common to several rules to be performed in parallel,
as well as a more powerful pattern match operation:
unification. Thus, data items within DADO's WM may
contain variables or other non-constants. (It is interesting
to note that this capability forms the basis of the
implementation of PROLOG on DADO.) Lastly, the
DADO algorithm does not restrict the amount or scope of
WM modifications, but rather permits large global

changes to be made to WM very efficiently (by
broadcasting such changes from the root PE). However,
the DADO algorithm does not save state between cycles.
Rather, in situations in which few WM changes are made
on each cycle, the DADO algorithm recomputes much of
its match results calculated on the previous cycle. We
have recently discovered, though, that the basic DADO
algorithm can be easily extended to directly implement
this temporal redundancy.

Many problem solving tasks, though, are well suited
to implementation using the RETE algorithm. Thus, we
have also recently begun work on implementing the
RETE match algorithm directly on DADO. It is too early
in our investigations to make any precise claims about the
performance of the RETP] algorithm on DADO.
However, since the data-flow discrimination network
compiled by the RETE algorithm produces nodes with a
maximum fan-in of two, it is our belief that the match
network may be directly mapped onto the DADO tree
structure permitting massive parallelism to be directly
exploited. The comparative evaluation of the two
approaches forms a major part of our current research
activities.

Our plans include the completion of an interpreter
for a more general version of production systems in the
coming months. An improved algorithm for the rapid
evaluation of hierarchical production systems, typified
by A/)C//V-like systems, is being investigated for
implementation on DADO as well.

Lastly, we note the relationship of PROLOG and
DADO. Since PROLOG may be considered as a special
case of production systems, it is our belief that DADO
can quite naturally support performance improvements of
PROLOG programs over von Neumann implementations.
Some interesting work in this direction has been reported
in [Taylor et al. 1983].

By way of summary, it is our belief that DADO can
in fact support the high-speed execution of a very large
class of Al applications, in particular, the rapid execution
of expert systems implemented in production system form.
Coupled with an efficient implementation in VLSI
technology, the large-scale parallelism achievable on
DADO will indeed provide significant performance
improvements over conventional machines at moderately
low cost. Indeed, our preliminary statistics suggest that
DAD02 is expected to execute Rl/XOON, the Digital
Equipment Corporation VAX configuration program
reported by McDermott [1981], at an average rate in
excess of 150 production system cycles per second!
Presently, Rl/XOON executes on a VAX 11/780, at a
rate of 2 to 600 production system cycles per minute. It
is interesting to note further that this larger prototype
will be comparable in hardware complexity and cost to
the DEC- VAX 11/750, a smaller, slower and much less
expensive version of the VAX 11/780.

854 S. Stolfo et al.

6 . C o n c l u s i o n a n d F u t u r e R e s e a r c h

A large part of our work continues to involve the
analytical investigation of new parallel algorithms and
languages for AI applications. Several researchers are
actively investigating methods for the rapid execution of
PROG programs. A large share of our efforts, though,
are devoted to the hardware design and implementation
of a larger experimental device. Although adequate for
further development of the software base for DAdo, the
J5-element system is too limited in storage capacity and
processing power to demonstrate a significant
performance improvement in the execution of Al systems.
Thus, using the hardware design of the 15-clement
system, we are currently implementing DAD02,
comprising 1023 processing elements. DAD02 will
incorporate a custom VLSI chip, currently being designed
at Columbia University, to perform the most basic
communicaton functions in combinational logic.

Our future plans include the demonstration of the
DADO2 prototype using several existing large-scale expert-
systems which use the production system paradigm.
Digital Equipment Corporation has expressed an interest
in supplying a copy of Rl/XCON for implementation on
DAD02. Bell Laboratories has also expressed a
willingness to supply a copy of ACE, an expert system
that has been developed to perform telephone cable
maintenance (Stolfo and Vesonder 1982]. Other systems
are being actively sought from other sources in the
artificial intelligence community.

REFERENCES

Fahlman, S. e., The Hashnet
Interconnection Scheme,
Technical Report 125,
Department of Computer Science,
Carnegie-Mellon University, 1979.

Forgy, C. L., "RKTE: A Fast Algorithm
for the Many Pattern/Many Object
Pattern Match Problem'', Al 19,
1982.

Hillis, D., The Connection Machine,
Technical Report,
Department of Computer Science,
Massachussetts Institute of Technology, 1982.

Intel Corporation, PL/M-51 Users's Guide
for the 8051 Based Development System,
Order Number 121966, 1982.

Lesser, V. and I). Corkill, "The application
of Artificial Intelligence to cooperative
distributed processing", In Proceedings
of the Sixth International Joint Conference on
Artificial Intelligence, Tokyo, Japan, 1979.

Lowrie, I)., T. Layman, I). Daer and
J. M. Randal, "GLYPNIR-A Programming
Language for ILIAC IV'',
Comm. ACM, 18 3, March, 1975.

McDermott, J., ''R1: The Formative
Years", Al Magazine 2:21-29, 1981.

Nilsson, N., Fundamental Principles
of Artificial Intelligence,
Tioga Press, Menlo Park, California, 1980.

Shaw, 1). E., S. J. Stolfo, H. Ibrahim,
B. llillyer, C Wiederhold and J. A. Andrews,
"The NON-VON Database Machine:
A Brief Overview",
Database Engineering 1(2), 1981.

Stolfo. S. J., I). Miranker and D. P. Shaw,
Programming the DADO Machine:
An Introduction to PPL/M,
Technical Report,
Department of Computer Science,
Columbia University, 1982.

Stolfo, S. ,J. and I). E. Shaw,
"DADO: A Tree-structured Machine
Architecture for Production Systems",
In Proceedings National Conference
on Artificial Intelligence,
Carnegie-Mellon University and University of
Pittsburgh, August, 1982.

Stolfo, S. J. and G. T. Vesonder,
ACE: An Expert System Supporting Analysis
and Management Decision Making,
Technical Report,
Department of Computer Science,
Columbia University, 1982.

Taylor, S., C. Maio,S. J. Stolfo and D. E. Shaw,
PROLOG on the DADO Machine: A Parallel
System for High-Speed Logic Programming,
Technical Report,
Department of Computer Science,
Columbia University, 1983.

