
Lisp- in-L isp: H igh Performance and Po r tab i l i t y 

Rodney A. Brooks Richard P. Gabriel Guy L. Steele Jr. 
M. I. T. Stanford University C. M. U. 

L. L. N. L. 

I I N T R O D U C T I O N 

Lisp remains the primary programming lan
guage for artificial intelligence research, and, as new 
computer architectures are developed, the timely 
availability of a high-quality Lisp on these machines 
is essential. 

Until recently every Lisp implementation has had 
either a relatively large assembly language core or ex
tensive microcode support. We have been working on a 
Common Lisp [Steele 1982] for the S-1 Mark IIA super
computer being developed at LLNL, producing an im
plementation that has high performance, exploits the 
complex architecture of the S-1, and which is almost 
entirely written in Lisp [Brooks 1982b). We call such 
a Lisp a Lisp-in-Lisp, 

I I I M P L E M E N T I N G LISP 

There are a variety of approaches for implement
ing Lisp on a computer. These approaches vary both 
with the architectural support for Lisp by the target 
computer and with the philosophy of the implemen-
tors. All of these approaches, so far, require a compiler; 
we claim that the most portable approach relics most 
heavily on its compiler—since one wants to compile as 
much of the runtime system as possible, the coverage of 
the compiler and the efficiency of the code it produces 
are critical. Thus, the performance of a portable Lisp 
depends on the performance of its compiler. 

At one end of the architectural support scale, the 
computer can support user microcode that implements 
a Lisp-oriented machine. In such an architecture, 
primitives, such as CONS, can be written in microcode 
and the Lisp compiler can simply place this instruction 
in the generated instruction stream rather than either 
a sequence of instructions that perform the operation 
or a function-call to a hand-written subroutine for the 
operation. Often the microcode emulates a register-
free stack machine, and compilers for this type of ar
chitecture can be fairly simple. Some examples of 
this sort of architectural support are the Dolphins and 
Dorados built by Xerox. 

At the other end of the scale arc stock-hardware 
architectures where the instruction set is fixed, and this 

instruction set, along with the addressing modes, are 
designed to provide good support for a variety of lan
guages. Typically these architectures have a number 
of registers and support one or more stacks. Registers 
are normally constructed from faster technology than 
the rest of the computer (excepting any cache), and 
they are physically, as well as logically, closer to the 
ALU and other functional units of the CPU. Therefore 
compiler-writers for high-performance Lisp implemen
tations on these machines face a register-allocation 
problem. 

Most compilers for stock hardware are structured 
so that a small number of primitives arc directly com
piled into assembly language, and all the other con
structs of the Lisp are expressed in terms of those 
primitives. Each of the primitives needs a 'code 
generator' which produces the instruction stream that 
implements the primitive. In addition, a body of code 
is needed to emit code to move data from place to 
place; the code generators are parameterized to use 
these functions to emit code to move data to canoni
cal locations when the actual locations are not usable 
directly. 

Some examples of this level of architectural sup
port are the Vax 11/780 and personal computers based 
on MC68000 microprocessors. 

Along this spectrum lie computers such as the S-i 
and the PDP-10. The PDP-10 has only a few features 
convenient to Lisp, but these have proven useful. The 
partitioning of the 36-bit word into 18-bit halves, with 
the addresses being 18 bits means that a CONS cell oc
cupies a single word. The instruction classes HLR and 
HLR implement exactly CAR and CDR. The simple 
stack structure and instructions serving them imple
ment well the spartan function-calls that are used. 

The S-1 is farther along this spectrum towards 
microcoded machines: the 36-bit word contains 5 bits 
for tagging, and there is a Lisp function-call instruc
tion. The tagging is supported by several instructions. 

In interpreter-centered systems all of the primi
tives are hand-coded as subroutines that the in
terpreter calls. The compiler simply emits code 
that calls these functions. The remainder of the 
compiler mostly implements LAMBDA application— 
in particular, binding. In some ways, these tradi
tional, interpreter-centered systems arc like current 



846 R. Brooks et al. 

inicrocoded machines: the hand-coded subroutines 
function as instructions implementing an abstract Lisp 
machine. 

Those are the current extreme points of architec
tural support; in the future even more architectural 
support is possible, such as direct execution of Lisp. 

The extreme points of philosophy derive from 
different values placed on the perceived efficiency ver
sus the clarity of code (and the concomitant ease of 
writing it). Implementing a large portion of the Lisp 
system in assembly language or in microcode provides 
an excellent low-level programmer an opportunity 
to exploit the architecture completely. Microcoded 
machines often allow type-checking to occur in parallel 
with other operations; this can allow type-checking in 
more circumstances without efficiency loss than might 
be possible in a stock-hardware implementation, and 
the microcoded implementation can be made 'safer.' 

With a Lisp-in-Lisp, the other philosophical ex
treme, efficiency is partially forfeited for ease of writ
ing, ease of certification, and case of portability. The 
observation is that Lisp programmers have already ac
cepted the compiler as sufficiently efficient for their 
own code, and with a Lisp-in-Lisp they only sacrifice 
some interpreter and storage-allocation speed. As com
piler technology advances this sacrifice may diminish. 

I I I O U R I M P L E M E N T A T I O N 

Our implementation is centered on three major 
tools; a compiler, an assembler and a cold-loader. Al l 
of these are written in a common subset of Common 
Lisp (our target Lisp) and MacLisp. 

The Lisp system is created by compiling all of 
the functions that define it, assembling them, and con
structing the binary image of an initial system on a 
disk file. 

Our compiler [Brooks 1982a] is a sophisticated 
optimizing compiler based on the Rabbit Compiler 
[Steele 1078] and on the Bliss-11 compiler [Wulf 1975]. 

Since the kernel of the implementation manipu
lates data tags and generates pointers, the compiler 
must open-code special sub-primitives. For example, 
there are sub-primitives to perform arithmetic on 36-
bit quantities, and to set and retrieve tag and data 
fields—turning them into FIXNUMs. 

The code generators in the compiler have no 
detailed knowledge of the computer's 89 addressing 
modes. An optimizing assembler takes care of such 
details; it performs branch/skip optimizations and out
puts various literals that must be created upon loading. 

The cold-loader builds an initial core image in a 
disk file. It first builds an internal data structure for a 
skeleton core image which includes a stack with a stack 
frame for a start up function, a vector of initial register 

values, copies of special atoms such as NIL and T, 
and a kernel of the tables needed for storage manage
ment. It writes the associated word values into the 
output core-image file. Then it uses the same linking 
loader (compiled in MacLisp) that is used in the target 
Lisp environment, with file-output routines substituted 
for memory-writing routines, to load assembled Lisp 
files into the initial core-image. The storage-allocation 
routines of the linking loader access the simulated data 
structure rather than the in-core tables they access 
when used in the target Lisp. In this way the link
ing loader, a stream-based I/O system, a lexical in
terpreter, a reader, a printer, some debugging tools, 
and part of the storage-allocation system and garbage-
collector interfaces and tables are loaded into the initial 
core-image disk file. 

I V A D V A N T A G E S 

There are two major advantages to Lisp-in-Lisp: 
the first concerns the ease of writing correct Lisp code 
for the system; the second concerns portability. 

With Lisp-in-Lisp, difficult pieces of code can 
easily be written correctly. Typically the most difficult 
code to write and debug (or prove correct) is the gar
bage collector and storage-allocation routines. The 
garbage collector, since it operates on data not avail
able to normal Lisp code, has traditionally been writ
ten in assembly language. A Lisp-in-Lisp system 
defines a set of sub-primitives that operate on pointers 
directly, and the compiler open-codes them. 

Implementing sub-primitives as compiler code 
generators has three advantages. First, the.template 
of code that is correctly supplied will be correctly 
applied in more situations than were anticipated by 
the writer of the code generator. The code-generator 
writer produces a template or an abstraction of the 
code sequence needed to perform the action; the com
piler, and the register allocator in particular, can then 
supply the addressing modes and data transfers needed 
to correctly apply the abstract sequence of actions in 
any situation. 

Second, routines written in a high-level language 
can be proven and debugged more easily. Relatively 
large-scale modifications can be made without worry 
about early commitment to storage layout or register 
assignments. 

Third, code can be tested within an existing Lisp 
environment using its programming tools and v/ith the 
knowledge that it is a correct language and environ
ment. Thus errors in the implementation design and 
code generators can be isolated from errors in the Lisp 
code, the latter being eliminated while testing in the 
existing Lisp system. 

There is a third spectrum in addition to the ar
chitectural support and philosophical outlook spectra 
mentioned above—the portability spectrum. Along 



R. Brooks et al. 847 

this spectrum we claim that the microcode-supported 
Lisp systems and the large runtime-supported Lisp sys
tems occupy one end (the least portable end) and Lisp-
in-Lisp systems occupy the other end (the most por
table end). 

The task of writing microcode, is comparable to 
the task of writ ing a large runtime system; when 
portability is needed, a compiler that assumes code 
generators for sub-primitives can be more easily por
table than one that produces code for a stack machine. 
For a compiler that produces code for a stack machine, 
each abstract-machine instruction emitted requires 
microcode or macrocode support, or else each such in
struction must be expanded into native machine code 
(as CMACROS in RSL are expanded). 

If each abstract-machine instruction is expanded 
as part of the last, code-producing pass of the com
piler, then register-allocation decisions depend only 
on earlier register-allocation decisions. This renders 
high quality register-allocation and, hence, high per
formance difficult to achieve. 

In a Lisp-in-Lisp environment the large run
time system is written in Lisp and only the com
ponents needed to piece that system together (the sub-
primitives) are hand-coded as simple code generators. 
Therefore the portability of a Lisp-in-Lisp system is 
the highest- along this spectrum. 

Portable Standard Lisp (PSL) [Griss 1982] is 
the closest to the S-I Lisp in terms of being a 
true Lisp-in-Lisp. The S-l implementation has 
a more advanced compiler and is, therefore, of 
higher performance. InterLISP-D [Burton 1980] 
[Moore 1976] is a Lisp-in-Lisp system where the 
sub-primitives required are written in microcode. 
InterLisp-Vax uses the TnterLisp-D Lisp-in-Lisp code, 
but it demonstrates compiler/architecture mismatch 
[Masinter 1981] [Gabriel 1982] [Gabriel 1983]. 

T [Rees 1982] uses an early version of the S-l com
piler, adapted to the Vax. 

V A N E X A M P L E 

The S-l compiler's internal language is an expres
sion language—a graph easily derived from the tree 
structure of the standard internal representation for 
Lisp code. Each node in the graph represents a Lisp 
language construct, and backpointers to other nodes 
may be present to link interesting pairs of nodes (such 
as lambda-binding nodes and variable-reference nodes). 
There is no commitment to any particular architec
ture in this scheme. Moreover, the register-allocation 
is table-driven, and no part of the compiler assumes 
any registers exist. 

The following function illustrates the advantages 
and style of Li3p-in-Lisp. It demonstrates the efficiency 
of the S-l compiler by comparing the output of the 

compiler for a common runtime function with a hand-
coding of that function. +& takes any number of 
fixnums and returns their sum. Ignoring type-checking 
of arguments, the following code provides the definition 
for the interpreter: 

(DEFUN + & (&REST NUMBERS) 
(DO ((NUMS NUMBERS (CDR NUMS)) 

(SUM 0 (+& SUM (CAR NUMS)))) 
((NULL NUMS) 
SUM))) 

where the use of +& in the function definition is open-
coded. 

This code is easily seen to be correct whereas the 
assembly language coding of it may be difficult to do 
correctly, especially on an architecture as complex as 
the S-l. 

The compiler-produced code for this function 
comprises 14 instructions. One tests that the function 
was called properly; two instructions CONS up the 
&REST argument into a list; two instructions move 
into registers the initial values for NUMS and SUM; 
three instructions manage the loop and perform the 
computation; five instructions set the tag field for the 
return value and return from the function; and one in
struction is a jump from the beginning of the code to 
the end test, which appears at the bottom of the loop 
code. 

A hand-coded version of this function displays one 
major optimization: It eliminates the call that listifies 
the &REST argument by taking the arguments off of 
the stack directly. We do not see an easy way that the 
compiler can perform this optimization in general, at 
the moment. 

V I D I F F I C U L T I E S 

The key to the success of a Lisp-in-Lisp portable 
to a variety of machines is the existence of a portable 
compiler. With such a compiler the job of writ ing code 
generators and tables should be much less than the job 
of building or microcoding a computer on one hand, 
and much less than writ ing a large runtime system on 
the other. 

Assembly language code may need to be written 
in addition to the Lisp code. In S-l Lisp the CONSing 
routines have been hand-coded for efficiency and are 
accessed through a simpler function-call than normal 
Lisp functions. 

Our approach demands an existing Lisp im
plementation that is compatible with the one being 
developed. We use MacLisp [Moon 1974]. 

In the absence of a portable compiler, a desirable 
component for a Lisp-in-Lisp implementation is a com
piler that produces efficient code. One can start with a 



848 R. Brooks et al. 

simple, but correct, Lisp compiler and move to a highly 
optimizing compiler later. 

V I I S T A T I S T I C S 

Our compiler understands 15 special forms and 
open-codes 316 Lisp primitives, 10 of which are sub-
primitives that user-level code would not normally use. 
The init ial environment is 10,300 lines of assembly lan
guage code; 413 lines—about 4%—is hand-written. 

We could have written the whole Lisp system in 
Lisp and wri t ten enough code generators to have every 
instruction generated by the compiler. We hand-coded 
certain portions in assembly language for three reasons: 

— Efficiency. To avoid the overhead of a fully 
general Lisp function-call for such common func
tions as CONS, LIST, LIST*, and all of the 
number-CONSers (they must interact with the 
storage allocation data structures so they can
not be open-coded), a special, fast procedure-call 
mechanism is provided, and the CONSers them
selves are carefully hand-optimized. The compiler 
compiles CONS, for instance, as a fast procedure 
call. Other, less common, CONSing functions (e.g. 
CONS-IN-AREA) are completely written in Lisp. 
The CONSers account for 111 lines of code. 

— Single use. Certain primitive operations, most 
notably those that interface with the operating 
system I/O facilities, need only be referred to by 
one piece of Lisp code. Rather than write code 
generators for these primitives it is just as easy 
to write the code directly. These primitives open, 
close, and delete files; transfer ascii characters and 
quarter words to and from buffers and thence to 
and from files; and transfer ascii characters to and 
from the terminal. These account for 148 lines of 
code. Trap handlers also fall under the single-use 
category and account for 87 lines of code. 

— Long code sequences. Certain common operations 
lead to identical and lengthy code sequences. The 
fast procedure-calling mechanism developed for 
the CONSers is used to replace these sequences 
by jumps to single copies of them. There are 
two classes of such code sequences. S-l Lisp uses 
deep-binding with caching [Gabriel 1982]. 34 lines 
of code provide functions to lookup, bind and 
cache special variables on the stack. The function-
return interface for multiple values requires vec
tors and lists to be unbundled onto the stack and 
into registers in a particular way; 33 lines of code 
provide these functions. 

V f f l C O N C L U S I O N S 

time has been put into the optimizing compiler, which 
has been written with a clean partition between the 
machine-independent and machine-dependent parts. 
The remainder of the Lisp system required very few 
man-months to write and debug. 

The speed of modern computers minimizes the 
need to squeeze every ounce of efficiency from them; 
the need to produce correct, understandable, and 
modifiable Lisp implementations rapidly is increasing. 
As more architectures become available to the AT com
munity the methodology we have used in this project 
should become more widespread. 

V I I R E F E R E N C E S 

[Brooks 1982a] 
Brooks, R. A., Gabriel, R. P., Steele, G. L. 
An Optimizing Compiler For Lexically-Scoped 
Lisp, Proceedings of the 1982 ACM Compiler 
Construction Conference, June, 1982. 

[Brooks 1982b] 
Brooks, R. A., Gabriel, R. P., Steele, G. L. 
S-l Common Lisp Implementation, Proceedings 
of the 1982 ACM Symposium on Lisp and 
Functional Programming, August 1982. 

[Burton 1980] 
Burton, R. R., Masinter, L. M., Bobrow, D. G., 
Haugeland, W. S., Kaplan, R. M., Sheil, B. A., 
Bell, A. Overview and Status of lnterLlSP~D 
(Dorado and Dolphin), Proceedings of the 
1980 ACM Symposium on Lisp and Functional 
Programming, August 1980. 

[Gabriel 1982] 
Gabriel, R. P., Masinter, L. M. Performance 
of Lisp Systems, Proceedings of the 1982 
ACM Symposium on Lisp and Functional 
Programming, August 1982. 

[Gabriel 1983] 
Gabriel, R. P., Griss, M. L. Lisp on Vax: A Case 
Study, in preparation. 

[Griss 1982] 
Griss, M. L., Benson, E. B., Maguire, G. 
Q. PSL: A Portable Lisp System, Proceedings 
of the 1982 ACM Symposium on Lisp and 
Functional Programming, August 1982. 

[Masinter 1981] 
Masinter, L. I n t e r l i s p - V A X : A Repor t , 
Department of Computer Science, Stanford 
University, STAN-CS-81-879, August 1981. 

[Moon 1974] 
Moon, David. MacL i sp Reference M a n u a l , 
Rev is ion 0, M.I.T. Project MAC, Cambridge, 
Massachusetts, Apr i l 1974. 

We have implemented a Lisp-in-Lisp on a complex-
instruction-set computer. The bulk of development 



[Moore 1976] 
Moore I I , J S. The IntcrLJSP Virtual Machine 
Definition, Tech. Rept. CSL 76-5, Xerox Palo 
Alto Research Center, Palo Alto, Ca., Sept. 
1976 

[Rees 1982] 
Rees, J. A., Adams, N. T. T: A Dialect of 
Lisp or, LAMBDA: the Ultimate Software Tool, 
Proceedings of the 1982 ACM Symposium on 
Lisp and Functional Programming, August 
1982. 

[Steele 1978] 
Steele, Guy Lewis Jr., RABBIT: A 
Compiler for SCHEME (A Study in 
Compiler Optimization) Technical Report 
474, Massachusetts Institute of Technology 
Artificial Intelligence Laboratory, May 1978. 

[Steele 1982] 
Steele, Guy Lewis Jr. et. al. An Overview 
of Common Lisp, Proceedings of the 1982 
ACM Symposium on Lisp and Functional 
Programming, August 1982. 

[Wulf 1975] 
Wulf, Will iam; Johnsson, Richard K., 
Weinstock, Charles P., Hobbs, Steven 0., 
and Geschke, Charles M. The Design of 
an O p t i m i z i n g Compi le r , Programming 
Language Series, Volume 2, American Elsevier, 
New York, 1975. 


