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ABSTRACT 
The weak methods occur pervasively in Al systems and may form 

the basic methods for all intelligent systems. The purpose of this 
paper is to characterize the weak methods and to explain how and 
why they arise in intelligent systems. We propose an organization, 
called a universal weak method, that provides functionality of all the 
weak methods. A universal weak method is an organizational 
scheme for knowledge that produces the appropriate search 
behavior given the available task-domain knowledge. We present a 
problem solving architecture in which we realize a universal weak 
method. We also demonstrate the universal weak method with a 
variety of weak methods on a set of tasks.1 

1 . I n t r o d u c t i o n 
A basic paradigm in artificial intelligence (Al) is to structure 

systems in terms of goals and methods, where a goal represents the 
intention to attain some object or state of affairs, and a method 
specifies the behavior to attain the goal. Some methods, for 
example, hill climbing and means-ends analysis, occur pervasively 
in existing Al systems. Such methods have been called weak 
methods. It has been hypothesized that they form the basic 
methods for all intelligent systems [5], The purpose of this paper is 
to characterize the weak methods and to explain how and why they 
arise in intelligent systems.? We propose an organization, called a 
universal weak method, that provides the functionality of all the 
weak methods We provide an implementation of this method in a 
production system architecture based on search in a problem 
space. 

2 . T h e P r o b l e m S p a c e H y p o t h e s i s 
A method (weak or otherwise) must be interpreted by an 

architecture. A key idea on which to base the architecture for an 
intelligent agent is search. Human problem solving and Al 
programs that work on problems of appreciable intellectual 
difficulty seem to always exhibit search. The case has been argued 
that a framework of search is involved in all human goal-directed 
behavior: a hypothesis that is called the Problem Space Hypothesis 
[6]. 

We will adopt this hypothesis of the centrality of search and will 
build an architecture for the weak methods around it. Problem 
search occurs in the attempt to attain a goal. The current situation 
exists in the agent in some representation, which will be called a 
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state. The agent can transform this representation to yield a new 
representation with operators. The set of possible states plus the 
operators will be called the problem space. Together, the problem 
space and goal define the current task that the agent is working on. 
To attain a goal, the agent starts at an initial state, and applies a 
sequence of operators to reach some desired state. Some goals 
also have path constraints that limit the paths that are acceptable. 
Search control is the knowledge the agent has about the task that is 
used to make the decisions encountered while problem solving. 
The agent must select states, select and apply operators, decide if a 
subgoal should be used, and decide if a goal has succeeded, failed 
or should be suspended. A method corresponds to a specific 
pattern of search control knowledge that guides the agent in its 
decisions. 

3 . A P r o b l e m S o l v i n g A r c h i t e c t u r e 
In this section we give a particular search based problem solving 

architecture: SOAR. SOAR has representations for the objects 
involved: goals, problem spaces, states, and operators. Each 
representation of an object can be augmented with additional 
information about the object or about the history of the object in the 
problem solving. 

The current context of the architecture consists of a single object 
of each type: 

goal, problem space, state, operator 

Objects in the current context, together with additional available 
objects of each type, are called the stock. Although the stock is 
limited by the physical resources of the agent, we make the 
simplifying assumptions (for the present experiment) that there is 
unlimited access to the stock and that the stock has unlimited 
capacity and reliability. 

A single generic action is available in SOAR to control the search 
in the problem space: rcplacement of an object in the current 
context by another object of the same type. After a replacement, 
the current objects to the right (in the above ordering) of the 
replacement become undefined. This initialization is necessary 
because each object depends on the partial context provided by 
other current objects. Different methods of search are realized by 
selecting and replacing objects in the context. 

Search-control knowledge is brought to bear on this process by 
the Elaboration Decision Application (EDA) cycle, which involves 
three distinct phases of processing. The elaboration phase takes 
the objects from the stock as input, and augments the current-
context objects. Existing data cannot be modified, only augmented. 
The elaboration phase terminates when no more augmentations 
can be made. The decision phase follows the elaboration phase 
and replaces an existing object in the current context based on 
votes. Using objects in the stock as input, and it collects votes: for, 
against and vetoes. All votes are totaled and SOAR replaces the 
left-most context-object type that has a new winning object. If the 
net votes for all objects of a type are negative, fail wins and 
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replaces the current object. Following the decision phase, if the 
current state and operator are defined, the operator is applied to 
the state to produce a new state. The new state replaces the 
current state, while the current operator (through initialization) 
becomes undefined The elaboration phase is then repeated. 

The elaboration and decision phases constitute the search-
control memory of the agent. We use a specialized production 
system [8] for them with productions of the form: 

If C, and C„ and ... and C then A 
1 2 n 

The C are conditions that examine the current working context and 
the stock. The form of the conditions is limited to a class of 
patterns common to production systems [1]. A is an action that 
either adds knowledge to a current object via an augmentation (for 
an elaboration production), casts a vote for an object (for a 
decision production), or applies an operator to a state. A 
production is satisfied if the conjunction of its conditions is 
satisfied. All satisfied elaboration productions fire concurrently 
during the elaboration phase. All satisfied decision productions 
vote together during the decision phase. 

To achieve goals in this architecture, productions must be 
created that define the task: (1) problem space operators, (2) 
detection of the desired states of the goal, (3) initialization of the 
current context and stock with the appropriate goal, problem 
space, and initial state. A method to control the search is then 
defined by elaboration and decision productions. Figure 3-1 shows 
the productions for simple hill climbing For these productions to 
be used on a specific task, they would have to be instantiated with 
domain knowledge to compare states and determine the 
applicability of operators. For Figure 3 1, the elaboration 
productions compute the evaluation of the current state in relation 
to the desirea state. The productions for goal decisions detect if 
the desired state has been reached, or if all the operators have 
been tried for a state and rejected (fail wins), meaning a local 
minimum has been reached. The first state decision production will 
take a step up a hill by voting for the current state if it is better than 
its ancestor state. The second production rejects a step down the 
hill by voting for the ancestor state if it is better than the current 
state The operator productions veto operators that have already 
been applied to the state, and vote for operators that will apply to 
the state. 

Elaboration 
State: If the current states has not been evaluated, compute the 

evaluation and add it to the state 

Decision 
Coal. If the current goal is solved, vote for supergoal. 
Goal If the current operator is fail, vote for supergoal 
State If the current state has an evaluation greater than its 

ancestor state, vote for the current state 
State: If the current state has an evaluation less than its ancestor 

state, vote for its ancestor state 
Operator. If an operator has been applied to a state before, veto it. 
Operator If an operator will apply, vote for it 

Figure 3-1: Search control for Simple Hill Climbing. 

4 . A U n i v e r s a l W e a k M e t h o d 
The architecture of the previous section is suitable for encoding 

many weak methods,3 although we illustrated this only for hill 

It is also suitable for encoding extended domain-dependent methods, but this is 
not (he focus of the paper 

climbing. For an architecture to be appropriate for realizing the 
weak methods generally, it must allow simple and direct encodings 
of all weak methods. One possibility is to have a separate 
description for each method and select one based on the current 
situation. Another possibility is to analyze the situation and 
synthesize the appropriate weak method. 

We suggest a third alternative: there should exist something, call 
it a universal weak method (UWM), that responds directly to a 
situation by behaving according to the weak method appropriate to 
the knowledge the agent has of the task. Each weak method can 
then be characterized by the small amount of knowledge it has 
about the task. The UWM is what is left after this characteristic 
knowledge is removed. This is the default behavior: what is done, 
given nothing that is known about the task. When the knowledge 
(productions) for a method is added to the UWM, the system 
behaves according to that method. 

Figure 4 1 gives the elaboration/decision productions that 
constitute the UWM. The first elaboration production detects if all 
problem spaces have been vetoed (meaning none of the problem 
spaces were adequate for achieving the goal) and marks the goal 
unacceptable (an augmentation). The goal must be elaborated with 
this information so that when it is no longer the current goal, it will 
not be selected as a subgoal. The next two elaboration productions 
serve the same purpose for problem spaces, and states. All the 
decision productions for the goal, problem space, and state vote for 
an acceptable object and veto unacceptable objects. The operator 
productions perform the same task for operators. Thus, even 
though the UWM does specify a nontrvial behavior, it is a simple 
specification that provides just enough control to search a problem 
space. 

Elaboration: 
Goal If the current problem spoce is fail, the goal as unacceptable 
Problem Space II the current state is fail, the problem space is unacceptable 
State If the current operator is fail, the state is unacceptable 

Decision: 
Goal If there is an acceptable available goal, vote for it 
Goal If there is an unacceptable available goal, veto it. 
Problem Space II an acceptable problem space is associated to the 

current goal, vote for it 
Problem Space II an unacceptable problem space is associated to 

the current goal, veto it. 
State. If an acceptable state is in the current problem space, vote for it. 
State If an unacceptable state is in the current problem space, veto it. 
Operator If an acceptable operator is associated to the current 

problem space, vote for it. 
Operator If an operator has already been applied to the current state, veto it 

Figu re 4-1: The Universal Weak Method. 

To achieve a goal with the UWM, we must still define the task 
(operators and attainment-test) within SOAR with productions. 
With just the UWM and the task productions, SOAR will search the 
problem space, but unguided by any special knowledge of the task. 
Search control knowledge must be added as elaboration/decision 
productions. These productions (along with the UWM) determine 
the behavior and thereby define a method. The elaboration 
productions define concepts such as depth, evaluation, difference 
or duplicate state based on the structure of the current task. The 
decision productions convert these concepts into action by voting 
for objects. Figure 4-2 shows the decision productions that define 
simple hill climbing for any task. Task dependent elaboration 
productions must be added to Figure 4-2 to compute the evaluation 
of states. With these productions, the agent has the knowledge to 
compute an evaluation function for a state of the task and to use 
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the evaluation function to select a state. When these productions 
are added to the UWM, SOAR will search using simple hill climbing. 

Simple Hill Climbing 
State If the current stnte is not acceptable or has an evaluation 

worse than the ancestor state, vote for the ancestor state. 
State If the current state is acceptable and has an evaluation 

better than the ancestor state, vote for the current state. 

Figure 4-2: Simple Hill Climbing Search Control 

5 . E x p e r i m e n t a l D e m o n s t r a t i o n 
In this section we demonstrate empirically that the UWM just 

defined is capable of producing many weak methods. We restrict 
the scope of the demonstration by not considering methods that 
involve subgoals. Subgoals, of course, are critical to problem 
solving generally and also to weak methods. However, the role of 
subgoals in SOAR rests on the (predicted) existence of another 
functional capacity of a general intelligent agent, universal 
subgoaling [3], to set up subgoals to cope with difficulties that arise 
in accomplishing a task. We expect that the UWM and universal 
subgoaling jointly will produce all that might reasonably be called 
weak methods We attend here only to the UWM in isolation. 

SOAR is implemented in a parallel production system 
architecture, XAPS2 [7].4 Twelve tasks were implemented in SOAR, 
with some of them sharing a common problem statement. They are 
mostly simple tasks familiar from theAl literature, plus a few even 
simpler decision and logical tasks. Such tasks are suitable for an 
initial test of a universal weak method, being familiar, easy to 
implement, and knowledge lean (the situation in which weak 
methods are used). Elaboration and decision productions 
containing knowledge about the task (similar to those if Figure 4-2) 
were added to control the search and produce the behavior of a 
weak method. Productions were added that achieved the following 
weak methods: avoid duplicates (AD), heuristic search with 
operator selection heuristics (OSHS), means ends analysis (MEA), 
breadth-first search (BRFS), depth first search (DFS), simple hill 
climbing (SHC). steepest ascent hill climbing (SAHC), best-first 
search (BFS), modified best-first search (MBFS, that is with one step 
lookahead), and A star (A*). 

Figure 5-1 shows the results of the tasks and the weak methods. 
In the cases labeled + , the behavior was that of the stipulated weak 
method. In the cases left blank there did not seem to be any 
structure in the task that allowed inclusion of search-control 
knowledge leading to the weak method. Search-control knowledge 
was added only if it had heuristic value. Although in principle 
determining whether a method is being followed could be an issue, 
there is no doubt at all for the runs in question. The structure of the 
combined set of productions shows that the method will occur and 
the trace of the actual run simply serves to verify this. Note that the 
success of a method on a task is not an issue (some succeeded, 
some did not), rather the question is whether the UWM plus the 
search-control production behaved appropriately. 

6 . C o n c l u s i o n 
We have attempted in this paper to take a step towards a theory 

of weak methods and an appropriate architecture for a general 
intelligent agent This has involved introducing a specific problem-
solving architecture, SOAR, based on the problem-space 
hypothesis, and then a universal weak method that provides the 
ability to perform as any weak method given appropriate search-
control increments that respond only to the special knowledge of 
the task used by the weak methods We demonstrated the 
generality of the UWM by using many different weak methods for 
twelve tasks that the weak method exploits.5 This suggests that the 
weak methods can be defined as the methods that can be obtained 
by adding simple search control knowledge to the UWM (with 
universal subgoaling). 
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