
SEARCHING TO VARIABLE DEPTH IN COMPUTER CHESS

Hermann KaindJ
Rennweg 43/3/17

1030 Wien
Austria

ABSTRACT

This paper discusses some methods for guiding the
search of conventional chess programs to variable depth.
The motivation for investigating such methods comes
from the fact that searching to a fixed depth causes dif
ficult problems (e.g. the horizon effect). The first sec-
tion deals with certain improvements of the quiescence
search and a demonstration of their beneficial effects.
The method of not counting moves as a ply of depth is
investigated then and the results of extending it some
what are reported. As this method seems to be too sim
ple nevertheless, a more general model tor extending
the horizon of the full-width search to variable depth is
proposed.

I INTRODUCTION

Although most of today's better chess programs per
form a simple quiescence search and do not count re
plies to check as a ply of depth there is a fundamental
philosophy to search every branch to the same depth.
The main reason for this lies in the tact that in chess it
is very difficult to discriminate good moves from bad
ones statically without error. Moreover it has been
shown consistantly, that programs which perform for
ward pruning are inferior. They often prune moves at a
lower level which seem to be bad, but would prove good,
deeper in the tree (e.g. sacrifices). On the contrary,
brute-force programs can discover everything within
their horizon as their search is full-width. A thorough
discussion of advantages and disadvantages of this me-
rnethod was given by Berliner in 1981 [4].

A principal problem when searching to a fixed depth is
the horizon effect (I 2J, [3] as it is extremely difficult
to overcome it by pure static analysis. Actually in deep
searches this effect does not influence the played move
very often [4] but nevertheless it should be worth trying
to avoid it further by investigating important variations
more thoroughly ([10], [5]).

In despite of the enormous speed of the special chess
automaton BELLE [6] the combinatorial explosion of full-
width searches should not be forgotten completely. It
seems to be very difficult to build a machine which will
be significantly faster than BELLE. Thus it also seems
to be very difficult to further strengthen chess automa
ta this way. Therefore it should not be disadvantageous
to make the search more efficient guiding it to variable
depth.

II QUIESCENCE SEARCH

A usual method for searching to variable depth is the

so-called quiescence search: a selective search is per
formed sprouting from certain positions (mostly at the
horizon of a full-width search) to reach quiescent (dead)
positions which can be evaluated more accurately. Its
main purpose is to avoid the horizon effect and some
times it also can find deeper combinations. Indeed most
of today's successful performance programs employ a
quiescence search, but a severely limited one. Mostly
only captures and replies to check are considered and
sometimes promoting and checking moves.

A model for a more informed (than usual) quiescence
search is given elsewhere [18], [91). On the implementa
tion of this model into our brute-force chess program
MERLIN and the control of this search together with re
sults it is reported in [8], | 10]. The exceptional features
of this quiescence search are:
- the consideration of hung pieces which are subject to

capture by the side not on move (moves by such pieces
and protective moves);

- the killer quiescence search which tries killer moves
from the full-width search beyond its horizon;

- the check quiescence search which only tries very
forcing checks.

Unfortunately it is not always possible to achieve a
dynamic value using this model. E.g., let us assume a
position with a hung piece which can"neither be moved
nor protected. Assuming further that the quiescence
search cannot select any move, no value or a pessimisti
cally estimated claim value (|3], |J0j) would result. To
estimate such a situation realistically by a static analy
sis is also risky. Therefore MERLIN tries a null move
there letting the opponent capture immediately. This
way quiescent positions may result which can be evalua
ted more accurately. Nevertheless the resulting value
for the position in question can itself be clearly wrong,
but experiments have shown that this occurs seldom.

H. Kaindl 761

Of course there are also other threats to be worried
about. MERLIN considers threats of pawn promotion or
mate in the following way: A simple static analysis de
cides, if there could be such a threat, and eventually a
null move analysis is activated to investigate it further.

The position of Figure l ([3], Figure 4.8) seems to be
easy (at least for human chess players). But e.g. after
l.Ra8-h8 Ra2-al + 2.Kgl-f2 Ral*a7 the correct move
3.Rh8-h7 + winning the rook is not easy to discover with
in the quiescence search of a brute-force chess program
(if not trying all the checking moves there). By further
checks with the black rook this effect can last tor seve
ral ply. MERLIN avoids it using the killer quiescence
search in the following way, when searching to a full
depth of 3 ply: After l.Ra8-h8 Ra2*a7 2.Rh8-h7 the
black rook is won. Thus Rh8-h7 is stored as a killer
move and tried again after e.g. l.Ra8-h8 Ra2-al
2.Kg 1-f 2 Ral*a7, winning the black rook.

Let us assume now, that alter e.g. l.Ra8-h8 Ra2-a1 +
2.Kgl-f2 Ral-a2, 3. Kf2-c3 the quiescence search is
reached. There Black to move can (according to the
usual scheme) decide to accept the static value, or try
to better it by certain moves. Let us assume further,
that the moves result in correct values (e.g. 3...Ra2*a7
4.Rh8-h7t killer quiescence search). But the usual static
evaluation functions do not account for the threat of
pawn promotion. Thus the value of the whole variation
would be accidental.

MERLIN recognizes in this position the opponent's
(White's) opportunity to promote the pawn from a7. It
asks the search, if this promotion is really a threat by
trying a null move. Essentially this means, that the side
to move is changed and then only tried to promote the
pawn from a7. As there the threat is recognized to be
real, MERLIN refuses to evaluate the position in ques
tion statically. Instead it tries to find counter moves (e.
g. to add control to the promoting square or to block it)
but cannot find one there. So MERLIN plays I.Ra8-h8
alter a 3 ply search, announcing the main variation
l...Ra2*a7 2.Rh8-h7+ Kf7-e6 3.Rh7*Ra7.

(II MOVES NOT COUNTING AS A FLY OF DEPTH

The best chess programs now do not count responses
to check as a ply of depth. This method actually makes
the horizon of the full-width search variable. It also en
tails only a small risk of explosion, as there are few le-
legal moves in positions with the king checked. MERLIN
improves this method somewhat applying it only to
those moves whose optimistically estimated value is
better than the actual best value reached so tar. The
reason is that the extension of the search should be also
worth its costs. In situations after a sacrifice this crite
rion also expresses a principle of compensation: Those
moves should be investigated further where the side ow
ning more material is forced by a check. Additionally
MERLIN does not count certain very forcing checks.

In the position of Figure 2 ([12], Figure (4) mate in 11
ply is possible. Not counting replies to check a search
to "only" 7 ply is sufficient. Additionally not counting
certain checks MERLIN reaches the position after
l.Qh5*h7 + Kg8*Qh7 2.Rg5-h5+ Kh7-g8 3.Nh4-g6 within
a full-width 2 ply search. There it recognizes statically
by use of simple criteria that the black king might be in
danger. As mentioned before MERLIN activates a null

move analysis in such situations. Here the result is that
the rook actually threatens to mate the black king. Thus
no static value is assigned and certain counter moves are
tried (e.g. moves by the black rook from f7 to vacate an
escape square tor the king). As these cannot prevent
mate either, MERLIN claimed mate in 9 ply after 20.5
sees, of cpu time on a CDC Cyber 170/720 and searching
623 nodes (58% within the quiescence search). Strictly
speaking this was not absolutely correct, as Black can
delay mate for further 2 ply sacrificing his queen on g2
or h2 giving check. Normally MERLIN does not try such
checks within its quiescence search as they Jose material.
It is not clear if this would be an important flaw (e.g.
PARADISE [12] does not even consider these moves).
Nevertheless MERLIN was told then to try every check
within its quiescence search if mate actually threatens.
This helped to find the correct depth of mate (searching
some few nodes more). As it also helps to make sure
that there is no complicated side effect by a check, this
method seems to be worth its costs.

To compare MERLIN's performance on this position
with that of other programs, see Wilkins, 1980 [12] (It
should be noted, that there exist computers which are 20
times or more faster than the one used by MERLIN.).

Despite of good results it seems that the method of
not counting moves as a ply of depth is too simple for
further extension. The main disadvantages are:
- a move can be counted or not only as a whole;
- this decision is made within the tree by use of little

information;
- mostly this decision is only based on an estimate, how

forced or forcing a move is.

But the idea in itsell to extend the horizon of the full-
width search to variable depth seems to be very promi
sing. This way it is possible to explore variations deeper
without reducing the chance of discovery (compared to
the quiescence search). This aspect seems to be impor
tant, as it often occurs in chess, that forced moves
should be followed by one or more moves which cannot
easily be detected statically by conventional programs.
Thus a more general model for extending the horizon of
the full-width search to variable depth seems to be
necessary.

IV A MODEL FOR EXTENDING THE HORIZON

Knuth and Moore report on an interesting approach by
Floyd in 1965 (see [11], loc cit.) to search to variable
depth:
Each move is assigned a "likelihood" which is related to
its forcedness and plausibility. When the product of all
"likelihoods" leading to a position becomes less than a
given threshold, this position is considered to be termi
nal and evaluated statically.

Such an approach seems up to now not have been tried
in large-scale experiments. The reason is, that today's
chess programs have not enough knowledge available to
assign such values accurately enough to every move. The
only exception may be PARADISE (for the subproblem of
tactics) but when having much knowledge available, a
best-first search seems to be more adequate than a
depth-first search to variable depth (see also [3], [13]).

Consequently current performance programs should,
only when there is a reason they know, search a branch

762 H. Kaindl

deeper, but in a subtler way than not counting certain
moves. This should be possible as follows:
Iterative deepening of full-width searches is retained,
but at the horizon of the full-width search (before be
ginning with the quiescence search) the decision is made,
if the horizon is to be extended or not. This decision
could be conferred to the following routine:

FUNCTION EXTEND-HORIZON
(FORCEDNESS (actual variation),
INTEREST (actual position),
EXTENSION) : BOOLEAN;

The FORCEDNESS of the actual variation could be
measured according to Floyd's scheme. But then again
the question arises, how to assign an appropriate "likeli
hood" to every move. The following scoring system
seems to be more manageable in this respect:
A move which does not "count" is assigned a value of 0
(regarding to a "likelihood" of 1), moves which "count
only half" are scored by 0.5 etc. The remaining moves
which are not forcing or forced (or at least the program
does not have knowledge about) get a score of 1. The
sum of these values is subtracted from the number of
ply in this variation resulting in a measure of its
FORCEDNESS.

The inclusion of the INTEREST of the actual position
as a parameter to EXTEND-HORIZON shall provide for
the inclusion of the level of aspiration into the decision
to extend the horizon or not. It is useless and expensive
to search a forced variation deeper and deeper whose f i
nal value cannot influence the rest of the search. The
level of aspiration is mostly represented by ALPHA and
BETA in conventional programs [11]. So it seems appro
priate to compare an estimate of the value of the actu
al position to these bounds. Unfortunately such values
cannot be estimated very accurately sometimes (espe
cially in situations after a sacrifice). Thus the INTEREST
of the actual position should also include a notion of
"compensation" (in the chess sense).

The parameter EXTENSION is to avoid that the hori
zon is extended over and over again in the same branch.
Thus the actual extension (difference of the actual depth
and the given search depth) should be included into this
decision.

Although this model is not complete either it seems to
remove the main disadvantages of simply not counting
certain moves as a ply of depth:
- moves can be assigned also non-integer values, so that

a smoother variability is possible;
- the decision is made at the latest possible moment (at

the horizon itself) and therefore the whole variation
can be analysed;

- the decision is based additionally on an estimate of the
resulting position's value and consequently the search
should become more effective and controllable.

V CONCLUDING REMARKS

The method of selecting a null move is not new (e.g.
see [1]). But the use of it to achieve a dynamic value
and to investigate a threat seems to be exceptional for
brute-force programs. For a further discussion of this
method see [13].

having the longest branches of the tree coincide with
the variations most likely to be important. It can help
against the horizon effect, too. The more knowledge the
program has available the more variability of the search
seems to be admissible.

For building better chess programs an enlargement of
their positional chess knowledge seems to be even more
important than an improvement of their search. So my
colleague H.Horacek has built a general positional evalu
ation function which probably is one of the biggest and
most detailed of today's programs for the whole game of
chess. I myself have proposed a model for giving knowl
edge about positional long-range plans to chess programs
which was also implemented for the example of the so-
called "minority attack" ([7], [8]).

However a program of course is also slowed down by
such supplements. Anyway an improvement of the search
can result in the deeper exploration of interesting varia
tions as well as in having more time available for each
node to evaluate it more thoroughly.

REFERENCES

[I] Adelson-Velskiy, G.M., V.L.Arlazarov and M.V.Donskoy
"Some Methods of Controlling the Tree Search in
Chess Programs" Artificial Intelligence 6 (1975)
361-371.

[2] Berliner, H.J. "Some Necessary Conditions for a
Master Chess Program" In Proc. I3CAI-73. Stanford,
August, 1973, pp. 77-85.

[3] Berliner, H.3. "Chess as problem solving: The develop
ment of a tactics analyser". Ph.D.Dissertation. Comp.
Science Dep., Carnegie-Mellon Univ. Pittsburgh, 1974.

[4] Berliner, H.3. "An Examination of Brute Force Intelli
gence" In Proc. IJCAI-81. Vancouver, August, 1981,
pp. 581-587.

[5] Berliner, H.3., Personal communication, 3an. 5, 1983.
[6] Condon, 3.H. and K.Thompson, "Belle Chess Hardware"

In Advances in Computer Chess 3 (ed.M.R.B.Clarke),
Pergamon Press, 1982.

[7] Kaindl, H. "Positional long-range planning in computer
chess" In Advances in Computer Chess 3 (ed.M.R.B.
Clarke), Pergamon Press, 1982.

[8] Kaindl, H. "Realisierung von langfristigem Planen und
Massnahmen gegen den Horizont-Effekt im Computer-
Schach". Doctoral Dissertation. TU of Vienna, 1981.

[9] Kaindl, H. "Quiescence Search in Computer Chess"
SIGART Newsletter 80 (1982) 124-131.

[10] Kaindl, H. "Dynamic Control of the Quiescence
Search in Computer Chess" In Proc. EMCSR-82.
Vienna, Austria, April, 1982, pp. 973-978.

[I I] Knuth, D.E. and R.W.Moore, "An Analysis of Alpha-
Beta Pruning" Artificial Intelligence 6 (1975) 293-326.

[12] Wilkins, D. "Using Patterns and Plans in Chess"
Artificial Intelligence 14 (1980) 165-203.

[13] Wilkins, D. "Using Knowledge to Control Tree
Searching" Artificial Intelligence 18 (1982) 1-51.

Extending the horizon of the full-width search aims at

