Chanf, Lirif. Dept. of Mathematios Annjnf Teachers' College Anqjre, Anhua, China

## ABS'JHACT

In this paper we present a new heuristic searching alforithm by introducing statistical inference method on the basis of alporithm $A^{*}$. It's called alforitim SA*. The followint resulis have been proved.
(1) Algorithm SA* is superior to alforijthm $A^{*}$.
(2) The mean complexity of $\mathrm{SA}^{*}$ is $\mathrm{CN}^{2}$, but in some case $A^{*}$ exhibits exponential complexity ( $\mathrm{e}^{N}$ ).
(3) In a ( $N, d, F)$-fame iree, the mean complexity of $S A^{*}$ is $\mathrm{CN}^{2}$, but the complexity of other known kame-starching alforjthm ( $\alpha-\beta$, Sis* etc.) is at least $\mathrm{d}^{N}$.
(4)The maximal storape-space required by $\mathrm{AA}^{*}$ is $\mathrm{C}, \mathrm{N}$.

This thow that under a fiven sienificance level GA* is superior to other known alrorithm (e.e. A*, $R^{*}, \alpha-\boldsymbol{\beta}, \mathrm{SSS}$ etc.).

## 1. INTNOM:CTION

The heuristic sfarch theory has been investigat. ed by many researchers (1)-19). All results obtained can't completely avoid tree exponential explosion of searchinf. complexity. He improve it by applyine statistic inference method ( $s, i, m$ ) to heuristic search. The results we obtain are that the mean complexity of $\mathrm{SA} \mathrm{A}^{*}$ is $\mathrm{CN}^{2}$ and the maximal storage. space is CN .

## 2. ALGORJTHM SA* IN THEEE C

### 2.1. Statistic $a(n)$

For simplicity, we assume the following search space: A uniform m-ary tree $G$ has an initial node $S_{\text {. }}(r o o t)$ and a unique goal node $S_{N}$ at depth $N$. Let $l=\left(s_{0}, s_{1}, \ldots, s_{N}\right)$ be the shortest-path from $S$. to $S_{N}$. The subtrees havinf root $S_{i}$ are called $T_{i}$-type subtrees. They are $T_{i}^{1}, T_{i}^{2}, \ldots, T_{i}^{m}, 1=0,1 \ldots$ Assume that $T$ is an $T$-subtree. If $n$ is a node of $T$, the generation(depth) of the node is $n$, and $T$ doesn't contain l. We have

$$
\begin{aligned}
& g^{*}(n)=n, \quad h^{*}(n)=(N-i)+(n-i) \\
& f^{*}(n)=n+N-i+n-i=N+2(n-i) .
\end{aligned}
$$

(We use the same symbols as thoes used in most books,e.g. (4) .

$$
\text { Let } a^{*}(n)=\frac{f^{*}(n)-N}{2 n}, \quad a(n)=\frac{f(n)-N}{2 n} .
$$

$h(n)$ is a heuristic estimate of $h^{*}(n)$, so $a(n)$ is an estimate of $a *(n)$. While $n \in l, f^{*}(n)=N$,

## Zhanf, Bo

Dept. of Computer tingineerinf.
\& Scierice
Tsinehua University
bei, ijne, Chỉra
$\mathrm{a}^{*}(n)=\frac{f^{*}(n)-N}{2 n}=0$. While $n \notin 1$,
$a^{* \prime}(n)=\frac{f^{*}(n)-N}{2 n}=1-\frac{i}{\pi}$. Given 1 , We have $a^{*}(n)=1$, In a word. for any node the statistic a(n) can ${ }^{\text {bobe }}$ computed from $h(n)$. (If $N$ is urknown, we may replace $a(n)$ with some other statistic. for example, let the number of all nodes beinf expanded be $k(n)$, the number of all nodes being expanded in $T_{0}^{i}$-subtree be $k_{i}(n)$, We rerface $a(n)$ with $b(n)=\frac{k_{i}(n)}{K\{n)}$ as; the statistic of $T_{0}^{i}$-subtree, and so on.)

Hypothesis I: Assume $\{(\mathrm{a}(\mathrm{n})$ is an independent and identical]y distribution random variable. The mean of $a(n)$ in the solution path 1 is $\mu_{0}$. The mean of $a(n)$ off 1 is $\mu_{1}, \mu_{1}>\mu_{*}$. Under this hypothesis, when $h(n)$ of each node is computed usinf, $A^{*}$, an $a(n)$ is obtained. This $\{a(n)\}$ forms a randon sample, usinf testine statistical hypotheses(t,s,h.)(10]111), we exercise the statistjcal inference method (s.i.m.) over 1t. Under a
given sipnificance level of the test, whether a subtree contaln i is decided. If not, the subtree is pruned off. Otherwise, algorithm $A^{*}$ and t.s.h. will be continued until the goal node is found.

## The sampline of statistics in subtree $T$

let. $T$ be a subtree, $a_{\text {, }}$ be the statistic of the root in T. Assume $T$ is expanded by $A^{*}$, and in some stape the corresponding statistics $\left\{a_{1}, a_{2}, \ldots, a_{n} \mid\right.$ have been obtained. We say "observinf. T is continued." It. means expanding node $p$ at which $f(n)$ is minimal among all nodes not being, expanded in $T$. (If there exist several such nodes, choose one which has maximal freneration. If there still exist several nodes, choose any one at your option.) Thus we obtain m successors of $p$ and correspondinf, $a(n)$ 's. let a $f, i$ be the minimal value amone these $a(n)$ 's, then $a_{k+1}$ is referred to a new observed value durinf, the observation of $T$, we say "exercising some t.s.h. over T." It means exercisInf some t.s.h. over the statistics $\left\{a_{n}\right\}$ correspondine to $T$.

### 2.2. Algorithm SA*

Given a testing hypotheses method S. Applying this method to $A^{*}$, He obtain algorithm $\mathrm{SA}^{*}$ I

Step 1: From initial state $S_{0}, m T_{0}$-type subtrees are expanded. A set $U_{i}$ is composed by these subtrees. Let te1. po to Step 2.

Step 2: kxercise the statistical inference over $\mathrm{Jt}_{\mathrm{t}}$.
(1) If $U_{t}$ is an empty set, stop.
(2) If there is only one $T_{i}$-type subtree $T$ in
$U_{t}$, expand the ( $1+1$ )-th reneration nodes in $T$ and obtain $m \mathrm{~T}_{\mathrm{i}+1}$-type subtrees. Merging the $\mathrm{T}_{i=1}$ type subtrees int, $U_{t}$, ofitain $U_{t+1}$. Let $t-t+1$, so to Step 2.
(3) if there is more than one subtree, expand node $p$ at which $f(n)$ is the minjmum amonp all nodes not beine expanded in all subtrees( If there still. exist several nodes, choose any one.)
(3.1) If there exists a roal node amonf the successorm of P , stop.
(3.2) Assume $p$ is in subtree $T^{\prime}$, observina $T^{*}$ and exercisirip the t.s.h. § over it are continued. If the hypothesis is reiected, let $U_{z, f} \leftarrow U_{t}-T^{\prime}, t_{-}$ $t+1$. Fo to Step 2. Otherwise, let $U_{t+1}+U_{t}-T^{\prime+}+{ }^{\prime \prime}$ ( $T^{\prime \prime}$ is a subtree formed by addinf the successor: of $p$ to $\mathrm{T}^{\prime}$ ), $\mathrm{t}-\mathrm{t}+1$, ro to itep 2 .

Proposition 1: Si* 1s superior to A* 4ssume $A^{*}$ and $s^{*}$ both are directed by the same $h(n)$. Hinding an optimal solution path by iAn. every node expanded by . $\mathrm{A}^{*}$ is also expanded by $\mathrm{A}^{*}$.

Proof 1 iA" is an alforithm formed by only adding, an additional pruninge suttrees stafe to $A *$, so the nodes expanded by of* are not more than the nodes expanded by $A^{*}$.

It must be pointed out that the results obtained by i'A have some error prohabijitjes, because of the application of s.i.m. . He'll discuss later on.

SPPT testing hypothesps method in alcordthm SA* (dentted tij $j F^{*} A^{*}$

SPPT (Sequ*ntial Probability Hatio Test) was decribed in many books ( $P, f,[10\}$ ). We use SP!PT as testing hypothesp here. Let $\{a(n)\}$ be $\left\{x_{n}\right\}$, haine an $N\left(\mu, r^{2}\right)$ distribution. Tiven a sipmificanco level ( $\alpha, \beta$ ) and two simple hypothesset $H_{0}: ~ \mu=\mu_{0}$. $H_{1}: \mu=\mu_{1}, \mu_{1} \neq \mu_{a}$.

Let $z \equiv \log \frac{f(x}{f}\left(\frac{x}{x} ; \mu_{1}\right)=\frac{\mu_{1}-\mu_{1}}{\sigma} x+\frac{1}{2} \frac{\mu_{0}^{2}-\mu_{1}^{2}}{\sigma^{2}}$ $S_{n} \xlongequal{\underline{2}} \sum_{i}^{n} Z_{i}=\frac{\mu_{1}-\mu_{\mu}}{\sigma} \sum_{i}^{n} x_{i}+\frac{n}{2} \frac{\mu_{0}^{2}-\mu_{1}^{2}}{\sigma^{2}}$ $A \triangleq \frac{L-A}{\alpha}, B \triangleq-\frac{\alpha}{1-\alpha}, a \triangleq \log A, b \triangleq \log B$.
Where $f(x ; \mu)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(x-\mu)^{2}\right\}$.
The stopping, rules of siphr are as follows:
If $\sum_{i}^{n} x_{i} \geqslant \frac{\sigma a}{\mu_{1}-\mu_{i}}+n \frac{\mu_{1}+\mu_{0}}{2 \sigma}$
Hypothesis $H_{0}$ is rejected.
If $\sum_{i}^{n} x_{i} \leqslant \frac{\rho b}{\mu_{1}-\mu_{0}}+n \frac{\mu_{1}+\mu_{2}}{2 \sigma}$
Hypothesis $H_{0}$ is accepted.
otherwise, observing $x_{n+1}$ is contirued.
Because parameters $\sigma, \mu_{1}$, $\mu_{0}$ are unknown, we usualiy use $S_{n}=\pi \frac{1}{n} \frac{n}{4}\left(x_{i}-\vec{z}\right)^{\prime}$ to estimate $\sigma$, where $\bar{x}=\frac{1}{\eta} \sum_{i}^{n} x_{i}$, Let, a be the mírimum value of $a(n)$ ' $s$ among all k-th peneration nodes whtch a(n)'s have been computed in $G$. Iet the mean of $\left\{a^{*}\right\}$ be the estimate of $\mu_{0}$, and the mean of all $a(n)$ 's, which have been computed in $G$, be $\mu_{1}$.

If in SA* as testine hypotheses $S$, SPRT is exercised over m $T_{i}$-type subtrees, using, a level $\left(\alpha^{i+1}, \frac{\alpha^{i+1}}{m-1}\right), i=0,1, \ldots$ we define this SA* as SPA under level $\left(\alpha, \frac{m^{2}}{m=1}\right)$, denoted by ŚFA* for short.

### 2.3. The Mean Complexity of SPA*

From the approximation of the mean of stoppina variable (sample size) $N$ in SPRT (10), if $N$
has an $N\left(\mu, \sigma^{2}\right)$ distribution, level $=(\alpha, \beta)$ $A=\frac{1-A}{\alpha}, H=\frac{A}{1-2}, B=\frac{0}{n-1}$, we have

$$
E_{\mu_{0}}(N) \approx \frac{\left(\alpha \log _{\log }-\frac{1}{2}+(1-\alpha) \log \frac{A}{1}\left(\mu_{1}-\mu_{0}\right)^{2}\right) \sigma^{2}}{\frac{z \sigma^{2}}{\left(\mu_{1}-\mu_{0}\right.}|\log \alpha|}
$$

$$
E_{\mu_{1}}(N) \approx \frac{\left((1-\beta) \log \frac{1-\beta}{\alpha}+\beta \ell_{0 g} \frac{\beta}{\frac{\beta}{\alpha}}\right) \sigma^{2}}{\frac{1}{2}\left(\mu_{1}-\mu_{0}\right)^{2}} \sim \frac{2 \sigma^{2}}{\left(\mu_{1}-\mu_{0}\right)}|\log \alpha|
$$

Lemma: The mear comploxity (asymptotic) for deciding $m T_{i}-t$ jpe suthtrees in (jFh" $1 s$
$\sim$ mbllof, $\alpha \mid \cdot(1+1)$. where $b=\frac{2 \sigma^{2}}{\left(\mu_{1}-\mu_{q}\right)^{2}}$
Froof: from ifitr we know that decidinf: om $T_{i}=$ type subtrees under level $\left(\alpha^{i+1}, \frac{-x^{i+1}}{m-1}\right)$. , the mean complexity (asymptotic) is nmbllot $\alpha^{i+1}=$ $m b \mid l o r^{*} \alpha l \cdot(i+1)$.

Theorem 1: Lel $\left.\alpha=\min \frac{\alpha_{0}}{1+\alpha_{0}}, \frac{\beta_{0}}{1+\beta_{0}}\right)$. Usimp, SPA*, urder level ( $\alpha, \frac{\alpha}{m-1}$ ) the mean complexity of findine an optimal solution path in $G$ is $\sim \mathrm{CN}^{2}$, where $i=\frac{m b i c_{0} \alpha i}{2}$. The error probebilitles $u f^{\prime}$ fype $1 \quad F_{1} \leqslant \alpha_{0}$. the error probabilities of type II $P_{2} \leqslant \beta_{0}$.

Proot: Jecidinf: m Ti-type sukitrens there are $m-1$ subtrues not contajrinf 1 but one, the to the
 not contalnine l are left, fecaust of $f=x^{i * 1}$, ( $1-\alpha^{i+1}$ ) subtrees contininine J are leri.' Totally $\alpha^{i+1}+\left(1-\alpha^{i+1}\right)=1$ subtree is left. the mearn compiexjty for dectiding onf. Ti-l.ype subtree is
 complexity ol' findinf an opitimal path is
$\sim \sum_{0}^{N+} m b|\log \alpha|(i+1)=m b|\log \alpha| \frac{N(N+1)}{2}$

$$
\sim \frac{m b j \log \alpha 1}{2} N^{2}=C N^{2}
$$

The probatility $P_{1}\left(\nu_{2}\right)$ is ar follows:
Decidin on $T_{0}-1$ ype subtrecs $F_{i}=\alpha$. in reneral rocidine. of $\mathrm{T}_{i}-\mathrm{t}$ ype subtrees $H_{1} \leqslant \alpha^{i+1}$. Totally $P_{1} \leqslant \sum_{i=1}^{N} \alpha^{i}=\alpha \sum_{0}^{N-1} \alpha^{i}=\alpha \frac{1-\alpha^{N}}{i-\alpha} \leqslant \frac{\alpha}{1-\alpha} \leqslant \alpha_{0}$.
inaiofously, $\mathrm{H}_{2} \leqslant \boldsymbol{\beta}_{0}$.
Corollary: Usinf, EPA*, under level ( $\alpha, \frac{\alpha}{m-\zeta}$ ) the maximal sitorafe-space $\leqslant m b|l o g, \alpha| N=C, N$.
froof: beciding $m$ Ti-type subtrees, all information about thesse subtrees is storared at most. That is, ~mbllor a \| N.

Note: Wue to the process of pruning subtrees, the storage-space required by SHA* is not more than $A^{*}$.

## 2.i4. Comparson to recent results

Fearll2) defined an estimate $h(n)$ of $\Phi(n)$-type error and proved that when $\boldsymbol{\Phi}(n)=n$ the complexity of $A^{*}$ is $O\left(e^{N}\right)$. We'll prove that in the same case the complexity of SPA* is $\mathrm{CN}^{2}$.

Theorem 2: Assume $h(n)$ is an admissible estimate, havintr $\Phi(n)=n$ type error. $P\left(\left|h^{*}-h\right|<h^{*}\right)>0$. Then the mean complexity of $\mathrm{SPA}^{*}$ is $\mathrm{CN}^{2}$.

Proof: If $\mu_{1}>\mu_{0}$ is proved (the proof is omitted). according to Theorem 1, we obtatn Theorem 2.

Corollary:
Assume $n(n)$ is an admissible esti-
 $P\left(\left|h^{*}-h\right| \leqslant \Phi^{( }\left(h^{*}\right)\right)>0$, then the mean complexity
of SPA＊directed by $h(n)$ is $C N^{2}$ ．
Notel In SPA＊，$\sigma, \mu_{\mathrm{r}}$ and $\mu_{0}$ are unknown．They are replaced with their estimators，This will cause some error．For elimilating this disadvan－ tage，we may inse t－test as testinp hvootheses $S$ in SA＊．The searching complexity is a littile more than SPA＊．But re may prove that Theorem 1 also holds and the mean complexity is $\sim \mathrm{CN}^{2}$ ．

Theorem ？also holds for $\left\{x_{n}\right\}$ havinf some sorts of distribution except $N\left(\mu, \sigma^{2}\right)$ ．

## 3．AIGORITHM SA＊IN GENERAL GRAPH

Assume $h(n)$ is an admissible estimate，then usinu，$b(n)=\frac{k_{i}(n)}{k(n)}($ see 2．1）as the statistic of $T_{0}^{i}$－subtree（subpraph），and so on，we may obtain alforithm SA＊for a feneral eraph．

4．ALCOHITHM SA＊$^{2}$ IN GAME TREE
We＇ll apply $\mathrm{SA}^{*}$ to rame－searching．A stand－ ard $2 n-l e v e l$ pame tree of derfee $m$ is indicated hy $(n, m, F)$－tree where $F(v)$ isia distribution function of terminal value（the symbols used are the same at；in［3］）．In［1］，（5），（6），（？），it nas been proved that any known alporithm which evalu－ ates a（ $n, m, F)$－tree must evaluate at least $m^{n}$ terminal positions．We＇ll apply SA＊to a（ $N, m, F^{\prime}$ ）－ tree，and conclude that the mean complexity of SA＊in game－searching，is $C, N^{2}$ ．

The Gampline of Statistios in Came－Tree
In a game－tree，the value $f^{*}(n)$ of each node is obtained by searching backward from terminal values（for example，from the standpoint of Max）． Assume that for each node an estimate $f(n)$ of $f(n)$ can be computer，Let statistic $a(n)$ be
$\max \left(f\left(n_{i}\right), i=1,2, \ldots, m\right)$
$a(n) \quad n_{i}$ is the successor of $n, n$ is an even node min $\left(f\left(n_{i}\right), i=1,2, \ldots, m\right)$
$n_{i}$ is the successor of $n, n$ is an add node．
Let $T$ be an $T_{i}-t . y p e$ sublree．The sampling of its statistics is as follows：

Let $a_{o}=f\left(S_{0}\right)$ ，$S_{0}$ is the root of $T$ ．
Expandinf，$S_{0}$ ，Assume $a_{1}=f\left(S_{1}\right)=\max \left(f\left(n_{i}\right)\right), n_{i}, S_{i}$ are the successors of $S_{0}$ ．

Expanding $\dot{U}_{1}$ ，Assume $a_{2}=f\left(S_{2}\right)=\min \left(f\left(n_{i}\right)\right), n_{i}, S_{2}$ are the successors of $S_{1}$ ：

In general，we obtain $\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ ．If $k=2 j$ ，let
$a_{k+1}=f\left(S_{k+1}\right)=\max \left(f\left(n_{i}\right)\right), n_{i}, S_{k+1}$ are successors of $\mathrm{S}_{\boldsymbol{k}}$ ．

If $\mathrm{k}=2 \mathrm{j}+1$ ，let
$\left.a_{k+1}=f\left(S_{k+1}\right)=m n_{1 \leqslant i \leqslant m}\left(n_{i}\right)\right), n_{i}, S_{k+1}$ are successors of $S_{R}$ ． $1 \leqslant i \leqslant m$

Assume the statistic $\{a(n)\}$ satisfies the Hypothesis I，Similar tō tree search we apply SA＊to game－searching，and the following theorem holds．

[^0]Corollaryi The maximal storage－space of SPA＊
In eame－tree searching is $\mathrm{C}_{2} \mathrm{~N}$ ， $\mathrm{C}_{\mathrm{B}} \mathrm{mb} \|(\log \alpha \mid$ ．
Note：The storape－space required by $S S S^{*}$ is at least $m^{n}$（7）．
（The proof of Theorem 1＇is omitted）．

## REFERENCES

［1〕Pearl，J．．＂Heuristic Search Theory：Survey of Recent Results．＂Froceedimss of 7－th INCAl， 1981. p？ $1.554-562$ ．
（2）Pearl，J．，＂Probabilivic Analysis of the comple－ xity of $A^{*} . "$ A．I．．Vol．15，No．3，1980，pp．241－ 254.

〔3〕 Pearl，J．，＂Asymptotic Properties of Minimax Tree and Game～searching Procedures．＂A．I．．Vol．14， No．2，1980，pp．113－138．
（4）Nilsson，N．J．，Principles or artificial Intel－ lifence，Palo Alto，CA：Tioga Fublishinf，Compary， 1980.
［5］Baudet，G．M．，＂On the Hranchins factor of the Alpha－Beta Pruning，Algorithm．＂A．I．，Vol．10，1978， pp．173－199．
（S）Knuth，D．E．and R．W．Moore，＂An Analysis of Alpha－Retá Ptuninf．＂A．I．，Vol．6．1975．pp．293－ 326.

〔 ₹ Stockman，C．C．，＂Is a Minimax Alforithm Beter Than Alpher－beta？＂A．I．，Vol．12，1979，pir．179－196．〔R〕Kanal．I．，and Kumar V．，＂Eranch \＆Bound Formu－ lation for Sequential and Parallel Came Tree jear－ chjn $\boldsymbol{c}$ ：Preliminary Kesults．＂Proceedings of 7－th IJCAI，1081，pp．569－571．
［9］Berliner，H．，＂The B＊Tree Bearch Algorithm： A Rest－first Proof Procedure，＂Reading in Artifi－ cial Intelliferice，edited by R．J．Webber，1981， pp．79－87．
〔10〕 Zacks，S．，The Theory of Sitatistic Inference， John Wiley \＆Sons，Tnc．，New York，1971． （11）Deroot，M．H．，Probability and Statistics， Menlo Park，California， 1975.


[^0]:    Theorem，it In an（ $n, m, F$ ）－game tree，the mean complexity of SPA＊under the level $\left(\alpha, \frac{\alpha}{m-1}\right)$ is $\sim \mathrm{C}_{1} \mathrm{~N}^{2}, \quad \mathrm{C}_{1}=-7 b|\log \alpha| \times 4=2 \mathrm{mb}|\log \alpha|$ ． The $P_{1}\left(P_{2}\right)$ is $\alpha_{0}\left(\beta_{0}\right)$ ．where $\alpha=\min \left(\frac{\alpha}{1+\alpha_{0}}, \frac{\beta_{0}}{1+\alpha_{0}}\right)$ ．

