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A B S T R A C T 

In th is paper, we explore automatic model construct ion 
by analyz ing na tu ra l language documents. The 
extracted model w i l l be ut i l ized by a C A D system. A 
system called h m U , in the course of development, is 
designed to al low knowledge on very complex hardware 
module l i ke L S I or V L S I to be incorporated into i ts 
knowledge base. The acquired knowledge w i l l be 
u t i l i zed for he lp ing human designer understand the 
component f rom var ious levels of abstract ion. The focus 
of th is paper is at tent ioned more to issues on knowledge 
representat ion and model inference than tha t on 
na tu ra l language analysis. H ierarch ica l model is 
employed. In par t icu lar , cause-effect representat ion is 
used to make it clear how actions of each module and 
events are related to each other. A br ie f descript ion is 
given to i l lus t ra te our approach. 

1 . I n t r o d u c t i o n 

One of the d i f f icu l t ies w i t h expert system is 
knowledge acquis i t ion. The fact t ha t most of h u m a n 
knowledge is in tegrated as na tu ra l language 
documents has led us to the development of a system 
which can automat ica l ly acquire knowledge f rom 
ex is t ing documents. In knowledge acquis i t ion f rom 
documents, expressive power of na tu ra l language, in 
par t i cu la r the ab i l i t y of represent ing any complex 
object or s i tuat ion from var ious levels of abstract ion, 
should not be sacrificed but be effectively u t i l i zed by an 
expert system for CAD. The essential problem to be 
solved consists more in model representat ion and 
inference problem than in parsing. For example, the 
resolut ion of anaphoric expression depends more on 
domain specific knowledge than on l ingu is t i ca l l y 
general knowledge. 

A system cal led h m U (hardware manua l 
Understander) is in the course of development, wh ich 
w i l l analyze g iven na tu ra l language specif ication o f L S I 
chips (such as microprocessor and the l i ke) , and wh ich 

w i l l construct a knowledge structure specifying the 
behavior of the chip. The acquired model w i l l be ut i l ized 
by in te l l i gen t symbolic s imulator to give human 
designer explanat ions about the chip. The in te l l i gen t 
symbolic s imulator is also under development [N ish ida 
1983]. 

hmU's ma in components are na tu ra l language 
analyzer and model bui lder. N a t u r a l language 
analyzer ut i l izes domain specific knowledge to resolve 
ambigu i t ies , anaphoras, etc. Accordingly, the model 
bu i lder and the na tu ra l language analyzer 
communicates to each other. The detai ls are described 
in [N ish ida 1982]. The model bu i lder receives in te rna l 
representat ion obtained f rom na tu ra l language 
analysis and bui lds an automaton-based hardare model 
st ructure us ing common sense knowledge about 
hardware, t ime, act ion, events, etc. In wha t fol lows, we 
w i l l describe the model representat ion and model 
bu i l d i ng procedure to more deta i l . 

2 . A M o d e l f o r R e p r e s e n t i n g M u l t i p l e A g e n t 
C o - O p e r a t i n g S i t u a t i o n 

Th is section describes the hardware model 
wh ich we used. The we l l defined hardware domain can 
be modeled as a wor ld where mu l t i p l e agents are 
cooperating each other to a t ta in a common goal. 
Act ions are done in para l le l and are synchronized 
th rough events. Use of h ierarchica l representat ion 
gives h u m a n designer good unders tand ing of 
hardware. For example, a phrase l i ke " * M R E Q is 
asserted" can be given a good exp lanat ion, if a 
statement l i ke " i t indicates tha t address to the memory 
becomes v a l i d " is accompanied. 

Our hardware specif ication model is h ierarch ica l . 
H ierarch ies are l i nked together by indicates re lat ions. 
Each h ierarchy consists of an event model and a set of 
action models. To each hardware module, an act ion 
model is def ined to specify the behavior of the module. 
The not ion of h ierarchy is impor tan t in d ig i ta l c i rcu i t 
design [McDermot t 1978, M i t c h e l l 1981, Stef ik 1982, 
Sakai 1982, Sussman 1980]. In the event model , cause-
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effect representation is used to corelate actions of each 
agent along with the time axis. The notion of cause-
effect relationship has been advocated to be useful in 
understanding cooperating actions and events [Rieger 
1978]. The action model of an agent represents the 
actions taken by the agent when a specified input event 
takes place. This representation is independent of the 
internal structure of the agent, and makes it possible to 
give the abstract level description of any complex 
hardware. 

3. Model Inference Procedure 

The model builder is given some information 
from the natural language analyzer and other 
information from the diagram analyzer (currently 
pictures like time chart are manually encoded into 
symbolic expressions), and it attempts to construct a 
consistent model from inputs. Since the information 
from the natural language analyzer may be vague or not 
specified to ful l details, the model builder has to make 
inference in the hardware domain. Sometimes model 
revision may be needed to correct arbitrary choices that 
are made due to the lack of information. Accordingly, 
the task has much in common with truth maintenance 
system [Doyle 1979]. The model builder mainly makes 
forward inferences using common sense knowledge. In 
this paper, we concentrate on the descriptions on 
hardware behavior and assume other parts of the 
hardware manual such as pin descriptions, have 
already been analyzed and converted into the 
knowledge structure. The below illustrates a part of the 
knowledge: 

The model inference procedure involves the 
fo l lowing types of reasoning: 

(a) Seeking an action wh ich causes a given event: th is 
task w i l l be done us ing action-event def in i t ions. 

(b) Seeking values of case slots wh ich were not f i l l ed by 
the na tu ra l language analyzer: th is task w i l l be done 
us ing def in i t ions for ind iv idua ls . 

(c) L i n k i n g descriptions of each h ierarchy us ing 
indicates l i ks . 

(d) Reasoning about cause-effect re lat ions between 
events: th is reasoning ut i l izes act ion-event def in i t ions. 

(e) M a k i n g vague expressions more accurate: th is task 
is done us ing axioms for event and act ion. Example of 
such axioms can be found in [McDermot t 1982]. 

(f) Revis ing a model if needed: each posit ion where 
a rb i t ra ry acoice was made is marked . Those positions 
are candidates for reconstruct ion when any 
contradict ion takes place. 

(g) V e r i f y i n g const ra in t condi t ion. 

F i g . l i l lus t ra tes how the descript ion: " * M R E Q l ines 
goes low at T l " is incorporated in to the model. As is 
seen f rom the f igure , act ion and event models of each 
h ierarchy are revised so as to be able to give explanat ion 
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to the input . Symbols attached to the f igure indicates 
which inference rule is made. 

4. Conc lus i on 

Current ly , a simpl i f ied version of h m U is in the 
course of development, where the focus is main ly 
attentioned to rather basic issues, i.e., na tura l language 
analysis, discourse analysis, canonical t ransformat ion, 
and reasoning about action, t ime, and event. However, 
the i n i t i a l experiments by hand reveal fundamental 
va l id i ty of our approach. Some of them are i l lustrated 
in the appendix. 
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A p p e n d i x : O v e r v i e w o f the S imp l i f i ed Ve rs i on o f 
h m U 

This appendix i l lustrates an overview of the 
s impl i f ied version of h m U . Usual ly , input text can be 
divided into diagrams and natura l language text 
port ion. The acquisition task consists of diagram 
analysis and natura l language analysis. After each step 
is completed, the results are matched together and 
consistent model w i l l be instant iated. 

D i a g r a m E n c o d i n g 

Diagrams are assumed to be somehow encoded 
into symbolic expressions. The encoding rule is as 
follows: 

(step 1) label ing clock: generating new symbols to 
name each clock pulse. 

at T2 i : sampled(*MREQ) 

In t ime chart arrows are often used to indicate 
causal-effect relationships. Such informat ion should be 
effectively ut i l ized dur ing the process of diagram 
encoding. For example, 

state-1: A T : —>state-2; 

state-2: $ i : asserts(B); 

A n a l y s i s o f D i a g r a m 

From encoded diagrams, simple model inference 
rules can be used to extract model structure. Here, 
automaton description is based on D D L [Duley 1968]. 

(rule 1) supplementing agents: s ignal specification is 
used. For example, 

f rom: Aaf terT l I : asserted(*MREQ), 

infer: Aaf terT l I : asserted(*MREQ) by CPU. 

(rule 2) inference of automaton t ransi t ion arc: 

for example, 

f rom: Aaf terT l I : asserted(*MREQ), 

infer: T l a : $ i : asserts(*MREQ). 
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Natural Language Analysis 

Natural language portion of input text is 
analyzed sentence by sentence. The result of the phrase 
structure analysis is translated into intermediate 
representation. The intermediate representation is 
desingned using the formalism of lexical functional 
[Kaplan 1982]. Then it is further transformed into 
canonical representation. During the process, discourse 
analysis is carried out to solve simple cases of definite 
noun phrase reference and ellipsis. Intermediate 
structure is used as a discourse structure. 

The below illustrates an intermediate 
representation and canonical form for a simple 
sentence: 

Comparing Outputs from Natural Language 
Analyzer and Diagram Analyzer 

Roughly speaking, information from diagrams 
like time charts, tells a lot about the described 
hardware. So our strategy is first to construct a model 
based on the information from diagram and then to 
check it against natural language information. Figure 
A- l illustrate this process for a version of sentence (1): 

This same edge is used by the CPU to turn off the 
*RD and *MREQ signal. ... (1) 
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Abstract; Prolog is presented in a r igourous way, 
through 10 eas i l y understandable f i gu res . I t s 
theore t i ca l model is completly rewrought. Af ter 
int roducing i n f i n i t e t rees and i n e q u a l i t i e s , t h i s 
paper puts f o r t h the minimal set of concepts 
necessary to give Prolog an autonomous existence, 
independent of lengthy considerat ions about f i r s t 
order log ic and inference ru les . Mystery is 
sac r i f i ced in favor of c l a r i t y . 



486 A. Colmerauer 

Ar t i f i c i a l Intelligence interacts with many f ields 
including psychology, l inguist ics, history, 
geology, biology, medical science . . . These 
sciences are complex, and special tools are needed 
to represent and process the knowledge they deal 
with. Furthermore, these tools should not 
introduce new problems, inherent to computer 
science. Traditionally, the science of knowledge 
has been mathematical logic. Therefore it was 
reasonable to turn to logic for help in developing 
a tool for A r t i f i c i a l Intelligence: that was how 
Prolog was born. 

Prolog, developed in 1972 by A.Colmerauer and 
P.Roussel, was at f i r s t a theorem prover, based on 
A.Robinson's resolution principle (1965) with 
strong restr ict ions to narrow the search space. 
Credit is given to R.Kowalski and M.van Emden for 
having pointed out these restrict ions as 
equivalent to the use of clauses having at least 
one positive l i te ra l (Horn clauses), and for 
having proposed the f i r s t theoretical model of 
what is computed by Prolog: a minimal Herbrand 
interpretation. 

However, Prolog's close links with Logic proved 
sometimes to be inhibi t ing vis-a-vis i t s 
implementation. It was necessary to reformulate 
the theory to take into account implementation 
constraints: this new theory is unencumbered by 
distinctions necessary only in logic, and is 
enriched by concepts indispensable for programming 
purposes (such as inequalit ies). We can say that, 
after a careful implementation, a new theoretical 
model of Prolog emerged and it is this new model 
that we present here in 10 commented figures. 

The reader interested in further readings on this 
subject is referred to the following: 

On automatic theorem proving and logic: 

ROBINSON J.A. (1979). "Logic: Form and Function", 
Edinburgh University Press and Elsevier North 
Holland. 

On the links between logic and Prolog: 

KOWALSKI R.A. (1979). "Logic For Problem Solving", 
A r t i f i c i a l Intelligence series, (Ed- Nilsson, 
N.J.), North Holland. 

On the genesis of Prolog: 

COLMERAUER A., KANOUI H., PASERO R. et ROUSSEL Ph. 
(1973), "Un systeme de communication homme-machine 
en frangais", Research Report, Groupe Intelligence 
A r t i f i c i e l l e , Faculte des Sciences de Luminy, 
Marseille. 

ROUSSEL Ph. (1975). "Prolog, Manuel de Reference 
et d'Utilisation, Groupe Intelligence 
A r t i f i c i e l l e , Faculte des Sciences de Luminy, 
Marseille. 

A Prolog system, based on the ideas developed 
here, and implemented on several computers (Apple 
I I , Vax/Vms, e tc . ) , is described in three Internal 
Reports of the Groupe I n t e l l i g e n c e A r t i f i c i e l l e , 
Facul te des Sciences de Luminy, Marsei l les 

COLMERAUER A. (1982). "Prolog I I , Reference Manual 
and Theoretical Model". 

VAN CANEGHEM M. (1982). "Prolog I I , User's 
Manual". 

KANOUI H. (1982). "Prolog I I , Manual of Examples. 

1. TREES 

From an abstract point of view, one may say that 
the knowledge of an intel l igent being on a given 
subject, is the set of facts that he or she can 
generate on the subject. Therefore, knowledge can 
be viewed as a set of facts, specified by a set of 
rules. Each of these facts can be represented by a 
declarative sentence. In our case we represent a 
fact by a tree, drawn upside down, as the one 
shown in Fig la. Each leaf and each node is 
labeled with an "atom" of information: this atom 
can be a word, a group of words, a number, or a 
special character. Only the structure of the tree 
is relevant. Therefore, Figs la and la ' are 
equivalent. Trees in Figs la, lb and lc are 
examples of facts in three different f ie lds: 
arithmetic, (s ty l is t ic) permutations, and meal 
planning. Facts are always trees, but not a l l 
trees are facts: obviously the trees in Figs Id 
and le are not facts in arithmetic, even if tree 
in Fig Id is a sub-tree of the fact in Fig la. 

Trees were purposely chosen as data structures: 
they are capable of expressing complex information 
and, at the same time, simple enough to be handled 
algebraically, and by a computer. 

2. TERMS 

Formulas are used to represent tree patterns. 
These formulas called "terms", consist of atoms of 
information, variables, parentheses and commas. 
Recall that an atom of information is either a 
group of words, a number, or a special character. 
In the le f t column of Fig 2a the syntactic 
structure of a term is defined; this is a 
recursive def ini t ion where complex terms are 
defined from simpler terms; the simplest terms are 
variables or atoms of information. Examples of 
terms can be found in the le f t part of Figs 2b and 
2c. 

Je remercie Jacques Cohen de m'avoir aide a 
rediger cet ar t ic le en anglais. 
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Variables occurr ing in terms represent unknown 
t rees . Therefore, the t ree expressed by a term 
w i l l depend upon the t rees assigned to the 
va r iab les . Such an assignment "X", ca l l ed a 
" t ree-assignment", is j us t a set of pa i rs 
" x i : = a i " , ' 'ai" being the t ree assigned to the 
var iab le "x1". The r i g h t column of Fig 2a gives 
the t ree "a" represented by the term " t " a f te r the 
app l i ca t ion of tree-assignment "X". I t is assumed 
that i f " t " contains no va r i ab le , an empty 
tree-assignment can be app l ied . 

3. CONSTRAINTS 

Prolog is a language which "computes" on t rees 
" a j " represented by var iab les ' ' x i " . This 
computation is done by accumulating cons t ra in ts 
tha t f i n a l t rees must s a t i s f y . These cons t ra in ts 
l i m i t the values var iab les can take, tha t is the. 
tree-assignment o f var iab les " x i " by t rees " a i " . 
As shown in Fig 3a, a cons t ra in t MC" consis ts of a 
set of elementary cons t r a i n t s , each of them to be 
s a t i s f i e d . An elementary cons t ra in t is e i t he r a 

Figs 2b and 2c depict two examples of 
tree-assignments. Example 2b shows that it is 
possib le to f i n d in the assignment "X", var iab les 
which do not occur in the term, but the contrary 
is not poss ib le . In example 2c, the term contains 
no va r i ab le ; t h i s means tha t the corresponding 
t ree does not depend on the assignment. The las t 
example shows a systematic way of coding a f i n i t e 
t ree by a term without var iab les . 

pa i r o f terms " < S J , S J ' > " which w i l l represent 
equal t r e e s , or a pa i r of terms " < tk , t |< ' ) " which 
w i l l represent unequal t r ees . Fig 3a i l l u s t r a t e s 
the general cond i t ion under which a 
tree-assignment "X" s a t i s f i e s a cons t ra in t "C". 
"X" is a lso said to be a so lu t i on of "C". Fig 3b 
shows an example of a cons t ra in t "C I " s a t i s f i a b l e 
by the tree-assignment " X I " . In Fig 3c there are 
three cons t ra in ts which cannot be s a t i s f i e d by any 
t ree-ass i gnment. 
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4. INFINITE TREES 

As surpr is ing as it may be, i t is also poss ib le to 
handle i n - f i n i t e t rees . Such a t ree is shown in Fig 
4a: it represents an endless path along the 
c ross - l i ke -figure shown in Fig 4b. I t is poss ib le 
to present t h i s t ree by the diagram wi th a loop in 
4c, obtained by merging a l l the nodes from which 
isomorphic subtrees a r i s e , tha t i s , -from which 
equal subtrees a r i se . If we omit to merge a -few 
nodes, we obtain the d i f f e r e n t diagrams in 4c? and 
4 c ' ' which s t i l l represent the same t r e e . That Fig 
4c is a f i n i t e diagram means tha t the i n i t i a l t ree 
in 4a contains a f i n i t e set of con f igu ra t ions o r , 
more p rec i se l y , that the set of i t s subtrees is 
f i n i t e : t h i s i s the d e f i n i t i o n o f a " r a t i o n a l " 
t r e e . Of course, a l l f i n i t e t rees are r a t i o n a l . 
Although f i n i t e t rees can be defined by simple 
terms wi thout var iab les , i n f i n i t e r a t i ona l t rees 
can only be def ined by the cons t ra in ts they must 
s a t i s f y . Taking i n t o account successively a l l 
s ides " 1 , 2 , . . . , 1 2 " o f the c r o s s - l i k e f i g u r e in 4b, 
we const ruc t the cons t ra in t 4d which is s a t i s f i e d 
only in case of the assignment of "x" by the t ree 
in F ig 4a. From the diagram shown in Fig 4c, we 
can const ruc t a simpler cons t ra in t 4 d ' , having the 
same p roper ty . 

For the cur ious reader we provide in Fig 4e an 
example of a non- ra t iona l i n f i n i t e t r e e . A f te r 

merging a l l poss ib le nodes t h i s t ree y ie lds the 
i n f i n i t e diagram in Fig 4 e ' . Note that i t would be 
necessary to have a c o n s t r a i n t , made from an 
i n f i n i t y of elementary cons t r a i n t s , to completely 
describe t h i s type of t r e e . 
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6. FORMAL MEANING OF PR0L06 PROGRAMS 

F i g 5 i n f o r m a l l y d e s c r i b e d a P r o l o g p r o g r a m . We 
now f o r m a l i z e i t s mean ing. For most l a n g u a g e s , t h e 
meaning o f a program i s g i v e n by t h e s u c c e s s i o n o f 
e l e m e n t a r y o p e r a t i o n s wh i ch t h e computer i s 
supposed t o p e r f o r m . T h i s i s n o t t r u e o f P r o l o g 
w h i c h , a s p r e s e n t e d , i s a f o r m a l i s m c a p a b l e o f 
r e p r e s e n t i n g knowledge and t o e x p r e s s q u e s t i o n s 
abou t i t , i n d e p e n d e n t l y o f any compu te r . The 
c o m p u t e r ' s s i m p l y computes t h e answers t o t h e s e 
q u e s t i o n s . 

I n F i g 6 w e d e r i v e i n two s t e p s t h e s e t o f f a c t s 
( a c i r c l e ) s p e c i f i e d b y a P r o l o g p rogram f r o m t h e 
o r i g i n a l p rog ram ( a b l o c k ) . T h i s s e t r e p r e s e n t s 
t h e p o t e n t i a l knowledge c o n t a i n e d i n t h e p r o g r a m . 
Each o f t h e f a c t s i s a t r e e , t a k e n f r o m a l l 

p o s s i b l e t r e e s . The f i r s t s t e p i s r e q u i r e d s i n c e 
t h e r u l e s o f a P r o l o g p rogram a r e , a c t u a l l y , 
p a t t e r n o f r u l e s , and s i n c e i t i s f i r s t n e c e s s a r y 
t o g e n e r a t e p r e c i s e r u l e s d e a l i n g w i t h t r e e s . The 
second s t e p can be p e r f o r m e d i n two ways: e i t h e r 
b y c o n s i d e r i n g t h e r u l e s a s r e w r i t i n g r u l e s 
( d e f i n i t i o n I ) , o r b y c o n s i d e r i n g them a s l o g i c a l 
i m p l i c a t i o n s ( d e f i n i t i o n I I ) . 

F i g 6 a l s o c a r a c t e r i z e s t h e s e t o f f a c t s wh i ch 
y i e l d t h e answer t o a P r o l o g q u e s t i o n . A q u e s t i o n 
i s a s i n g l e t e r m " t " wh i ch s t a t i n g : 

what a r e t h e f a c t s o f t h e f o r m " t " ? 
The s e t o f v a l i d answers i s t h e i n t e r s e c t i o n o f 
t h e s e t o f s p e c i f i e d f a c t s w i t h t h e s u b - s e t o f 
t r e e s , o b t a i n e d b y a s s i g n i n g a l l c o n c e i v a b l e t r e e s 
t o t h e v a r i a b l e s o f t e r m " t M . 
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7. THE SEARCH SPACE 

Fig 6 i l l u s t r a t e d the double d e f i n i t i o n of the 
meaning of a Prolog program. Althougt both 
d e f i n i t i o n s are conceptual ly s a t i s f y i n g , they 
cannot be d i r e c t l y used to compute the answer to a 
given quest ion. 

However, t h i s computation can be performed on the 
l i g h t of d e f i n i t i o n I by r e w r i t i n g t rees pat terns 
instead of t r ees , wi th the use of a f i n i t e set of 
ru les pat te rns instead of an i n f i n i t e set of 
r u l e s . A t r ee pat tern is a " te rm-const ra in t " p a i r , 
the cons t ra in t l i m i t i n g the represented t rees ; a 
r u l e pa t te rn i s , in f a c t , j us t a Prolog r u l e . 

In Fig 7b the question on program 7a, s ta tes : 
under which cons t ra in ts does "meal(radishes,m,d)" 
represent on ly fac ts? To compute these cons t ra in ts 
the computer inspects the tree-shaped search space 
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decreases by one u n i t . I t is possib le to reverse 
the time progression by crossing one of the two 
one-way br idges which l ink one c i r c l e to the 
other . 

The execution of a Prolog program cons is ts of 
answering a question represented by a term. A l l 
answers to be computed are cons t ra in ts by which 
the term represents spec i f i ed f a c t s . We s t a r t w i th 
the pa i r " C 0 , T 0 ) " , "C0'' being empty and the 
sequence of terms "T 0 " being reduced to the term 
that cons t i t u tes the quest ion. Each tu rn around 
the outward c i r c l e increases the current 
cons t ra in t "Ci" and transforms the sequence " T 1 ' . 
Note tha t i f the r u l e already contains a 
cons t ra in t "B " , t h i s cons t ra in t is added to the 
current set of elementary cons t ra i n t s . The process 
stops as soon as a n o n - s a t i s f i a b l e cons t ra in t is 
generated, or the sequence " T i " becomes empty: in 
these cases, we backtrack to the "pas t " , to t r y 
other r u l e s . On the f l y , i f " C i " i s s a t i s f i a b l e , 
an answer is p r i n t e d . 

In f a c t , the above process corresponds to sweeping 
the tree-shaped search space of Fig 7, from top to 
bottom and from l e f t t o r i g h t , the t ime " i " being 
the leve l of the v i s i t e d node. 

The two programs in sect ions 9 and 10 provide 
add i t i ona l examples of more i n t r i c a t e Prolog 
programs. 
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9. STYLISTIC PERMUTATIONS 

In Mo l ie re 's p lay, "Le Bourgeois Gentilhomme", a 
bourgeois who wants to act as a lo rd (gentilhomme) 
compliments a noble woman (marquise): 

"Beaut i fu l marquise, your beau t i fu l 
eyes make me d ie of l ove . " 

Let us construct a l l of the compliment's possible 
v a r i a t i o n s , as the bourgeois t r i e s to do in the 
p lay . The sentence is f i r s t decomposed i n t o f i v e 
pa r t s , which are given in Fig 9a, each part made 
up from one, or a few unseparable words. S ta r t ing 
from an i n i t i a l sequence wi th these f i v e 
components we produce a l l var ian ts by generating 
a l l the permutations of the sequence. 

We f i r s t have to choose a way of coding a sequence 
by a t ree- Since it is necessary to have a 
nota t ion fo r the empty sequence, the sequence 
"3 ,7 /2 " is represented by the t ree in Fig 9b. 

Also, since each node is labeled wi th a s ing le 
character, a dot , readab l i t y is improved by using 
i n f i x no ta t i on : " u . v " , instead o f p re f i x no ta t i on : 
' ' ( u , v ) " . To fu r the r s i m p l i f y , we omit parentheses 
whenever l e f t - r i g h t associat ion is imp l ied . 

To assert tha t sequence "y" is a permutation of 
sequence "x" we w r i t e "permuta t ion(x ,y ) " . The 
f i r s t r u l e of Fig 9c s ta tes tha t the sequence of 
length zero, tha t is the empty sequence, has only 
one permutat ion, i t s e l f . The second ru le spec i f ies 
t ha t , in order to permute a non-empty sequence, 
that is a sequence of length "n+1" , we remove i t s 
f i r s t element "e" and obta in a sequence "x" of 
length " n " ; we then compute any permutation "y" of 
t h i s sequence "x" and i nse r t the element "e" in 
any pos i t i on of t h i s sequence and produce the 
desired sequence " z " . To inse r t an element "e" in 
a sequence "x" and obtain a sequence "y", we 
introduce the term " i n s e r t i o n ( e , x , y ) " . We e i ther 
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i n s e r t " e " be-fore " x " ( t h i r d r u l e o f F i g 9 c ) , o r 
we i n s e r t " e " i n t h e sequence which has i t s - f i r s t 
e lement removed ( - four th r u l e o f F i g 9 c ) . These 
f ou r r u l e s o f F i g 9 c c o n s t i t u t e t h e e n t i r e 
p e r m u t a t i o n p rogram. 

F i g 9d p r e s e n t s t h e c o m p u t e r ' s answers to two 
q u e s t i o n s : 

what are a l l p e r m u t a t i o n s " x " o-f t h e 
sequence " 1 , 2 , 3 " ? 

and 
what are t h e va l ues of t h e v a r i a b l e s 
" a " , " b " , " c " and " d " s o t h a t " 2 , 4 , c , d " 
i s a p e r m u t a t i o n o f " 3 , a , l , b " ? 

F i n a l l y in F i g 9e, we ask t h e q u e s t i o n p r o d u c i n g 
t h e 120 s t y l i s t i c v a r i a n t s t h a t t h e " b o u r g e o i s 
gent i lhomme" might have s a i d ' 

10. SEND MORE MONEY 

The purpose o f t h i s example i s to s o l v e a 
c l a s s i c a l c r y p t a r i t h m e t i c p u z z l e : a s s i g n 8 
d i f f e r e n t d i g i t s t o t h e 8 l e t t e r s 
" S , E , N , D , M , 0 , R , Y " , such t h a t t h e sum 
"SEND+M0RE=M0NEY" becomes v a l i d . To do so , we 
i n t r o d u c e i n F i g 10a? t h e f o u r c a r r y - o v e r s " r l " , 
" r 2 " , " r 3 " and " r 4 " which can be n u l l and which 

have to be added to each column of t h e sum. 

The program c o n s i s t s o f t h e t h r e e p a r t s shown in 
F i g s 10b, 10c and lOd. In F i g lOd, t h e t a b l e of 
sums up to 20 is programmed: any e lemen ta ry schoo l 
s t u d e n t knows t h i s t a b l e by h e a r t but t h e machine 
has t o compute i t over and over aga in s i n c e i t 
o n l y knows how to add " 1 " to a number. We use 
" p l u s ( x , y , z ) " to mean " x + y = z " . Each number, i s 
r e p r e s e n t e d by two d i g i t s , w i t h a do t between them 
(we use i n f i x n o t a t i o n as in F i g 9 ) . F i g 10c 
p r e s e n t s t h e d e f i n i t i o n o f a sequence w i t h o u t 
r e p e t i t i o n (no te t h a t t h e l a s t r u l e o f F i g 10c 
c o n t a i n s a non-empty c o n s t r a i n t ) . I n F i g 10b, i t 
i s s t a t e d t h a t t o compute a s o l u t i o n i t i s 
necessary t o a s s i g n d i s t i n c t v a l ues t o t h e l e t t e r s 
" S , E , N , D , M , 0 , R , Y " , and t h a t , in each column o f t h e 
sum, a p r o p e r t y c a l l e d " a d m i s s i b l e " , has to be 
s a t i s f i e d between t h e c a r r y - o v e r , t h e t h r e e 
l e t t e r s o f t h e column and t h e p r e c e d i n g 
c a r r y - o v e r . O f c o u r s e , t h i s p r o p e r t y " a d m i s s i b l e " 
i s d e f i n e d u s i n g t h e p r o p e r t y " p l u s " and t h e 
p r o p e r t y " p l u s - o n e " . S ince t h e numbers "SEND", 
"MORE", and "MONEY" shou ld no t beg in w i t h t h e 
d i g i t 0 , a n i n e q u a l i t y c o n s t r a i n t i s added t o t h e 
f i r s t r u l e o f F i g 10b. In F i g 10e , we c h a l l e n g e 
t h e computer t o p r o v i d e u s w i t h t h e t h r e e mystery 
numbers. 
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