
Prov i d i ng Help and Adv i ce in Task Or ien ted Systems 
T i m o t h y \V. F i n i n 

Department of Computer and Information Science 
The Moore School 

University of Pennsylvania 
Philadelphia, PA 19101 I'SA 

ABSTRACT 
This paper describes current work at the University of 

Pennsylvania centered around providing intelligent help r.:id advice to 
users of interactive task oriented systems. This work focuses on three 
genera! themes: (1) Help systems should be active rntla-r t!:an 
passive; (J) help systems should coniain explicit models of the user, 
the ta-k and the system utility being u-ed and (3) the help system 
shoulJ engage in an interactive dialogue with the user in order to 
identify the information he really needs. An experimental Uv\\, 
system, WIZARD, has been implemented for the V AX/ VMS' 
operating system to explore some of these issues. 

1 . I n t r o d u c t i o n 
The state of the art in "help" systems has not changed much in the 

last dee .vie (or two'). Current help systems typically fall into one of 
three general categories: key word systems, hierarchical key word 
systems and network systems, (described more fully in [Finin 8'J]). 
Present approachs to providing help to inexperienced or infrequent 
users fails for two important reasons. First, current help systems 
have no real understanding of who they are trying to help (eg what 
a partirular user does and does not know, what goals users in general 
are likely to have), the topic they are providing information about, or 
the information they can provide Second, current help systems are 
not interactive. The process of successfully requesting and getting 
the information the user needs is one in which both the system and 
the user should be active agents. At any point the party should be 
able to take the initiative. 

As an example of a kind of help that current technology can not 
provide, consider the problem of the user who doesn't know he needs 
help. It is quite common for a complex system such as a text editor 
or operating system to be designed so that a new user can learn a few 
basic commands which are sufficient to accomplish most tasks 
Additional commands which greatly extend the convenience and 
practical power of the system are provided for the user to "grow 
into". It is common, however, for some users to become trapped by 
the simple complete set of basic commands and never progress to 
learning the full power of the system. 

A human advisor, watching such a user, might notice that he is not 
making full use of the system and volunteer advice about using more 
advanced commands. For example, if you see an inexperienced user 
issuing the following commands to your operating system: 

DELETE PARSE PAS.l 
DELETE PARSE.PAS.2 
DELETE PARSE.PAS.3 

and leaving the file PARSE.PAS.4, you might offer the following 
advice: 

It looks like you're trying to delete all of the old 
versions of the f i le PARSE.PAS. You can do this 
directly with the FURGE command. For example, you 
could have said: 

PURGE PARSE.PAS 
and it would have had the same effect. 

An anoint- sample of the shorlcommings of run cut systems i» 
lhat somcuiii i..a,. know he needs help but not know how to ask for 
it Consider ihc plight of a new user on a UNIX system (circa l°7o) 
l ies created hi> first file and would like to have it printed on his 
terminal. Having had some experience with other operating systems, 
he make* Mime reasonable giic .--s :it the command name: p r i n t , 
type, l i s t , d i sp lay , and show None of these work ?o he derides to 
use i he I'nix heip system to find out what the appropriate comma-.d 
name is. Again, he tries some familiar (and some unfamiliar) names: 
help, i n f o , ?, show, teach, l e a r n , describe, apropos, w h a t , 
please, etc. lie will have to experiment for a long time before he 
discovers the correct way to get information on the command to 
print a file on the terminal: m a n cat 

2. A Know ledge Based A p p r o a c h to Ke lp 
Systems 

The ultimate success of an intelligent help system will depend on 
the depth of its understanding of the task domain, the system it 
provides information about, and the user's knowledge of the system. 
Some earlier work has been done on representing task domains 
(ICienesereth 78] |Ball 80]). representing iinplimentation (|Brarhrnan 
78], [Shrager Hi]) and on representing a user's model of a formal 
system ([Burton 78], |Cioldstein 7'J]). We are attempting to combine 
these three sources of knowledge into a single, unified knowledge 
base. We have chosen to u-e the knowledge representation language 
KL-ONK [Brachman 1978a, PJ78b] as an implementation tool in 
investigating intelligent help systems. 

We view the process of the user asking for help and receiving the 
information he needs as a complex, interactive process. Both the 
help system and the user need to play an active role. Each must be 
able to take the initiative and do some action toward achieving the 
ultimate goal - the user's receiving the information he needs In 
particular, we see this process as having at least six identifiable steps, 
given in the following list For each of the steps we indicate some of 
the strategies that can be used by the user and the system to satisfy 
it. 

1. Does the user need he lp? Both the user and the 
system must know that the user needs help. The user can 
discover this on his own and communicate it to the 
system by "pressing the help button". The system might 
discover it by observing that the user is encountering 
unexpected errors, by noting the user using a "catalogued 
bug", or by noting an unexpected inactivity by the user. 

2. Wha t i n f o r m a t i o n does the user need? Both the 
system and the user need to establish an initial 
description of the information that is needed. The user 
could try to establish this by exploring the information 
that is available on the system in a top-down manner by 
asking for very general help and then refining the 
question. The system could use its model of the user and 
of the current context he is in to make an educated guess 
as to what he is most likely to need to know. Another 
strategy that the system could use is to provide the user 
with a menu, or a system of menus which enumerate all 



T. Finin 177 

the relevant topics. 

3. Wha t i n f o r m a t i o n c a n the s y s t e m -provide? The 
user and the system need Uwihave some model describing 
the information that the help .system can deliver. The 
user could discover this himself if the help system 
provided a "mcta-help" facility tint, could provide 
information on the help system itself. The system could 
try to inform the user about the range of information it 
could provide by presenting summaries of the available 
help or by enumerating only what it estimates to be the 
relevant topics. 

J W h i c h o f f e r i n g s m a t c h the needs? Once we have a 
description of the information the user needs and 
descriptions of the information that the system can 
provide, we need to identify the best matches In general 
there will not be a one-to-one match. The user can use his 
own facilities to compare the descriptions or the system 
could use some sort of description-matching process to 
suggest matches. 

5. H o w does one ask f o r a p a r t i c u l a r p ice- of 
i n f o r m a t i o n ? Once the user has derided what 
information he needs and which of the offered 
information matches his ne;d, he has to know how to 
specify that to the help system. A wide range of modes 
are possible which allow the user to d< scribe the 
information he v\ -nts: topic names, key words, key words 
with qualifiers, simple natural language-like phrases and 
unrestricted natural language. The system, on the other 
hand, could take the initiative at this step by presenting a 
menu of likely choices or by selecting the most likely 
candidate ;md 'imply presenting it to the user 

(> Docs the user u n d e r s t a n d the he lp? Once the user 
receives the information he has to understand it. It 
should be the systems goal to tailor, when possible, the 
information it presents the user to that user's level of 
expertise and previous experience The system should be 
actively trying to verify that the user has correctly 
understood the information he was given. The user should 
be able to ask for clarification or examples. The system 
might be prepared to offer background information (eg. 
definitions of terms) and alternative presentation of the 
same information 

3. WIZARD 
WIZARD is an experimental Help system whose domain is a subset 

of the VAX/VMS operating system ([Shrager 1081], [Shrager and 
Finin, 1982]). It attempts to provide inexperienced or infrequent, 
users with a certain kind of advice to help them learn to use the 
operating system efficiently. 

In developing WIZARD we attempted to focus on the problem of 
recognizing when the user required help and volunteering advice. 
Our approach is to recognizes correct yet inefficient command 
sequences and help the beginner become more proficient by indicating 
how these tasks may be done more efficiently. 

minimize the users work (e.g., typing). Consider: 
SHUNT PROCESS.MEM 
SHUNT MEETING.MEM 
etc a 

rather than 
SHUNT *.MEM 

On another dimension, we measure inefficiency in terms of system 
resources. The system typically provides special functions which 
perform operations much more sparingly than more general means 
would permit Contrast: 

SCOPY NOTES.* OLDNOTES* 
SDELETE NOTES.*.* 

w i t h 

SKENAME NOTES* OLDNOTES.' 

WIZARD recognizes such "less efficient" sequences and constructs 
help messages that provide either immediate advice or a pointer to a 
manual or online HELP entry In (lie following example, WIZARD'S 
advice is shown indented: 

SCOPY TESTE TEST2. 
SHELETE T E S T E * 

If you are trying to change the name of t in 
f i l t TEST I. to TESTti. you could hart done 
tins mart directly with the RUN A M i l 
comma?) <!. (.g. 

$ R E N A M E TEST I. TEST2. 
Typt H E l n R E N A M E for more information 
on the R E N A M E command. 

In our current WIZARD implementation we attempt to provide ;i 
nmi-interriipt ive interface through the use of multiple windows. 
WIZARD'* comments are presented in a special pop-up advice 
w i n d o w which the user is f rc to change the size of. eliminate or 
simply ignore. 

The difficulty of WIZARD'S task is, of course, to recognize when 
some sequence of commands constitutes a plan that a person is using 
to achieve a goal We have approached this problem by constructing 
a catalog of "bad plans" which novice users often use to achieve 
(ommon goals The problem thus reduces to matching command 
sequences to descriptions of generic plans from the catalogue. In this 
application, the matching process is complicated by the following 
issues. 

• N o n - c o n t i g u i t y - The individual commands which 
make up a sequence might be spread out over a session. 
Each of the intervening commands may or may not affect 
the goal which the overall sequence is meant to achieve. 

• N o n - l i n e a r i t y - A single event may play a part in 
several plans. 

• A m b i g u i t y - The mappings from sequences of events to 
plans and from plans to goals are both many to many. A 
given sequence may instantiate several plans and a 
certain plan can be instantiated with a number of 
sequences. Similarly, a plan might be used to satisfy 
several goals and a particular goal can be realized by 
several plans. 

There are several dimensions to inefficiency in operating system 
interactions: operating systems provide many features (such as wild 
cards in file names, lists of verb targets, etc) which are meant to 

> E x t e n s i o n a l K n o w l e d g e - In general we may need to 
have detailed knowledge of the user's environment since a 
given sequence may have side effects or use information 



178 T. Finin 

not directly expressed in the syntax of the commands. In 
order to recognize which of several possible goals is being 
attempted one may. for example, have to expand 
"wildcard" patterned filenames and select n.mes from the 
current directory which are referred to by the command 
at hand 

5. Acknowledgements 
This work is partially supported by the National Sei< 

Foundation under grant number IST8I-12139. Jeff Shr: 
collaborated on much of this research and is responsible for 
current WIZARD implementation. 

The goal recognition process is driven by an expectation-based 
parser [Ricsbeck and SehankJ which uses a knowledge base 
represented in a network based representation language based on KE-
OXE This knowledge base represents many of the concepts for 
objects and processes which undcrly the task domain, generic and 
specific commands that the system provides, and the actual history 
of the interaction between the user and the task system Thus, the 
mode I of the task and of the system have been merged by having a 
single taxonomy which contains both generic task concepts (e.g. 
commands which create files), generic system commands (eg COPY) 
and individual instantiations of commands issued by a particular user 
(eg. the COPY command that user T IM issued at 3:02pm on May 
3ed) The only information that WIZARD keeps about an individual 
user is which commands he has been observed using and which pieces 
of advice he has already been given. 

When the user issues a operatin system command, individual 
concepts representing the command are added to the knowledge base 
If this event matches the initial event in a sequence of a \ Ian, a 
demon is created to monitor the knowledge base for the instantiation 
of a concept matching the next event in the plan s sequence If a 
concept matching that event is subsequently instantiated, then the 
next event in the sequence is monitored for When all of the events in 
the sequence have occured, the plan is checked to ensure that it 
satisfies any local and global constraints placed on it (eg what kind 
of intervening events, if any, can occur). 

If all of the constraints are satisfied, then WIZARD takes the goal 
associated with that plan as the users goal.1 WIZARD'S advice is 
generated from the advice template associated with with the plan 
The advice template may contain references to individual objects 
(eg file names used as command arguments) in the events matching 
the plan sequence. Before offering the advice, WIZARD checks to see 
if this user has already been shown it. 

4. Conclusions 
The WIZARD Help system has addressed only ihe problem of 

recognizing certain situations in which the user may need help or 
advice. Our current work is directed toward developing better 
approaches to modeling the individual user (i.e. his interests, level of 
expertise, etc.), the generic user (i.e. his a priori goals, his planning 
stategies, etc) and toward making the interaction between the user 
and help system more of a dialog. 

In particular, we have been working on recognizing and responding 
to a user's misunderstandings |Schuster 83], using a model of the user 
as a basis for customizing the help offered [Schuster 83] and various 
spreading activation techniques for identifying relevant help 
information from a set of weighted keywords |Howe 83], 

6. References 
1 Hall, E , and Phil Hayes, "Representation of Task-Specific 

Knowledge in a Gracefully Interacting User Interface", in 
Proc AAA1. 1980. 

2. Brachrnan, R.. A Structural Paradigm for Representing 
Knowledge, BBN Report no. 3006. 1978. 

3 Brachman, R., E Ciccarclli, N. Grecnfeld and M. Ynnkr, 
"KLONE Reference Manual". BBN report no. .VS18, 1978. 

•I Burton, R and .1 Brown, "An investigation of Computer 
Coaching for Informal Learning Activities", BBN Report 
3911. 1978. 

6. Kinin, T.. "Help and Advice in Task Oriented Systems", 
Report MS-CIS-1982-22, Computer and Info, Science. 
U. of Penn 1982. 

b Genesereth. M , "Automated Consultation for Complex 
Computer Systems", Ph.D. Thesis, Urpartment of 
Computer Science, Harvard University, 1978 

7 Genescj.-th. M , "The Role of Plans in Automated 
Consultation". Proc 1.1C M-77, 1977. 

8. Howe, A., "HOW? A Customizable, Associative Network 
Based Help fac i l i ty" . Report MS-OIS-1983-1 1, Computer 
and Info. Science. U of Perm. I983. 

9 Goldstein, I.. "1 he Computer as Coach. An Athletic 
Paradigm for Intellectual Education -, AIM 389, M I T . 
1979 

10 Riesbeck. C and R. Schank, Comprehension by 
Computer: Expectation Based Analysis of Sentences in 
( ontext, Yale University CS report no. 81. 

11 Sch;. k, R and R Abelson, Scripts, Plans. Goals and 
Understanding, Lawerence Erbaum Press, Hillsdale NJ, 
1977. 

12 Schuster, E and T. Finin, "Understanding 
Misunderstanding - Recognizing and Responding to User 
Misunderstandings", report MS-CIS-83-12, Computer and 
Info Science, U of Penn., 1983. 

13 Schuster. K., "Custom-Made Responses: Maintaining and 
Updating the User Model", report MS-CIS-83-13. CIS, 
U of Penn., 1983 

14. Shrager, .1. and T. Finin, "An Expert System that 
Volunteers Advice", Proc. AAAI-82, 1982. 

15 Shrager, J., "Invoking a Beginner's Aid Processor by 
Recognizing JCL Goals", report MS-CIS-81-7. Computer 
and Info. Science, U. of Penn., 1981. 

16. Wilensky, R., 'Understanding Goal-based Stories", Yale 
University Research Report No. 140, 1978. 

17. Wilensky, R., "Talking to Unix in English", tecnical 
report, Univ. of Ca. - Berkeley, 1982. 

T h e c u r r e n t i m p l e m e n t a t i o n does no t hand le m u l t i p l e goals associated w i t h a 
r i v e n p l a n . 


