
PUTTING THEORIES TOGETHER TO MAKE SPECIFICATIONS 

We have been developing a language in which 
you can g ive s t ruc tu red descr ip t ions of t heo r i es . 

Why are we i n te res ted in theor ies? Because 
you need a theory to spec i fy a problem before you 
can develop a program to solve i t , whether you 
in tend to develop the program i n t u i t i v e l y or to 
synthesise i t mechanical ly b y r u l e . I t only 
makes sense to say 'We want a program which can 
i n v e r t a mat r ix ' in the context of some theory 
about matr ices and the operat ions on them such as 
m u l t i p l i c a t i o n . 

Why are we i n te res ted in s t ruc tu red descr ip 
t i o n s o f theor ies? Because people f i n d i t very 
hard to understand anyth ing at a l l unless they 
have a w e l l - s t r u c t u r e d desc r ip t i on of i t ; as f o r 
machines, twenty years work in A r t i f i c i a l I n t e l 
l igence has taught us to beware of l e t t i n g them 
loose on an unst ruc tured d e s c r i p t i o n . 

What would an unst ructured desc r ip t i on of a 
theory be l i k e ? Imagine 217 axioms in Predicate 
Calculus t e l l i n g you how to f i n d your way around 
SRI, or 217 semantic equations descr ib ing the 
language Klugegol78. Minsky (1975) p ro tes ts 
about 'attempts to represent knowledge as c o l l e c 
t i o n s of separate simple f ragments ' . No-one 
could approve of such monsters as these. 

Now consider the analogous s i t u a t i o n w i th 
programs. They are s t ruc tu red by statements, 
i t e r a t i o n s and procedures. For large programs 
these have proved inadequate (217 LISP func t ions ! ) , 
and SIMULA c lasses, CLU c lus te rs and ALPHARD forms 
have been devised to ward o f f the threatened chaos 
(Dahl et. al 1970, L iskov 1975, Wulf et al 1976). 
They a l l in t roduce abst ract data s t ruc tu res by 
g i v i n g the c o l l e c t i o n s of procedures which def ine 
the p r i m i t i v e operat ions on them. They separate 
the par t of the program which implements a s t r u c 
tu re from other pa r ts which use i t but have 
no concern w i t h i t s rep resen ta t ion . S i m i l a r l y 
in AI Minsky's frame not ion (Minsky 1975) o f f e r s 
a way of bund l ing together LISP func t ions i n t o 
some meaningful e n t i t i e s . Indeed one reason f o r 
the move away from a ' l o g i c a l ' representa t ion of 
knowledge to a procedural one may be that we have 
some s k i l l at s t r u c t u r i n g programs but hard ly any 
a t s t r u c t u r i n g t heo r i es . 

Our work on theor ies der ives from our 
attempts to c l a r i f y and general ise the above 
methods of b u i l d i n g up programs in terms of 
abs t rac t data s t r u c t u r e s . Tack l ing problem 
s p e c i f i c a t i o n s ra the r than programs turned out to 
use the same mathematical t oo l s but to be ra the r 
less d i f f i c u l t . I t i s also an area overdue f o r 
i l l u m i n a t i o n . The present paper sets f o r t h in 

an in fo rma l way our f i r s t , t e n t a t i v e , proposal f o r 
a language in which one may describe t heo r i es . 
This language, c a l l e d ' C l e a r ' , i s intended p r im
a r i l y as a t o o l f o r program s p e c i f i c a t i o n , but i t 
might a lso serve to represent knowledge in a 
machine manipulable form. We have l a r g e l y worked 
out the mathematical semantics of Clear, but we 
have not attempted to implement i t . 

We w i l l f i r s t exp la in our no t ion of theory in 
general terms, then discuss possib le areas of 
a p p l i c a t i o n . A f t e r t h i s we w i l l describe our 
theory language and give some simple i l l u s t r a t i o n s 
of i t s use. 

What we mean by a theory 

The no t ion of theory is a loose i n t u i t i v e one 
in mathematics. There should be axioms, ru les of 
in ference and theorems, but the language in which 
they are expressed is open to choice. A popular 
choice of a formal language would be f i r s t order 
pred icate ca l cu lus , or more bo ld ly a h igher order 
ca lcu lus . Some people, l i k e the predicate c a l 
culus programmers (Kowalski 1974), would use a 
more r e s t r i c t e d ca l cu lus , say Horn clauses w i th 
f ree va r iab les but no e x p l i c i t q u a n t i f i e r s . We 
have chosen an a lgebraic no t ion of theory, due to 
Lawvere (1963), making i t many-sorted (Goguen, 
Thatcher and Wagner 1977) and w i th p rov is ion f o r 
e r ro rs (Goguen 1977). 

A many-sorted a lgebra ic theory is given by 
naming a set of s o r t s , a set of operators over 
those so r t s and a set of laws which those oper
ators must s a t i s f y . The laws take the form of 
equations w i t h f ree va r i ab les but no q u a n t i f i e r s . 
Since we may in t roduce t r u t h values as a sor t and 
two no-argument operators (constants) t rue and 
f a l s e , we can in t roduce predicates as operators 
producing a t r u t h value as r e s u l t ( j u s t l i k e L ISP) . 

Here are two examples:-

Vector spaces The so r ts are sca lar and vec to r . 

The operators are sca lar add i t i on and m u l t i 
p l i c a t i o n , sca lar zero and one, vector add i t i on , 
vec tor negat ion , vec to r zero, and vec to r -by -
scalar m u l t i p l i c a t i o n . The laws are assoc ia t 
i v i t y and commutat iv i ty f o r scalar a d d i t i o n , 
i d e n t i t y f o r sca la r zero w i th add i t i on and so 
on. 

GPS (General Problem Solver) The so r t s are s ta tes , 
a c t i o n s , act ion-sequences, s tate d e s c r i p t i o n s , 
a t t r i b u t e s , values and d i f f e rences . (In GPS 
a t t r i b u t e s of s tates have values, which g ive 
r i s e to d i f fe rences between s ta tes . ) 
The operators are ( i ) apply, t ak ing an ac t i on 
and a s ta te to a s t a t e , ( i i ) d e s c r i p t i o n o f , 
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t ak ing a s ta te to a d e s c r i p t i o n , ( i i i ) valueof, 
t ak ing a d e s c r i p t i o n and an a t t r i b u t e to a 
va lue , ( i v ) undef ined, a constant f o r a s t a t e , 
and so on. 
There are some laws, f o r example:-
apply(a,undef ined) = undef ined, 
concatenat ion of ac t ion sequences is assoc i 
a t i v e . 

Lawvere showed how such a theory desc r i p t i on 
can be taken to denote a more abst rac t a lgebra ic 
s t r u c t u r e , namely a c o l l e c t i o n of operators 
suscept ib le to 'composi t ion ' ( s u b s t i t u t i o n ) and 
' t u p l i n g ' . This is important because he was 
able to develop some theory about ' theor ies ' ( i f 
you can have a theory about 'groups ' you can have 
a theory about ' t h e o r i e s ' ) , and h is work enables 
us to g ive a mathematical basis to our language 
f o r denot ing t heo r i es . I t i s not appropr ia te t o 
go i n t o t h i 3 mathematics here, but i t is a com
f o r t to us tha t we have managed to o u t l i n e a 
proper semantics f o r our language; we hope to 
develop t h i s and w r i t e i t up soon f o r p u b l i c a t i o n * 

Not only i s i t r e l a t i v e l y easy to reason 
about a lgebra ic t heo r i es , but there is evidence 
tha t i t i s r e l a t i v e l y easy to reason w i t h i n an 
a lgebra ic theory , indeed t h a t is j u s t the domain 
which was tack led very success fu l l y by Boyer and 
Moore (1975) w i t h t h e i r LISP theorem prover , sub
sequently enhanced to deal w i t h many sor ts by 
Aubin (1976). 

We already have some encouraging experience 
of us ing a lgebra ic theor ies (but not s t ruc tu red 
ones) as a s p e c i f i c a t i o n t o o l (Goguen 1976, 
Goguen, Thatcher and Wagner 1977). 

The use of a lgebra ic techniques f o r s p e c i 
f y i n g abs t rac t data types has been s tud ied 
ex tens ive ly by Z i l l e s (1974) and by Guttag, 
Horowitz and Musser (Guttag 1975, Guttag et al 
1976) who g ive examples of program v e r i f i c a t i o n 
us ing such s p e c i f i c a t i o n s . 

We should remark tha t al though we have 
chosen to use a lgebra ic theor ies ra the r than 
pred ica te l o g i c or lambda ca lcu lus t heo r i es , the 
methods we have used to combine them are ra the r 
general and may w e l l apply to other k inds of 
theory . 

We have not w r i t t e n out the above examples 
of theor ies ' in f u l l because they would be long 
and hard to understand; even e igh t operators and 
a dozen laws is a l o t to swallow in one b i t e . A 
mathematics book would scarce ly present the con
cept of vec to r space wi thout some preparat ion on 
semigroups, groups and f i e l d s . Indeed most of 
the s t ruc tu re can be expla ined by saying tha t the 
scalars form a f i e l d and the vectors a group. We 
then have to impose some ex t ra cond i t ions ( e . g . 
commutat iv i ty of vec to r add i t i on ) and enr ich the 
s t r uc tu re w i t h an ex t ra operator , m u l t i p l i c a t i o n 
o f vectors by sca la rs , which is d i s t r i b u t i v e , e t c . 

S i m i l a r l y GPS becomes much easier to under
stand i f we f i r s t descr ibe a s t a t e - a c t i o n system, 
then say tha t action-sequences are j u s t s t r i n g s 
of act ions whose e f f e c t is the composit ion of the 
e f f e c t of the component a c t i o n s . We can indep
endent ly enr i ch the idea o f s ta te w i t h a t t r i b u t e s 

and va lues, saying tha t descr ip t ions are just-
arrays ( f i n i t e func t ions ) from a t t r i b u t e s to 
va lues . Only then can we put i t a l l together 
and in t roduce the no t ion of the d i f fe rences 
reduced by an operator . 

This then is i n t u i t i v e l y what we mean by 
b u i l d i n g up a theory in a s t ruc tu red way: any 
good textbook does i t a l l the t ime. Luck i l y 
Lawvere's no t ion of the category of theor ies 
suppl ies the mathematical co r re la te of t h i s 
in fo rma l expos i t i on and enables us to apply known 
mathematical methods ( ' c o l i m i t s ' ) to the task of 
cons t ruc t ing theor ies by using other theor ies as 
i ng red ien t s . 

One may view a theory as a na tu ra l genera l 
i s a t i o n of the no t ion of abs t rac t data type. 
Such a type is character ised by the operat ions 
which create i t s elements or apply to them. A 
theory may cons is t of several such types w i th the 
operat ions between them, thus avoid ing the d i f f i 
c u l t y of a r b i t r a r i l y ass igning an operat ion from 
A 's to B's to type A or to type B. Analogous to 
a group of procedures which r e a l i s e a da ta - type , 
as in SIMULA, CLU or ALPHARD, would be a group of 
procedures which r e a l i s e a theory . We learned 
recen t l y t ha t Nakajima, Honda and Nakahara (1977) 
had a lso been working on t h i s idea and had 
designed a programming language to incorpora te i t . 
Thei r use of theor ies in a programming language 
is close to what we had in mind. We hope tha t 
the mathematical methods we have f o r s t r u c t u r i n g 
s p e c i f i c a t i o n s can be adapted to g ive semantics 
f o r such a programming language (see our t e n t a t i v e 
remarks about programs as theory morphisms l a t e r 
on) . 

Spec i f i ca t i ons requ i red f o r -program v e r i f i c a t i o n , 
t rans format ion and synthesis 

Program v e r i f i c a t i o n has been a cont inu ing 
concern since McCarthy's c l ass i c paper (1963)• 
Recent ly there has been considerable i n t e r e s t in 
synthes is ing programs from t h e i r s p e c i f i c a t i o n s 
(Manna and Waldinger 1971, 1975), D i j k s t r a (1975), 
Dar l ing ton (1975, 1976), one promising method 
being to take a very naive program as the spec i f 
i c a t i o n and t ransform i t i n t o an acceptably 
e f f i c i e n t one (Dar l i ng ton and B u r s t a l l 1976, 
B u r s t a l l and Dar l i ng ton 1977, Arsac 1977). A l l of 
these techniques f o r ob ta in ing cor rec t programs 
must s t a r t from a s p e c i f i c a t i o n . V e r i f i c a t i o n , 
whether by hand or by machine, makes heavy weather 
even of n o n - t r i v i a l ' t e x t - book ' programs and s t i l l 
seems i m p r a c t i c a l f o r the much longer programs 
met w i t h in p r a c t i c e . This comparative lack of 
success of v e r i f i c a t i o n techniques has obscured 
the f a c t t ha t f o r la rge programs not only are we 
unable to ca r ry through a correctness proof , but 
usua l l y we cannot even spec i fy the problem which 
the program is supposed to s o l v e . * S im i l a r 
remarks apply to program synthes is . 

* For an overview of s p e c i f i c a t i o n techniques, 
w i t h many re ferences, see L iskov and Berzins 
(1977). 
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There are except ions. To speci fy a compi ler , 
and hence v e r i f y i t , you need to def ine the source 
language and the ta rge t machine. Scott and 
Strachey (1971 and subsequent papers) b a t t l e d 
v a l i a n t l y to g ive us precise semantic d e f i n i t i o n s 
of programming languages. Unfo r tuna te ly , f o r 
la rge languages the s p e c i f i c a t i o n s are very hard to 
understand (Robert Mi lne had one f o r A lgo l -68 
which he dec l ined to pub l i sh on the grounds tha t 
no-one would read i t ) . We surmise that a good 
par t of the t roub le may be the lack of s t ruc tu re 
in such a formal d e f i n i t i o n , the s t ruc tu re tha t 
the w r i t e r of an in fo rma l manual f o r a language 
must be very c a r e f u l to make c l e a r . * 

Thus we f e e l that a be t t e r g r i p on the way to 
s t r uc tu re the theory in terms of which s p e c i f i c 
a t ions are made is a p re requ i s i t e f o r r a i s i n g 
v e r i f i c a t i o n and synthesis techniques above the toy 
problem l e v e l . 

Spec i fy ing AI problems 

In AI research, as in other d i s c i p l i n e s deal ing 
w i th complex programs, there is a tendency to 
w r i t e the program but never get around to spec i 
f y i n g the problem. Further any large program 
must be composed of subprograms, and these cannot 
be understood wi thout a c lear s p e c i f i c a t i o n of the 
subproblems they are supposed to so lve. Thus 
be t te r t oo l s f o r problem s p e c i f i c a t i o n are a 
press ing need in A I . 

Not on ly S l o u l d the theor ies used in spec i 
f y i n g these problems and subproblems be we l l 
s t r u c t u r e d , they should also be s u f f i c i e n t l y 
a b s t r a c t . They should be concerned w i t h the 
abs t rac t nature of the data and the operat ions to 
be performed ra the r than the p a r t i c u l a r problem 
domain or the s p e c i f i c machine representa t ion of 
the da ta . For example Walts's (1975) work is 
about the abs t rac t not ion of networks of re la t i ons , 
ra the r than j u s t about blocks and shadows or about 
LISP S-expressions; i t s f u l l u t i l i t y can only be 
exp lo i t ed i f t h i s is kept in mind (see Mackworth 
1977). Our theory language must be able to 
handle such abs t rac t i on and enable us to hide 
unnecessary d e t a i l . 

Representing knowledge w i t h i n an AI program 

AI programs are commonly conceived to embody 
knowledge, whether as program or as data . Proced
u r a l embedding of knowledge may promote e f f i c i e n c y , 
and it may enable one to use e x i s t i n g program 
s t r u c t u r i n g techniques to impose some order on the 
embedded knowledge. However procedural embedding 
has disadvantages o f i n f l e x i b i l i t y , and i t makes i t 
d i f f i c u l t to incorpora te new knowledge, whether 
inpu t or from induc t i ve l e a r n i n g . Much of the 
d i squ ie t w i t h knowledge held as data seems to us to 
stem from i t s lack of s t r u c t u r e , a large c o l l e c t i o n 
of axioms or f a c t s unorganised, s lowing processing 
down w i t h i r r e l e v a n t i n fo rma t i on . 

Again we are exhorted to consider our common-
sense knowledge of the wor ld as composed of a 
la rge number of m ic ro - theor ies about p a r t i c u l a r 

* Mosses (1977) makes a s t a r t in t h i s d i r e c t i o n . 

aspects. But we are l e f t l a r g e l y in the dark as 
to how to put these mic ro - theor ies together . This 
quest ion o f ' p u t t i n g theor ies together ' i s c lose 
to the hear t of our concern. 

Thus al though we cannot yet speak from 
experience, we very much hope tha t our theory -
b u i l d i n g techniques may eventua l l y g ive some 
f resh i n s i g h t i n t o the appropr iate organ isa t ion 
of knowledge in AI programs. A way of 
present ing theor ies so tha t people can under
stand them might help us to see how machines can 
make use of them. 

Theories 

We s t a r t our expos i t i on of the language 
Clear by look ing more c lose l y at the no t ion of 
many-sorted a lgebra ic theory . Our theor ies w i l l 
a lso make p rov i s i on f o r e r r o r s , l i k e d i v i s i o n by 
zero, but we w i l l defer cons idera t ion of t h i s 
u n t i l we have the basic ideas s t r a i g h t . 

F i r s t we need the no t i on of a s igna tu re , 
tha t is a vocabulary of operators w i t h given 
s o r t s . 

A s ignature is a set of sor t names and a set 
of operator symbols, each w i t h a g iven sequence 
of 3or ts f o r i t s arguments and a sequence of so r t s 
f o r i t s r e s u l t s (poss ib ly more than one r e s u l t ) . 
We w r i t e w : s 1 , . . . , s -> sj,.......,sn' to show that 

w is an operator w i t h i npu t 30rts s1 . , . . ,sm and 
output sor ts s 1 ' , . . . , s ' n . * 
Example 1 Natura l numbers 

so r ts n a t , bool 
operat ions zero : -> nat 

succ : nat -> nat 
i s z e r o : nat -> bool 
t rue : -> bool 
f a l s e : -> bool 
not : bool -> bool 
or : boo l , bool -> bool 

Example 2 Geometry (a fragment) 

so r ts l i n e , p o i n t , bool 
operat i ons . join : p o i n t , po in t -> l i n e 

i n t e r s e c t i o n : l i n e , l i n e - > po in t 
co l i nea r : p o i n t , p o i n t , p o i n t - > b o o l 
t rue : -> bool 
f a l s e : -> bool 
not : bool -> bool 

A theory p resen ta t ion is a signature together 
w i th a set of equations using the operators of the 
s ignature and respect ing t h e i r input and output 
s o r t s . The equations have var iab les which are 
i m p l i c i t l y u n i v e r s a l l y q u a n t i f i e d . 

Example 1 (cont inued) 

va r i ab les m,n: nat 
equations iszero(zero) = true 

iszero(succ(n)) = false 
not(true) = false 
not(false) = true 

* for mul t i - resul t operators we could use a syn
tax l i ke " . . . a . . . r . . . where <q,r> = quotient -
and -remainder(m,n)", but we w i l l not need them. 
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Example 2 (cont inued) The theory BoolO 

va r i ab les p , q , r : p o i n t ; l ,m : l i n e 
equations i n t e r s e c t i o n ( j o i n ( p . q ) . j o i n ( q , r ) ) = q 

j o i n ( p , q ) = j o i n ( q , p ) 
n o t ( t r u e ) = f a l s e e t c . 

A theory is a s ignature together w i th a set 
of equations closed under in ference by r e f l e x i v i t y , 
t r a n s i t i v i t y and symmetry of equa l i t y and by sub
s t i t u t i o n . For example ' f a l s e = iszero(succ(succ 
( z e r o ) ) ) ' is an equation in the theory def ined by 
the p resenta t ion above. 

Thus each theory p resenta t ion gives r i s e to a 
theory but the same theory can be presented in 
more than one way by choosing d i f f e r e n t sets of 
'ax iom' equations to generate i t , (The no t ion of 
Theory is more basic than Theory Presenta t ion in 
the sense tha t one would l i k e to t a l k about the 
theory of g roups , fo r example, i r respect ive of any 
p a r t i c u l a r ax iomat isa t ion o f i t , ) * 

The i n t e r p r e t a t i o n s of a theory are a lgebras, 
where an algebra is a c o l l e c t i o n of se ts , one f o r 
each s o r t , w i t h a f u n c t i o n over these sets ass ign
ed to each operator of the theory . These func
t i ons must obey the equations of the theory . In 
p rac t i ce f o r theor ies con ta in ing bool we w i l l on ly 
be i n t e r e s t e d i n ' c o n s i s t e n t ' i n t e r p r e t a t i o n s i n 
which t rue ø f a l s e . 

Theory -bu i ld ing operat ions 

In the l a s t sec t ion we were j us t w r i t i n g down 
theor ies e x p l i c i t l y one at a t ime. As soon as 
they get to be i n t e r e s t i n g they become incompre
hens ib le . We wind up w i t h a la rge set of 
equations t h a t no-one can understand and which are 
almost c e r t a i n l y wrong. So we must b u i l d our 
theor ies up from small i n t e l l i g i b l e p ieces. For 
t h i s we need 

( i ) the a b i l i t y t o w r i t e ( sma l l ! ) e x p l i c i t 
t h e o r i e s , as above, thus 

theory sor ts . . . 
opns . . . 
eqns . . . endth 

( i i ) f ou r operat ions on t h e o r i e s , combine.enr ich. 
induce and de r i ve , which enable us to b u i l d 
up theory expressions denot ing complex 
t h e o r i e s . 

We w i l l exp la in these operat ions i n f o r m a l l y , 
us ing examples. 
F i r s t we def ine two e x p l i c i t theor ies which w i l l 
be use fu l 

Techn ica l l y we should c a l l t h i s a ' theory w i t h 
s igna tu re ' r a the r than j u s t a ' t heo ry ' because 
the choice of a p a r t i c u l a r set of operators is 
i r r e l e v a n t to the abs t rac t n o t i o n , j u s t as is the 
choice of p a r t i c u l a r axioms (see Lawvere 1963 or 
Manes 1976). 

( S t r i c t l y we ought to i n s e r t ' v a r i a b l e p: boo l ' 
before ' e q n s ' . but we w i l l assume tha t undeclared 
s ing le l e t t e r i d e n t i f i e r s are v a r i a b l e s ; t h e i r 
type w i l l be obvious. We w i l l a lso a l low our
selves to use t r a d i t i o n a l i n f i x e d symbols l i k e A. ) 

Combine 

This operat ion i s d u l l but plays i t s par t i n 
the l a rge r scheme of t h i ngs . We simply take two 
theor ies and add them together . The sor ts of the 
r e s u l t i n g theor ies are the union of the sor ts of 
the given t h e o r i e s , the operators are the union of 
t h e i r operators , and the equations are the union 
of t h e i r equat ions. We use the + s ign f o r the 
combine opera t ion . 

For example BoolO + NatO could be w r i t t e n 
e x p l i c i t l y a s — — 

In general one may add new sor ts as w e l l , 
thus 
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We w i l l see l a t e r tha t combine does not 
necessar i l y produce the d i s j o i n t union of two 
theo r i es ; i t a l lows f o r shar ing of common sub-
t h e o r i e s . 

Enr ich 

Suppose t ha t we want to b u i l d up a usefu l 
theory of the n a t u r a l numbers, including operators 
f o r o rder ing and f o r e q u a l i t y . The operators < 
and eq belong n e i t h e r to BoolO nor NatO, but they 
can be added to t h e i r combination to ob ta in a new 
theory 



enrich . . . . by 
aorta . . . 

* Technically, induce T, is the theory of the 
i n i t i a l algebra of T7 

and operations which we require. For example, if 
we only need eq from Nat (and not < or zero or 
succ) we may write 

The theory Natequal 

derive 
sorts element, bool 
opns equal, true, false 

from Nat by 
element is nat 
bool is bool 
equal is eq 
true is; true 
false is, false endde 

This denotes a new theory with two sorts and 
three operators. The equations governing the new 
operator, equal, are not specified. Indeed we 
have only given the signature of the new thonry. 
but. the properties of equel are given impl ic i t ly 
by the correspondence equal is eq. Notiee- thet 
the equations for eq use the auxiliary operator <. 
In general an operator of the derived theory may 
correspond to a λ defined operator of the orig
inal theory, thus "plus2 is λ n.succ(succ(n))". 

For brevity we w i l l omit pairs of the form 
'x iS x ' , such as 'true is t rue' . Also if we 
already have a theory T we may write'signature T' 
to denote i ts signature. 

We use derive when we want to define a theory 
in terms of some other theories with which we are 
already familiar but which, taken together, are 
too rich for our purpose. We are making a con
struction from familiar mathematical objects, but 
the details of the construction are discarded in 
the more abstract result. An analogy would be 
the construction of the natural numbers in terms 
of the sets ø, [ø] ,{ø, [ø]},... . The operations 
we need on the natural numbers are, say, zero, 
successor and <, Other possible operations on 
these sets, such as cartesian product of two sets, 
are not meaningful for numbers. In programming 
work it is well-known that the operations on an 
abstract data type are defined in terms of those 
on a more concrete type which represents i t ; but 
at the abstract program level the more concrete 
operationsshould not be available. 

Procedures for theory-building 

We have some primitive operations on theories. 
The next step is to enable the user to define his 
own operations using these. For this we intro
duce procedures - no self-respecting language 
could be without them. 

We shall introduce the simplest mechanisms 
which provide tolerably convenient f ac i l i t i es , 
namely 

( i ) Theory constants, enabling us to give a 
name to a theory 

( i i ) Theory procedures, taking theories as 
their parameters and producing a theory as 
a result. Their bodies use the primitive 
operations already defined and may cal l 
other theory procedures (but we eschew 
recursion]) 
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( i i i ) Local theory d e f i n i t i o n s , permi t ted i n the 
bodies of theory procedures, t h u s : -
l e t T = . . . in . . . . 

These f a c i l i t i e s would be very s i m i l a r what
ever domain we were working i n . Let us in t roduce 
them in the f a m i l i a r domain of numbers and t r u t h -
values as a warming up exerc ise . We w i l l assume 
the p r i m i t i v e s * ( m u l t i p l y ) , / ( d i v i d e ) and i f . . . 
t h e n . . . e l s e . . . 

A constant dec l a ra t i on , .just ass igning a 
f i x e d value to an i d e n t i f i e r p i , would be 

constant pi - 22/7 

A procedure dec la ra t ion f o r a procedure p ro 
ducing a number as r e s u l t would be 

procedure f ( x : number, b: boolean) = 
if b then pi * x e lse 0 

A procedure dec la ra t i on w i t h an a u x i l i a r y 
l o c a l va r iab le z would be 

procedure g(y: number) = 
l e t z = f (y * y, t rue) in s * z * z 

Now if we evaluate g ( 2 ) , 7, takes the value 
f ( 2 * ? , t r u e ) , i . e . ( 22 /7 ) *2 *2 , and g(2) i s the 
cube of t h i s va lue . 

Now the same d e f i n i t i o n a l methods and syntax 
w i l l apply to t heo r i es , us ing the t h e o r y - b u i l d i n g 
operat ions instead of * , i f - t h e n - e l s e e t c . (we do 
not need c o n d i t i o n a l expressions f o r t h e o r i e s ) . 
We w i l l need the type s p e c i f i c a t i o n f o r parameters, 
as in x : number, since i t turns out that there is 
no t ion of type f o r theory parameters. 

There is one major d i f f e rence however between 
numbers and theor ies as a domain. Two theor ies 
may share some common subtheory. For example 
the theory of na tu ra l numbers has Bool as a sub-
theory s ince it has predicates l i k e <, so does the 
theory of character s t r i n g s which has predicates 
l i k e isempty. We may want to enr ich the combin
a t i o n of these two theor ies to a l low operators 
l i k e 

l e n g t h : s t r i n g -> nat 

In t h i s new theory we want the t ru thva lues 
produced by < to be the same as those produced by 
isempty. We want one copy of Bool not two. Thus 
Bool is a shared subtheory. 

Where have we met t h i s s i t u a t i o n before? In 
LISP or any other language w i th po in ters we have 
shared subs t ruc tu res . Let us see how the d e f i n 
i t i o n a l mechanisms we have in t roduced would behave 
w i th shared l i s t s . We w i l l then be ready to 
tack le t h e o r i e s . We need atoms "A, "B e t c . , the 
l i s t cons t ruc to r cons, the se lec to rs car and cdr 
and, c r u c i a l l y , the pred ica te eq which t es t s 
whether two l i s t s are equal in the sense of 
s t a r t i n g w i th the same l i s t c e l l , not j u s t having 
the same shape. We w i l l not use LISP syntax, but 
we in tend LISP semantics, passing parameters by 
po in te r than than copying the l i s t s t r u c t u r e . Let 
us look at examples ( the intended values of the 
expression are g iven on the r i g h t ) 

( i ) eq(cons( "A, "B) ,cons( "A, "B) ) . . . . f a l se 

( i i ) constant ab = cons("A,"B) 
eq(ab,ab) . . . t rue 

( i i i ) constant ab = cons("A, " lB) 
eq(cons(ab," c) , cons(ab," C)) . . . . f alse 
eq(car (cons(ab, "c ) ) ,car (cons(ab, " c ) ) ) . . . . 

t rue 

( i v ) procedure P ( l ; l i s t ) = e q ( l , l ) 
P(cons("A,"B)) . . . . t rue 

(v) procedure P ( l : l i s t ) -
l e t m - cons( l , "C) in e1(m,m) 

P(cons(A,"B)) . . . . . t rue 

Thus every use of a constant , parameter or 
l o c a l va r i ab le r e fe r s to the same l i s t , to w i t h i n 
eq, but w r i t i n g down an e x p l i c i t expression twice 
using cons r e f e r s to a d i f f e r e n t l i s t ( i ) . Two 
d i f f e r e n t l i s t s can share a common s u b l i s t ( i i i ) . 

Now our theory-making operat ions, e x p l i c i t l y 
w r i t i n g a theory and en r i ch ing one, behave ju3 t 
l i k e cons. But by using theory constants or 
va r i ab les we can arrange f o r the theor ies we 
create to conta in shared sub- theor ies- One of 
our main techn ica l problems was to make t h i s 
remark p rec i se , since f o r theor ies we do not have 
the addre3s/value storage model as we do f o r data 
s t r u c t u r e s . In f a c t the category theory ideas of 
"diagram" and i t s " c o l i m i t " g ive a ra ther general 
no t i on of shared subs t ruc tu re . We hope tha t the 
reader 's i n t u i t i o n using the LISP analogy w i l l 
g ive him a reasonably good g r i p on the intended 
semantics. Those who wish to know the prec ise 
method f o r determin ing the denotat ion of our 
s p e c i f i c a t i o n s must await the mathematical 
semantics in the paper which we are p repar ing . 

The s p e c i f i c a t i o n language Clear 

We w i l l c a l l our proposed s p e c i f i c a t i o n 
language "C lea r " . A s p e c i f i c a t i o n in Clear con
s i s t s of a sequence of constant and procedure 
dec lara t ions fo l lowed by an expression. The 
expression denotes a theory, not e x p l i c i t l y but 
us ing the t h e o r y - b u i l d i n g operat ions and the 
declared constants and procedures. 

Clear can be viewed as a language f o r com
municat ing a prec ise s p e c i f i c a t i o n of a problem 
to people, such as programmers- It could also be 
implemented on a machine so tha t ' e v a l u a t i o n ' of a 
Clear s p e c i f i c a t i o n y ie lded an e x p l i c i t represent 
a t i o n of the theory i t denotes- A more use fu l 
implementation however would be to l i n k Clear to 
an equat innal theorem prover which would t r y to 
prove tha t a g iven equat ion held in t h i s theory 
wi thout producing the theory e x p l i c i t l y . Or i t 
could be incorpora ted in a system which t r i e d to 
show tha t a g iven program implemented some oper
a t ions o f t h i s theory . This ra ises i n t e r e s t i n g , 
but s t i l l unanswered ques t ions , about the r e l a t i o n 
between s p e c i f i c a t i o n s t r uc tu re and program s t r u c 
ture . 

We w i l l exp la in Clear by example. Let us 
s t a r t by b u i l d i n g up the theory Nat of na tu ra l 
numbers us ing the constant f a c i l i t y and the l e t 
f a c i l i t y , thus repeat ing in succ inct form the 
more fragmentary development of Nat above. We 
s t a r t w i t h Bool , the theory o f t r u t h va lues . 
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The constant Nat now denotes the theory of 
na tu ra l numbers. I t i s b u i l t up by f i r s t making 
a l oca l d e f i n i t i o n of the simple theory NatO w i th 
j u s t zero and suec. We then combine t h i s w i th 
Boo], en r i ch ing the combination wi th extra pred
i ca tes < and eq. f i n a l l y induce appl ied to the 
whole expression ensures tha t the theory contains 
general equations l i k e eq(m,m) - t rue-
Procedures in Clear 

We o f ten bu i l d one theory on top of another. 
Suppose f o r example tha t we have some p a r t i a l l y 
ordered s e t , then we can form s t r i ngs from i t s 
elements and def ine the predicate 'o rdered ' f o r 
s t r i n g s - This is j u s t what we would have to do 
if we wanted to spec i fy some s o r t i n g task. A 
theory of ordered s t r i n g s can be developed f o r 
any p a r t i a l l y ordered set (poset) of elements and 
the l a t t e r can be regarded as a theory parameter 
(compare Form parameters in ALPHARI)). We can 
w r i t e a procedure using the theory -bu i ld ing oper
a t ions to const ruct the theory of ordered s t r i n g s 
from t h i s parameter. Now we can apply t h i s p ro 
cedure to any theory which has a ' l ess than or 
equal ' operator s a t i s f y i n g the r e f l e x i v i t y , 
t r a n s i t i v i t y and antisymmetry laws, f o r example 
the theory Nat- Thus the procedure can only 
accept as parameter a c e r t a i n so r t of theory; we 
had b e t t e r c a l l i t a 'meta-sort ' to avoid con
fus ion w i t h the sor ts w i t h i n theo r ies . This meta-
sor t is i t s e l f a theory , in t h i s case the theory o f 
p a r t i a l order ings-

A degenerate example would be a theory p r o 
cedure which can take any set as parameter and 
does not need any operators , f o r example the p ro 
cedure which, given a set of elements, produces 
the theory of 3 t r ing3 of those elements. The 

As an example we can apply t h i s procedure to Nat 
to get s t r i ngs of na tu ra l numbers, but we need 
to associate the sor ts and operators of the meta-
sor t ( T r i v ) o f the formal parameter w i t h those of 
the actual parameter (Nat ) , that is we need a sor t 
to sor t f unc t i on and an operator to operator 
func t ion j us t as in de r i ve . We wr i t e these in 
brackets a f t e r the actual parameter, thus 

St r ings (Nat [element is n a t ] ) 

We may omit pa i rs of the form 'x is. x ' -

The actua l parameter theory must inc lude a l l 
the equations of the meta-sort theory as rewr i t ten 
under t h i s operator to operator f u n c t i o n . We 
must prove t h i s f o r every procedure app l i ca t i on -
Unl ike convent ional type checking i t i s not in 
general decideable. 

Now to do ordered s t r i n g s we need the theory 
of p a r t i a l order f o r use as a meta-sor t . 

const Poset = 

Use of a theory as a meta-sort is ra the r 
d i s t i n c t from i t s use in de f i n ing some data 
s t ruc tu re such as natura l numbers- It enables 
us to s ta te the presupposi t ions f o r some task 
which we wish to spec i f y , and we are i n t e r e s t e d 
in any i n t e r p r e t a t i o n of the theory ra the r than 
some p a r t i c u l a r canonical one. 

Shared subtheor ies 

We observed already that jus t as two l i s t s 
may share substructure so may two theo r i es ; t h i s 
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nieta-sort here is the t r i v i a l theory w i t h one s o r t 
and no operators . 

const T r i v = theory sor ts element endth 

The theory procedure to make s t r i ngs is then 
(proc being short f o r procedure) 



in accomplished by having the same va r i ab le appear 
in both the expressions denot ing these t heo r i es . 
The d e t a i l s , which f o l l o w , are a l i t t l e techn ica l 
and may be skipped if des i red . 

Suppose tha t we have a theory var iab le T 
ei ther a formal parameter or bound by a l e t , " 
Then the theory "en r i ch T by. . .enden" contains 
t h i s theory T as a subthe~ory, and so do " T + . . . " 
and "Induce T " . The theory ' ' de r i ve aigrigture T1 
from T? by, .Tendde" contains T as a subtheory 
i f T l n j on ta i ns i t . Should T2. also contain T_ as 
a subtheory then the " . . . " had be t te r map its 
operators i d e n t i c a l l y ( i f they both contain Bool , 
" t r u e is f a l s e " would not be welcome). Now it we 
combine two theor ies T1_ and T2 which both have T 
as a subtheory then T T + T2 "only contains T once". 
The same ru les hold IT T Ts not a va r iab le but is 
in t roduced by "cons t T = ...". A l l t h i s enables us 
to have Bool , say, as"a subtheory of several 
theor ies wi thout p r o l i f e r a t i n g many copies of i t . 
Sometimes we do need a f resh copy of a theory T_, 
so we l e t ' 'copy T" denote one, to save w r i t i n g it 
out again e x p l i c i t l y . 

When we apply a procedure P to an argument _T 
the resu l t always inc ludes T just as if we had -
w r i t t e n P ( T ) + T instead of P ( T ) . For example 
S t r i n g (Nat) is a theory whic has not only s t r i ng 
operators but also the operators l i k e succ 
def ined in Nat, Of course when we are w r i t i n g 
the d e f i n i t i o n of the procedure S t r i n g these 
l a t t e r operators are not a v a i l a b l e ; the impor t 
ance of such ' i n s u l a t i o n ' mechanisms has been 
po in ted out by Wulf and o thers . 

Errors and condi t i ona l s 

Before going on to look at examples of 
s p e c i f i c a t i o n s w r i t t e n in Clear we w i l l i n c o r 
porate two USEFU fea tu res : er rors and c o n d i t i o n 
a l s . 

Some app l i ca t i ons of ar operator to i t s 
arguments w i l l , not g ive a meaningful r e s u l t , f o r 
example d i v i d i n g by zero or popping an empty 
s tack . Thus we need to consider e r r o r s , a top ic 
which is o f ten glo33ed over in a l g e b r a i c a l l y 
o r ien ted work, but whose proper treatment is 
e s s e n t i a l f o r a r e a l i s t i c s p e c i f i c a t i o n language. 
I t i s important too tha t the d i f f e r e n t l eve l s o f 
abs t rac t i on provided by our language should not 
become confused as soon as an e r ro r is encoun
te red ; we do' not want a stack underflow to p r o 
duce an e r r o r message 'a r ray subscr ip t out of 
bounds' . Gtoguen (1977) studies t h i s top ic in 
depth, d e f i n i n g e r ro r algebras and e r ro r t heo r ies . 
We w i l l conf ine ourselves to an informal, glance 
a t e r ro r t h e o r i e s . 

The idea is to extend each sor t by a set of 
e r ro r elements of tha t s o r t , and to have e r r o r 
operators which produce these elements. Thus 
the theory of stacks might have an e r ro r operator 

underf low: -> stack 

and the theory of arrays might have an e r r o r 
operator 

no tde f ined fo r : index -> value 

meaning tha t there is no value f o r t h i s index in 

the a r ray . The term 'no tde f ined fo r (7 ) ' would 
serve as an in fo rmat ive e r ro r r e s u l t . 

To say when an e r ro r occurs or to equate two 
d i f f e r e n t e r ro r expressions we need to use e r r o r 
equat ions, thus 

pop(empty) = underflow 
pop(underflow) = underf low 

We c a l l the non-error elements of a 3or t "OK 
elements", the non-error operators "OK opera tors" 
and the non-error equations "OK equat ions" . Now 
we can w r i t e a presenta t ion of a theory w i t h a set 
of erroropns in add i t i on to the previous (OK)opns, 
and a set of erroreqns in add i t i on to the previous 
(OK)eqns. An i n t e r p r e t a t i o n of such a theory is 
an ' e r r o r a l g e b r a ' , t ha t is an algebra some of 
whose elements are designated e r ro r elements. This 
designat ion must obey the f o l l ow ing r u l e s : -

(0 Error operators always produce an e r ro r 
element. 

(?) OK operators produce an e r ro r element if any 
of t h e i r arguments is an e r ro r element. 

Now f o r an e r ro r algebra to s a t i s f y the theory 
an OK equation or an e r ro r equation does not have 
to hold f o r a l l values of the v a r i a b l e s . Only the 
f o l l o w i n g must be the case 

(1) An OK equation must ho ld if both sides e v a l 
uate to an OK element. 

(2) An e r r o r equation must hold i f e i t h e r side 
evaluates to an e r r o r element. 

For example 

theory so r t s nat 
opns zero: -> nat 

succ: nat -> nat 
pred: nat -> nat 

erroropns neg: -> nat 
eqns pred(3ucc(n)) = n 
erroreqns pred(zero) = neg 

succ(neg) = neg 
pred(neg) = neg endth 

Further examples, s tack , array and symbol 
t a b l e , are given l a t e r . 

I t o f ten happens that two expressions are 
equal only under a ce r t a i n cond i t i on , thus 

f (x) - g(x) if p(x) 
Now we can permit such a cond i t i ona l equation 

by regarding i t as an abbrev ia t ion f o r 

i f ( p ( x ) , f ( x ) , g ( x ) ) = g(x) 

where ' i f ' i s the usual cond i t iona l operator 
def ined f o r each type by the equations 

i f ( t r u e , y , z ) = y i f ( f a l s e , y , z ) = z 

Condi t ional axioms have been studied using a 
d i f f e r e n t approach by Thatcher, Wagner and Wright 
(1977). 

Notice tha t the fac t that our OK equations 
au tomat ica l l y do not apply to e r ro r values o f ten 
saves us from adding a cond i t i on such as 
" . . . I f s # under f low" . 

Notat ion 

We should mention some small f u r t h e r po in ts 
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about n o t a t i o n . If we are naming sor ts in a con
t e x t where several theor ies are present , the same 
sor t name, s, may appear in two d i f f e r e n t theor ies , 
T1 and T2, making a reference to s ambiguous. We 
then simply r e f e r to "s of TV" or "s of T2.". A 
s i m i l a r n o t a t i o n " f o f TT"" w i l l d i sambiguate 
opera tors . 

Often a theory has a p a r t i c u l a r sor t which 
i s so to speak i t s ra ison d ' e t r e , f o r example so r t 
nat in theory Nat (even though Nat also has so r t 
b o o l ) . To enable us to d i s t i ngu i sh such a so r t 
we def ine the p r i n c i p a l sor t of a theory to be 
the f i r s t sor t mentioned i n i t s d e f i n i t i o n , thus 
i n ' t heo ry s o r t s s , t . . . endth' s i s the p r i n c i p a l 
sor t and s i m i l a r l y in ' en r i ch T by sor ts s , t . . . 
enden' . Now a h e l p f u l convention is to a l low the 
theory name, in lower case, to denote i t s p r i n c 
i p a l s o r t . Also when we spec i fy the cor res 
pondence between sor ts in a der ive operat ion we 
may omit a p a i r ' s is t' if s and t are the 
p r i n c i p a l 3or ts o f t h e i r respect ive t heo r i es ; 
s i m i l a r l y f o r the [ . . . no ta t i on used f o r actua l 
parameters of procedures, thus 'S t r i ngs (Nat ) ' is 
acceptable f o r 'S t r i ngs (Nat [e lement is nat ] ) ' . 

Examples of s p e c i f i c a t i o n 

We w i l l g ive two i l l u s t r a t i o n s to show how 
Clear can be used to b u i l d up theor ies from 
pieces in a systematic way:-

( i ) a theory to spec i fy a symbol tab le such 
as one might need in an Algol compiler (an 
example given by Guttag et al_ 1976) 

( i i ) a theory to speci fy a problem so lv ing 
system f o r a two dimensional blocks wor ld . 

These a re , of course, ra ther sma l l , simple 
examples, but we hope tha t they are .just complex 
enough to g ive the reader some idea of the modular 
s t ruc tu re that we wish to see in s p e c i f i c a t i o n s . 
We hope the reader can grasp t h i s s t ruc tu re w i t h 
out por ing over every equat ion. The whole Clear 
desc r ip t i on denotes a theory which does not i t s e l f 
have t h i s s t r u c t u r e , sc tha t the implementer would 
be at l i b e r t y to organise h i s program in some 
other way..,3 (Just as we might describe the number 
19683 as 3 , but you are f ree to store i t in the 
machine in any way you l i k e , 3uch as b ina ry . ) 
Indeed by using der ive we ' throw away' many of the 
operators in t roduced in our Clear desc r ip t i on of 
the theory , so tha t they do not appear in the 
f i n a l theory and need have no corresponding p r o 
cedures in the program which implements i t . For 
example we describe a symbol tab le in terms of a 
stack of a r rays , because stack and array are 
f a m i l i a r concepts, but our s p e c i f i c a t i o n does not 
demand t ha t i t be implemented in t h i s way. 

Here is our p lan of campaign showing the 
main procedures or constants we w i l l def ine and 
which other ones will use them. 

Stack 

Since we can put any k ind of element on a 
stack we take as a parameter theory a t r i v i a l 
theory , one w i th a s ing le sor t and no operators. 
This describes the ' va lues ' which go on the stack. 
The operators , such as push and pop, are w e l l -
known. Not ice tha t no ' s i d e - e f f e c t s ' are allowed. 
We e x p l i c i t l y produce a new stack from push and 
pop. 

We def ine arrays w i t h any kind of element as 
i nd i ces , not j u s t i n t e g e r s . However the ind ices 
must have an equa l i t y r e l a t i o n defined over them 
in order f o r us to ' l ook up' ind ices in the ar ray , 
so we have a parameter theory of meta-sort Id., a 
theory of i d e n t i f i e r s w i th one sor t besides bool 
and an equivalence operator == over that s o r t . 
We w r i t e the a r ray access func t ion as a [ i ] ins tead 
o f , say, g e t ( a , i ) . 
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A compiler needs to mainta in a symbol tab le 
r e l a t i n g each i d e n t i f i e r to a value such as a 
machine address or an address p lus a type . In 
an A l g o l - l i k e language w i t h blocks each block 
introduces new i d e n t i f i e r s which may or may not 
have occurred before. It associates new values 
w i t h them, and these overr ide any previous values 
u n t i l the end of the block is encountered and the 
tab le rever ts to i t s p r i o r s t a t e . Thus we need 
a theory w i t h so r t s : symbol, va lue , t a b l e ; i t 
has operators : n i l s t - an empty t a b l e , extend -
used to mark en t ry to a new block, put - to add a 
symbol value p a i r , g e t ( w r i t t e n - , . [ . . . ] ) - to 
r e t r i e v e a va lue , cont rac t - used when the end of 
the block is reached. Guttag e,t al_ (1976) have 
already given an equat ional s p e c i f i c a t i o n of a 
symbol tab le as an abst rac t data s t r u c t u r e . In 
cont ras t to t h e i r d i r e c t s p e c i f i c a t i o n we w i l l 
b u i l d up ours from the f a m i l i a r concepts of stack 
and a r ray , then use der ive to ex t rac t j us t those 
operat ions which are requ i red f o r a symbol t a b l e . 

Now l e t us spec i fy a very crude model of a 
set of blocks on a tab le top together w i th some 
commands f o r moving them. We w i l l s t i c k to two 

dimensions and assume square blocks a l l of the 
same s i ze . We can do t h i s in terms of a one-
dimensional ar ray indexed by places on the t a b l e , 
each element of the array is a stack of b locks. 
We enr ich t h i s array of stacks theory w i th some 
ex t ra operat ions: create an empty array of stacks, 
put a block on the stack at a given p lace , move a 
block from the stack at a place onto the stack at 
another p lace. We now use der ive to get r i d of 
the unwanted operat ions on stacks and a r rays , j us t 
r e t a i n i n g these operat ions on an array of s tacks, 
which we rename a tab le top . We do however need 
an equa l i t y f o r tab le tops , because l a t e r we want 
to do problem so lv ing and see whether we have the 
requ i red goal t ab l e top . For t h i s we use a theory 
procedure Stackeq (Value: Id ) of stacks w i th 
equa l i t y (==: stack,stacic -> boo l ) . I t s d e f i n 
i t i o n from Stack (Value: T r i v ) by enrichment is 
l e f t as an easy exerc ise . S i m i l a r l y f o r 
Arrayeg ( index: I d , Value: I d ) . 

proc Tabletop (Block: I d , Place: Id.) = 
l e t Stackofblocka - Stackeq (Block) in 
l e t ArravofstacTcs" = Arraveq (Place,Stackofb locksX" 
l e t T = enr ich Array of stacks by 

opns empty: -> a r rayo fs t 
p u t : p lace,b lock,ar rayofs t ->ar rayofs t 
move: p lace,p lace,ar rayofs t ->arrayofs t 

erroropns e r r o r : -> a r rayo fs t 
eqns empty[p] = n i l s t ack 

pu t (p ,b ,a ) = pu t (p ,push (b ,a fp ] ) , a ) 
move(p ,p ' ,pu t (p ,b ,a ) ) - p u t ( p ' b . a ) 

erroregns move (p,p,a)=serror if isemptv(a[p]) 
enden in 

der ive s ignature enr ich Block + Place by 
so r ts tab le top 

opns empty: -> tab le top 
put : p lace ,b lock , tab le top -> tab le top 
move : p lace ,p lace , tab le top -> tab le top 
=- : tab le top , tab le top --> bool 

erroropas euror : -> tab le top 
from T by. tab le top is , a r rayo fs t endde 

The problem so lver w i l l seek a s t r i n g of 
act ions to t ransform one tab le top to another.. To 
provide these act ions we def ine some commands, 
j u s t expressions of the form "makemove(place1, 
place2)" us ing an operator "makemove" w i t h no 
equations ( l i k e succ f o r numbers). Now we can 
def ine a dynamic Blocks World, in which you can 
execute commands to change the t ab le top , 

proc Commands (P lace: T r i v ) = 
theory sor ts command 

opns makemove: p lace,p lace -> command 
endth 

proc Blocksworld (Block: I d , Place: Id ) = 
enr ich combine (Tabletop (Block), Place, 

Commmands Place by 
opns execute: commands, tabletop -> Tabletop 
eqns execute(makemove(p,p1),t) = move(p,p1,t) 

enden 

Sta te -ac t i on system and Problem Solver 

Quite separate ly from the Blocks World, but 
la ter to be combined w i th i t , we def ine a Problem 
Solver theory f o r some a r b i t r a r y system w i th 
s tates and ac t i ons . F i r s t we def ine the s t a t e -

I n v l t e d Papers-2: B u r s t a l l 
1054 



a c t i o n system alone w i t h j us t these two s o r t s , 
then we have a procedure I t e r a t e to enr ich any 
s t a t e - a c t i o n system to give the" e f f ec t of a whole 
s t r i n g of ac t i ons . A problem solver is then 
def ined f o r such a system, w i t h an operat ion 
solve which must a t t a i n any reachable set of goal 
s ta tes - Note tha t we do not say how solve is to 
be programmed, j u s t spec i fy i t s desired r e s u l t . 

Blocks World Problem Solver 

We now put t h i s a l l together by de r i v i ng the 
requ i red operat ions f o r a s ta te -ac t i on system 
from the Blocks World, and apply ing the theory 
producing procedure Problem-Solver to i t . The 
r e s u l t i n g theory spec i f i es the no t ion of so lv ing 
a problem f o r our Blocks World, that is f i n d i n g a 
sequence of su i t ab le moves to get from one s ta te 
to a spec i f i ed set of s t a tes . (In p rac t i ce we 
would have to add ex t ra operators to describe the 
s t a r t and goal s t a tes . ) We choose to represent 
blocks and places by na tu ra l numbers, but we 
leave as a parameter the set of na tu ra l numbers 
determining j u s t which places are invo lved . 

examples. 
( i ) The language pays f o r the ex t ra s t ruc tu re and 

localness by being ra ther cumbersome. Is 
t h i s i n e v i t a b l e ? We t r i e d to moderate the 
longwindedness by 3ome conventions, but 
feared to sp r ink le too much 3Ugar l e s t the 
reader lose s igh t of the basic mechanisms. 

( i i ) Should we d i s t i ngu i sh two kinds of e n r i c h 
ment (a) adding new sor ts and operators and 
equations about them, but wi thout cons t ra in 
ing e x i s t i n g operators f u r t h e r , (b) imposing 
f u r t h e r equations on the e x i s t i n g operators? 

( i i i ) Could we improve on the rather clumsy way 
shar ing i s i nd ica ted i n derive? 

( i v ) The induce operat ion is ra ther d i f f e r e n t from 
the o thers , a l i t t l e myster ious. We stuck 
it in whenever we were t a l k i n g about a p a r t 
i c u l a r data s t r u c t u r e . Could i t be inser ted 
more sys temat ica l l y? Perhaps we should 
d i s t i n g u i s h between theor ies used as meta-
s o r t s , which genera l ly do not need induce, 
and other t heo r i es , which genera l ly do. 
Does induce al low us to make a l l the induc
t i v e inferences we need? 

(v) Is our t r a n s f e r of the LISP sharing paradigm 
to theor ies the best approach? Can we make 
good our c la im to understand i t s semantics? 

Programs and theory morphisms 

In t h i s sec t ion we discuss in a ten ta t i ve way 
how programs, as opposed to spec i f i ca t i ons , might 
f i t i n t o our a lgebra ic framework. For t h i s we 
w i l l need to def ine a 'morphism' between theor ies , 
which represents one theory in another. (The 
theor ies and t h e i r morphisms form a category, 
Lawvere 1963). The idea is that a program is 
e s s e n t i a l l y a means of represent ing one theory 
( the s p e c i f i c a t i o n ) in another theory (the 
machine), that is a morphism from one to the 
other . 

We can o f ten represent operators of one 
theory by operators of another, to be precise by 
der ived operators of the other theory. By a 
der ived operator of a theory we mean one which 
can be expressed in terms of the p r i m i t i v e oper
a t o r s . In a theory w i t h p r i m i t i v e s ' no t ' and 
'and ' the operator 

is a der ived operator ( ' o r ' ) . In general we 
may b u i l d any term in the p r i m i t i v e operators 
us ing su i t ab le v a r i a b l e s , using the f a m i l i a r 
no ta t i on to bind these va r i ab l es . These oper
a to rs inc lude m i l i a r y ones, that is constant 
terms. An operator may be represented by more 
than one der ived operator of the other theory . 
Since our theor ies may involve several so r ts we 
must a lso represent each sor t of the f i r s t theory 
by a sor t of the second. 

Now the operators of the f i r s t theory obey 
c e r t a i n equat ions, so n a t u r a l l y the same equations 
must be t rue of the corresponding der ived oper
a tors of the second theory . 

We c a l l such a connection between two 
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theor ies a theory morphism. Here is the d e f i n 
i t i o n . * 

A theory morphism from a theory T to a theory 
T' is 

( i ) A function f from the sorts of T to the sorts 
of T. "We write s is s' to mean f(s) = s1. 

( i i ) A function g from the operators of T to non
empty sets of derived operators of T', such 
that any equation of T gives rise to an 
equation of T' when each operator of T is 
replaced by any operator in g - The input 
and output sorts of an operator in g must 
be the f-images of those of - We write 

is to mean g -

By the obvious extension,the* theory morphiam 
maps each derived operator of T to a set of 
derived operators of T'; this holds in particular 
for nullary operators i .e. constant terms. 

Consider for example Id., "the theory of ident
i f ie rs with an equivalence operator, and Nat the 

Representing sets by s t r i ngs and stacks by 
ar ray- index pa i r s are other well-known examples. 

As a matter of f ac t such theory morphisms p lay 
an essen t i a l ro le in our mathematical semantics 
f o r Clear . But here we are concerned w i t h t h e i r 
connection w i th programs. I t seems tha t i f we 
r e s t r i c t ourselves to an app l i ca t i ve language 
(w i thout assignment) our theory morphisms are the 
mathematical co r re l a te of a SIMULA c lass , CLU 
c l u s t e r or ALPHARD form, w i t h the theory T p lay ing 
the (general ised) r o l e of the newly def ined data 
type and the theory T' being the e x i s t i n g data 
type used to represent i t . The der ived operators 
in the morphism from T to T' are the procedures in 
the c lass , c l u s t e r or form dec la ra t i on . 

We do need one genera l i sa t i on however since 
in the programming case the procedures may we l l be 
recu rs i ve . For tuna te ly Wr ight , Thatcher, Wagner 
and Goguen (1976) have def ined a no t ion of ra t i ona l 
theor ies and t h e i r morphisms** a l low ing recurs ively 

* Our theory morphisms are d i f f e r e n t from Lawvere's 
which represent an operator by a s ing le der ived 
operator . 

** We would also need r a t i o n a l theor ies to make 
Clear deal p roper ly w i t h i n f i n i t e data, such as 
i n f i n i t e t r e e s , def ined i n d u c t i v e l y . 

der ived operat ions (not j u s t but recurs ion t o o ) ; 
t h i s seems to model the r e a l programming s i t u a t i o n 
(always provided tha t we regard an imperat ive p ro 
gram as a no ta t i ona l va r i an t of an a p p l i c a t i v e 
one ! ) . 

Now we see that a s p e c i f i c a t i o n is j u s t a 
theory, a machine (o r more a b s t r a c t l y the p r im
i t i v e operators and sor ts of a programming l ang 
uage) is another theory, and a program to r e a l i s e 
the s p e c i f i c a t i o n is j u s t a ( r a t i o n a l ) morphism 
from the s p e c i f i c a t i o n theory to the machine 
theory . 

Of course we should not describe t h i s mor
phism in an unst ructured way, indeed there should 
be a programming language analogous to the spec i f 
i c a t i o n language Clear, but descr ib ing morphisms 
not t h e o r i e s . * * This would be the co r re la te of 
SIMULA e t c . or more c lose ly of the i o t a language 
of Naka.jima et al, and of Parnas' (197?) method 
of programming w i t h modules. We have worked on 
such a language but decided to f i r s t get s t r a i g h t 
the ra the r easier case of a s p e c i f i c a t i o n l ang 
uage . 

How would the s t ruc tu re of such a program 
r e l a t e to the s t r uc tu re of the s p e c i f i c a t i o n which 
it implements? The degree of closeness would be 
up to the implementer, but it would be natura l to 
use the var ious theor ies def ined f o r s p e c i f i c a t i o n 
purposes to def ine the task of subparts of the 
program. In general one would expect the spec i f 
i c a t i o n would be simpler than the program, and to 
speci fy par ts of the program one would need to 
e laborate the theor ies used in the s p e c i f i c a t i o n 
w i th new sor ts and operators . For example one 
might decide to use the GPS method to solve the 
blocks world problem, and one would have to enr ich 
the s t a t e -ac t i on theory w i t h new sor ts l i k e 
' d i f f e r e n c e ' and operators l i k e ' reduces ' . 

A speculat ive conc lus ion: the main i n t e l 
l e c t u a l task of programming is e labora t ing the 
theor ies which describe a l l the concepts used in 
the actua l program. W r i t i n g the code ( d e f i n i n g 
the morphisms) is a much more humdrum business. 

Ah w e l l ! This is a l l d e l i g h t f u l l y vague 
and a great deal of work needs to be done. But 
i t does promise to be i n t e r e s t i n g . 

Conclusions 

The main po in t o f t h i s paper i s tha t i t i s 
poss ib le to spec i fy complex tasks provided tha t 
we do not t r y to wr i te the s p e c i f i c a t i o n s in an 
unst ructured way. Our p a r t i c u l a r language p ro 
posal i s only important in b r i ng ing i n t o fbcus the 
problem of dev is ing s t ruc tu red descr ip t ions of 
s p e c i f i c a t i o n s and suggesting the k i nd of oper
a t ions which should be used to b u i l d them up. The 
basic ideas developed f o r data abs t rac t i on in 
programming languages should guide us in t h i s 
task , and we f i r m l y be l ieve tha t the mathematical 
ideas about the category of theor ies can help us 
to grasp the ra the r deep concepts invo lved-

** We have a base f o r such development in the 
equat ional languages we have already implemented 
OBJ (Goguen and Tardo 1977) and NPL ( B u r s t a l l 
1977). 
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