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Objectives 

Histor ica l ly , programs that use big search have been 
d is t inc t l y super ior to those that rely more on Knowledge 
than search. We wish to discuss here why this is, and what 
can be done to produce more successful programs in the 
AI mold, i.e. using Knowledge to guide actions, rather than 
d i scover ing useful actions as the result of search. 
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Abs t rac t 

We discuss some important propert ies of various search 
techn iques , and some proper t ies that Knowledge must 
have in o rder to support adequate game playing 
behav io r . 

I. Some Points on the Continuum 

It seems that eve ry th i ng in game-playing (and possibly in 
all of AI) u l t imate ly comes down to Knowledge and search. 
This is rea l ly another case of a space/t ime tradeoff. All 
s t a te -space problems can be solved by searching, if 
t h e r e w e r e enough time to do a complete search of the 

p rob lem space. Also all problems can be solved by 
enough Knowledge, by merely having all pert inent 
i n fo rmat ion available for every node in the problem 
space; p rov ided it is available and there is enough space 
to s to re it. TasKs that can be solved by either of these 
methods are considered not to be interest ing. 

To search wi thout Knowledge when a complete search is 
not possib le does not maKe sense. To apply part ial 
Knowledge wi thout search has not been very successful 
in games such as chess. Turing achieved only mediocre 
p lay w i t h his (hand-simulated) chess program Turochamp 
[ T u r 5 3 ] , and other attempts since then have not realized 
much improvement . 

Thus in te res t ing problems appear to require a combination 
of search and Knowledge. However, there are many 
poss ib le methods, bo th for control l ing the search and 
for o rgan iz ing the Knowledge. Knowledge must be able 
to de tec t in ter im advantages. In non-terminal states 
such in te r im advantages can be considered indicators of 
how the game may go in the future. 

A search w i t h such Knowledge will be able to f ind leaf 
nodes at the limit of its searching capability which 
maximize its understanding of the universe. However, 
such a search only understands "ends"; it does not 
unde rs tand "means". Thus if it reaches a leaf node in a 
search to an a rb i t ra ry depth, it does not understand how 
it ach ieved its present success (or lacK of it). This creates 
addi t ional problems when a greater success can be 
ach ieved in another branch by the same means, but at a 
s l igh t l y g rea te r dep th . This is the Horizon Effect [Ber73] . 

I I . Some Tractab le Search Techniques 

It is convenient here to distinguish goal-d i rected 
searches which develop and prune nodes based on 
p r o p e r t i e s of a node (rather than the terminal value of 
i ts b ranch) , and "mindless" techniques which search all of 
a p r e d e f i n e d search space to f ind the optimal path , 
bas ing decisions solely on the value of terminal nodes. To 
da te the la t ter techniques have been eminent ly 
more successful in game-playing. This is no doubt due 
to the t remendous amount of Knowledge that is requ i red 

1 This worK was suppor ted by the Advanced Research 
P ro jec ts Agency of the Office of the Secretary of Defense 
(con t rac t F 4 4 6 2 0 - 7 3 - C - 0 0 7 4 ) and is monitored by the Air 
Force Off ice of Scientif ic Research. 
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to adequate ly guide a goal-directed search in a large 
domain. We now discuss advantages and limitations of each 
approach . 

A. Techniques that search a uniform space 

It is now ra ther clear that the old controversy of 
d e p t h - f i r s t vs. breadth- f i rs t search (if it was ever 
rea l l y con t rovers ia l ) has been resolved in favor of a new 
techn ique cal led depth- f i rs t search with i terat ive 
deepen ing . This technique was discovered independently 
by Slate & Atk in [Sla77] of the Northwestern University 
chess g roup , and James Gillogly, then at Carnegie-Mellon 
Un ive rs i t y . The technique searches depth- f i rs t fashion 
to dep th N, and repor ts its results. The search is then 
i t e rea ted to dep th N + l , using information gained in the 
ear l i e r searches. This information allows the guiding of the 
search so as to produce a better ordering of alternatives, 
wh i ch makes the alpha-beta mechanism more effect ive. 
This makes an i tera ted depth-n search cheaper than a 
d e p t h - n search wi thout the signposts (so to speak). 
These resul ts indicate that search to one additional ply 
maintains much of the relat ive value structure of the 
b ranches , at least in a domain such as chess and almost 
ce r ta in l y for any domain having structure. This technique is 
also v e r y e f fec t ive in allocating time to a search as the 
t ime for one addit inal i terat ion can be well estimated from 
the p rev ious ly i terat ions. Thus this technique which 
combines the best features of depth- f i rs t alpha-beta 
(e f f i c iency) and breadth- f i rs t (uniform coverage) appears 
vas t l y super io r to any other technique that searches a 
un i f o rm space. 

B. Techniques that Search Selectively 

Se lec t ive search techniques are generally classified as 
b e s t - f i r s t searches. It is very probably that the reason 
that these techniques have not been very successful is 
that at e v e r y node it is necessary to apply knowledge to 
ciecide how to continue the search. The decision can range 
f r o m s topp ing , to jumping to another branch of the t ree, to 
se lec t i ve ly expanding the current node. The knowledge 
that could be used for such purposes is extensive, and it 
appears qui te l ikely that no one has thus far been able to 
ciccumulate a data base of sufficient size and detail in any 
complex domain. However, it appears likely that there is 
another reason too; one-pass evaluation which we take 
up in sec t ion V. Of the present techniques, Harris' 
b a n d w i d t h .search (an adaptation of the A* procedure) 
appears v e r y e f fect ive [Har74]. 

I have recen t l y invented a new procedure called the B* 
t r e e search procedure which combines the best facets of 
b e s t - f i r s t searching w i th branch and bound [Ber77] . This 
p rocedu re requ i res that an optimistic and pessimistic 
va lue be assigned to every node at the time it is 
genera ted . When the most optimistic (as seen from the 
opponen t ' s side) successor of node N is better for the 
side on move at node N than the previously estimated 
pessimist ic value, then this pessimistic value is adjusted to 
c o r r e s p o n d w i t h the most optimistic value of the opponent. 
In the same way the optimistic value at node N must be 
ad jus ted if the pessimistic value of the most pessimistic 
successor to node N (as seen by the opponent) is 
w o r s e than the previously estimated optimistic value. In 
th is way values are backed up from newly expanded 

nodes. To f ind the next node to expand, it is only 
necessary to trace the most optimistic (for both sides) 
pa th th rough the t ree and expand that node, although 
o the r search strategies are possible. The search 
te rmina tes when it can be shown that the pessimistic 
va lue of a successor node to the root is at least as good 
a:, the best opt imist ic value of the remaining successors to 
the root . 

In Diagram 1, we i l lustrate a simple search wi th B*. The 
upper par t shows an initial tree configuration, and the 
l owe r shows the t ree upon completion of the search. Nodes 
in boxes have MAX to play; nodes in circles have MIN to 
p lay . The numbers inside the node symbols indicate the 
o r d e r in wh ich nodes were expanded. The pair in brackets 
are the opt imist ic and pessimistic values at a node 
(upda ted by being crossed out). The search terminates 
because the pessimistic value of the right-most descendant 
of the root is no worse than the optimistic value of any 
o the r descendant. 

This search is guaranteed to converge as long as the 
est imates are consistent (though not necessarily 
co r rec t ) . We bel ieve that this algorithm will never expand 
more nodes than any other procedure having access to the 
same in format ion. Thus it should be the best of the AND/OR 
t r ee searching procedures. It can be tr iv ial ly demonstrated 
that in i ts OR/OR form, it can never do worse than the A* 
[N i l 70 ] p rocedure which is supposed to be optimal. 
However , in all these procedures there are serious 
d i f f i cu l t ies in f inding reasonable functions for computing 
the bounding values. 
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C. Mechanism wi th in the Search 

We consider that the actual tree search procedure is 
s t r ong l y subord inate to the abil ity to reject searching of 
s u b - t r e e s based on the semantics of the search. This 
t y p e of p run ing is suppor ted by mechanisms that collect 
i n fo rmat ion (other than terminal values) during the 
search and bacK this up as the search progresses. 
Decisions are then made, based on the backed-up 
in fo rma t ion , which allow pruning of large sub-trees. 

The f i rs t of these mechanisms to appear was the 
Causal i ty Facil i ty [Ber74 ] in my chess program 
CAPS- I I . This faci l i ty collected descriptions from nodes 
w h e n backing up in a tree search. When it reached a 
node w h e r e the side on move was not satisfied with the 
backed up value of the search (measured against a 
g loba l expecta t ion level), that side set in motion the 
causal i ty faci l i ty which examined the backed up 
desc r i p t i on (called the refutat ion description). Current 
ve rs ions of the causality facil i ty are able to determine 
whe the r or not the problem described by the refutat ion 
desc r i p t i on was caused by the current move at this node. 
If so, a lemma is posited which describes the partial 
pos i t i on (out of the current position) which makes the 
r e f u t a t i o n descr ip t ion possible. Lemmas are also posited 
about w inn ing moves. Whenever a move is suggested at 
some f u tu re point in the search, the lemma file is f irst 
examined to determine if a lemma exists about this move 
and if the part ia l board descript ion matches. If so, the 
resu l t of the move is assumed known and the search can 
be fo regone . A similar system has been described by 
Ade lson-Ve lsky , et. al. [Ade75]. 

If the move in question did not cause the current 
p rob lem, then we know it to have existed when the 
c u r r e n t node was reached. Thus the backed up 
r e f u t a t i o n descr ip t ion, describes this problem. The 
causal i ty fac i l i ty has mechanisms for generating the set of 
all moves (counter-causal moves) that can do something 
about the re fu ta t ion description. This can save a 
t remendous amount of ef for t in ad hoc searching to find 
a so lu t ion. Sometimes the counter-causal set is empty so 
it is known that the problem cannot be solved at this node 
and the search must back up further. Sometimes a 
p r o p o s e d counter-causal move leads to another problem 
desc r ip t i on which is also not caused by the move. Then it 
is known that there is more than one problem to solve at 
the cu r ren t node, and any suggested move must be on the 
list of counter -causal moves for each such problem, a fact 
wh i ch radical ly reduces fur ther search. 

Ano the r technique was recently demonstrated by Pitrat 
[ P i t 7 7 ] . He used plans to guide the search. Plans were 
fo rmu la ted to sat isfy goals of winning at least a certain 
amount of mater ial . If such a plan failed, the reason for its 
fa i lu re was analyzed, and a plan for overcoming this 
d i f f i cu l t y was inser ted into the appropriate place in the 
or ig ina l p lan. The descript ion of the plan was pushed 
d o w n the t ree as the search progressed and only moves 
in accordance w i th the plan (as modified) were admitted to 
the search. This method was shown to develop small 
t r ees and solve many interest ing chess problems. 

The essence of techniques of this type is that a potential 
move is analyzed w i th respect to a specific purpose. If the 
move fai ls, then information is returned which can be used 
to improve the select iv i ty of the remaining search. It 
appears to this wr i te r that these techniques are ripe for 
app l icat ion to other areas, e.g. theorem proving, planning 
techniques.. 

I I I . Problems w i th certa in Search Techniques 

At t imes search is a very powerfu l technique, achieving 
th ings that humans may have diff iculty in replicating, e.g. 
Samuel's checker program [Sam63"|, Dendral [Buc69], and 
CIESS 4.5 [Sla77]. However, certain artifacts appear to be 
associated w i th some wel l known search techniques. 

Any p iocedu re which changes the mode of search 
( including terminat ion) at an arbi t rary depth creates the 
condi t ions necessary for the Horizon Effect [Ber73] . Thus 
searches to f ixed depths must reconcile themselves to the 
poss ib i l i t y that the program will t ry to push unavoidable 
consequences over its search horizon, by conceding lesser 
(but avoidable) ones. 

Techniques that search a large uniform space usually t r y 
to get the maximum value for each CPU second of 
eva luat ion . This is because there are many nodes to be 
eva lua ted and a few extra microseconds per node may 
add an in to lerable amount of time to the whole search. 
The re fo re evaluat ion must be lean. If a tree contains two 
or t h ree reachable good nodes, the path to one of these 
wi l l be selected depending upon very arb i t rary factors. 
1 his is f ine when all these nodes are very favorable. 
However , in delicate situations it would be highly 
des i rab le to isolate the competing nodes and apply 
addi t ional knowledge to them in an effort to find which 
is rea l ly best. 

The minimax a lpha-beta procedure is undoubtedly the most 
e f f i c ien t of all known search procedures. However, a 
minimax procedure does very poorly at defending losing 
pos i t ions. In such cases, it wil l almost always choose the 
pa th wh ich postpones the opponent's win the longest. 
However , this is seldom the best way. In bad to hopeless 
s i tuat ions it appears necessary to have an opponent model, 
no mat ter how pr imi t ive, and select moves based on the 
hope that the opponent is fall ible and will thus not always 
f i nd the best way. Thus, for instance, it would be 
emminent ly reasonable for a program to avoid losing a 
rook in an o therwise even posit ion, at the cost of the 
opponen t f inding a diff icult mate in five moves. However, 
any p rog ram using the minimax approach and discovering 
the opponent ' s mating possibi l i ty will defend against it 
and leave the rook to its fate. Further, in near equal 
pos i t ions it is sometimes wise to take small risks in the 
hope of gaining an advantage. This, too, is impossible 
w i t h the minimax model. 

IV. Knowledge Organizat ion 

When the search does not go to terminal nodes as 
de f i ned by the domain, knowledge is needed to evaluate 
leaf nodes. In goal directed searches knowledge is also 
needed to make guiding decisions, if any kind of 
means-ends methods are used. 
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The resu l ts of Samuel[$am63, Sam67] have always been 
i n t e r p r e t e d to mean that a linear polynomial cannot 
adequate ly span a large domain such as checkers. 
However , recen t l y Slate & Atkin [Sla77] have had great 
success w i t h their chess program CHESS 4.5. This 
p r o g r a m uses essential ly one evaluation function for 
the who le domain. The coefficients of the terms are 
des igned so that they change very slowly over the 
domain, and thus provide a sort of roll ing landscape in the 
eva lua t ion space. With this type of design, the 
p r o g r a m appears to always find something constructive to 
do. It seldom gets stuck on a hill, since there is always a 
somewhat higher hill wi th in searching distance from the 
p resen t one. 

H o w e v e i , it is not diff icult to show that it is 
imposs ib le to evaluate all states in a state-space 
c o r r e c t l y w i th a single (reasonable) function. In chess, 
for instance, there are positions where changing the 
locat ion of one man by one square, or changing whose 
t u r n it is, can make the di f ference between a win, loss, 
or d raw. For many of these positions, even expert 
p laye rs wil l requi re some time to fully comprehend the 
value of the si tuat ion. Therefore, the single function 
approach appears to have definite limitations, and it may 
he necessary to par t i t ion the state-space and make 
eva lua t ion funct ions which are expert in certain 
s ta te classes only. 

Such exper t funct ions could show their wor th when 
branches lead to leaf nodes representing very di f ferent 
k inds of posi t ions. Consider Figure 1. 

Whi te can win by playing QXP because the K&P ending is 
won . But if the Black king were one square nearer to the 
center of the board , the K&P ending is a draw. Therefore, 
QxP is on ly e f fec t ive now, and it is inconceivable that 
Whi te can win any other way. In the single function 
approach , it is almost inevitable that Q vs. R+P will be 
cons idered be t te r than the materially even K&P ending. 
It wou ld be simple to design functions which would 
judge bo th posit ions as superior for White. However, 
for the state-c lass approach to succeed it is necessary 
fo r the K&P endgame function to recognize that 
endgame as a win. Otherwise, this opportuni ty wil l be 

missed. This shows that at times it is necessary to have 
excel lent goodness order ing across state-class 
boundar ies . However, merely recognizing the goodness of 
a pos i t ion may not be suff icient. Consider Figure 2. 

Whi te has a winning posit ion and can play K-B3, K-K3, or 
K-K4, all of which retain the win. However, if he chooses 
e i ther of the f irst two alternat ives, he will be back in the 
cu r ren t posi t ion in another three ply. This is an instance 
of the "make-p rogress" problem which can frequent ly be 
reso l ved by the search, which notices that no progress 
has been made. Howeve i , in more complicated examples, 
this may not suff ice. Notice that if in Figure 7 the White 
k ing w e r e at QB2 then it would be sufficient to recognize 
the pos i t ion resul t ing from K-B3 as a win because there 
are no real competitors to it. Thus the make-progress 
issue can be separate from the goodness issue. The 
make p rogress issue was f irst t reated by Huberman 
[ H u b 6 6 ] by having predicates which recognized 
nearness to a mate in simple winning chess endgames. 
However , the problem exists both in winning positions 
and also in posit ions that are not clearly won, but 
w h e r e a path toward progress exists. Another issue is 
"how to put up resistance", which arises in bad or losing 
pos i t ions. This is not quite the inverse of make-progress, 
because whi le there may be a guarantee of progress in 
super io r posi t ions, it is up to the losing side to f ind the 
method of resistance which requires the most knowledge 
(or calculat ion) f rom the superior side. 

To invest igate the above knowledge issues, we have for 
some time now been investigating backgammon, a 
game wh ich due to its non-deterministic nature has a 
b ranch ing factor of about 800 at each node. Thus full 
w i d t h searches in this environment (as in GO) are not 
sensib le. Our program achieved the abil ity to discriminate 
genera l l y favorab le and unfavorable factors together wi th 
a p p r o p r i a t e coef f ic ients for a single evaluation polynomial. 
This design reached a high beginner level, but there 
w e r e great problems in having it understand more by 
mere ly adding more terms and tuning coefficients. In 
search ing programs, some of these problems are 
subo rd ina ted by the search, since the program does not 
have to know about "means" up to the search depth, and 
any pos i t ion potent ia l up to that depth also does not have 
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to be i n fe r red . 

We have now implemented several state-classes which 
al low a great deal of context to be brought to bear on 
any eva luat ion. In some cases evaluation is i terat ive, so 
that addit ional Knowledge is only invoked when 
compet i t i ve moves exist. These steps have caused a great 
jump in per formance of the program; however, it is still too 
ea r l y to evaluate the whole approach. 

V. A modest Proposal 

All these problems appear to be due to the fact that 
game p lay ing programs indulge in one-pass evaluation of 
all nodes, i.e. the amount of knowledge that can be applied 
to a node has been predetermined. It is thus an efficient 
amount of knowledge, since applying all that is known 
w o u l d not be cost -e f fec t ive most of the time. While this 
is f ine for picking out the correct branch when there 
are no real compet i tors, this does not work when 
severa l nodes are ve ry close in value or when there are 
o ther fac tors such as creating opportunit ies for opponent 
e r r o r . (Much of this was already pointed out in [New55]). 
Here a mul t i -s tage process which weighs the pros and 
cons of each competitor for best node is required. It 
w o u l d seem that an ideal framework in which to do this 
search is the 8* algorithm. What is known about a node 
wi l l increase as nodes in its sub tree are expanded, 
f u r t h e r , the amount of knowledge being applied can be a 
func t ion of the degree of competitiveness between 
nodes. A f i rst attempt at this type of problem solving 
mechanism is repo r ted in [Per77] . 
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USING PLANS IN A CHESS PLAYING PROGRAM 

Jacques Pitrat 
C.N.R.S. 

Paris, France 

1 p resen t a p rog ram which does not develop systematically 
a la rge t r e e ; but it analyzes careful ly the initial si tuat ion 
and gene ra tes plans which it then executes. The analyses 
d e e p e r in the t ree are made only when something goes 
w r o n g and are a lways d i rected towards a goal. With this 
m e t h o d , it is possib le to f ind combinations requir ing many 
ply-
Today the chess p lay ing programs do not play as wel l as 
the g randmaste rs . One reason is that there are serious 
p r o b l e m s for deve lop ing the tree. This t ree is necessary 
for f i nd ing possib le combinations. Programs develop ve ry 
l a rge t r e e s , but i t o f ten occurs that important moves are 
not inc luded in the t ree ; the minimax procedure backs up 
an i nco r rec t value if somewhere in the tree the best move 
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is o m i t t e d As it is di f f icul t to generate large trees, the 
so lu t i on seems to be to improve the choice of the moves at 
a l l the levels in the t ree. 

I have rea l i zed a p rogram founded on this principle. This 
p t o g t a m cannot play a game, but only indicates if a 
c o m b i n a t i o n exis ts in the given posit ion. The program 
analyzes, this pos i t ion v e r y meticulously. It does not, as 
anany p rog rams , generate all the legal moves and then 
e l im ina te some of them later. But it searches for the 
cha rac te r i s t i c s of the posit ion and, using these 
c h a n a c t i c s , i t generates plans, i.e., a sequence of 
ac t ions that may be t r ied . 

The p r o g r a m looks for var ious characterist ics, one of the 
most impor tan t is f inding men which could be attacked, 
c i t h e r because they are not protected or because their 
va lue is h igh. When these men have been found, the 
p r o g r a m checks if two of them can be attacked 
s imu l taneous ly (double attack or pinning one of them if 
t h e y are on the same line). Eventually, if there are some 
obs tac les wh ich are in the way, it indicates that they first 
have to be removed. If a man has a low mobility (as the 
K ing) , it looks for an attack on him alone. In some cases, it 
f i r s t p romp ts an enemy man to move to some square 
b e f o r e rea l iz ing the combinat ion. 

Fx. f i g u r e 1. This posi t ion was taken from a game 
lORRF F d w a r d Lasker. The combination was not seen by 
L a s k r r w h o p layed f7 - f6. 

I be kn ight on e5 is at tacked once and protected once. The 
f i r s t p lan is: Play Qd6xe5. It failed because White plays 
B b 2 x e 5 . So the p rogram modifies its plan and first adds a 
s u b p l a n for co r rec t i ng this. For instance: 

M o v e one of my men to c3 such that this man creates a 
t h r e a t . 

Then p lay Qd6xe5. 

1K fo r k ing. Q for queen. R for rook. B for bishop, N for 
kn igh t . P for pawn. Each square is name by the 
comb ina t i on of the le t ter of the file and the number of the 
rank . 

Fx. F igu re 2. The wh i te King cannot move. So the program 
t r i e s to at tack it. One possibi l i ty is to play a bishop on a3 
a f te r remov ing the pawn on b2. For playing a bishop on 
a3, it is necessary to f i rs t remove the pawn from d6. The 
f o l l o w i n g plan is genera ted : 

Remove the pawn f rom d6 so that it creates a 
th rea t . Remove the pawn from b2. Play Bf8~a3. 
Play Ba3xcJ . 

In general, if the king and an unprotected knight are on the 
same f i le , the p rogram tr ies to play a rook or the queen on 
th is f i le . But it never considers a pr ior i all the moves of 
the rooks , 

This analys is is v e r y slow, but it is done only once. The 
p r o g r a m usual ly produces several plans and then it tr ies to 
e x e c u t e them. 

Fx. F i gu re 1. For real iz ing its plan, Black can move a pawn 
to c 3 , t h rea ten ing the bishop, there fo re : 

Play t4-e.3 Then play c3xb2 or Qd6xe5. 

Fx. F igu re 2. Black removes the pawn on d6, if it plays 
d 6 - d 5 th rea ten ing d5xc4. I f after d6-d5, White plays 
Bc4xd5 , the p rog ram tr ies the second element of the plan, 
i.e., r emove the pawn f rom b2. The principal methods for 
r e m o v i n g an enemy man and leaving the square empty are: 
t h r e a t e n i n g it or captur ing a man which it protects. Here 
the p a w n p ro tec t s the pawn on c3. The program looks for 
the moves cap tu r ing c3: Qf6xc3. I f White replies wi th 
b 2 x c 3 , Black considers immediately the th i rd element of the 
p l an , i.e., B f 8 - a 3 mate. 

We see that it is not necessary to analyze fully the other 
pos i t i ons , w h e n the plan is in action. It is sufficient to 
g e n e r a t e the moves which can realize some goal, for 
ins tance remov ing some enemy man or ver i fy ing that some 
move is a lways legal. There are two advantages: the 
ana lys is is fast and the program generates few moves: 
usua l l y on ly a few moves satisfy a goal. 

At each leve l of the t ree , only "obvious" moves are 
c o n s i d e r e d . A move is added to the tree only if there is 
some reason to do so. If there is some problem, if the plan 
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cannot bo execu ted as it was foreseen, the program looks 
for the enemy moves which hinder the success of the plan. 
T h e n it modi f ies the original plan as follows: it adds a 
s u b p l a n w h i c h cor rec ts the problem. 

This e n t i r e method is appl ied for generating the moves of 
b o t h p l aye rs . 

The p r o g r a m analyzes quickly the intermediate positions 
w h e n all the plans fai l . The main principle is to search for 
n e w poss ib i l i t ies to capture an opponent (moves which did 
not ex ist t w o p ly before) such that this capture is 
advan tageous (capture of an unprotected man or of a man 
w h o s e va lue is g rea ter than that of the capturing man). 

Fx. F igu re 1. A f ter c4 -c3 , White has two new possibilities 
to c a p t u r e : the f i rs t is d2xc3, but the second element of 
the Black 's p lan, i.e., Qdxe5, succeeds. The other is Bb2xc3 
w h i c h also des t roys the threat c3xb2. If now Black plays 
Q d 6 x e b , t he re is the new oppor tun i ty to capture: Bc3xe5 
and Black's p lan fails. 

A n o t h e r way of using the initial analysis is to see if one of 
the in i t ia l plans cannot also be executed deeper. This can 
be done if the f i rs t condit ion of the plan is now fulfi l led. 
In the case of Figure 1, the program generated several 
in i t ia l p lans, and among them was: 

Remove Bb2 

Then p lay Qd6xa3 

A f t e r c4-c3 Bb2xc3 , it sees that the first element of the 
p r e c e d i n g p lan is sat isf ied. Then it considers the second 
e lemen t , Qd6xa3 and the combination succeeds. 

Figure 3 

White to Play 

x. F igure 3. The program finds only one useful 
cha rac te r i s t i c : the queen on d5 is vulnerable. Only one 
p lan is c rea ted : 

Play Qd2xd5 

A f t e r th is move, Black plays Rd8xd5 and White has no 
advan tage . So it t r ies to destroy the possibil ity of playing 
Rd8xd5. One way is to remove the rook. So a new plan is: 

Remove the rook f rom d8 

Play Qd2xd5 

A me thod for removing a piece is to threaten it. It is 
poss ib le w i t h the rook f l : 

If t h e r e is a new oppor tun i t y to capture, the program adds 
it in all i ts plans which are possible in this position. For 
i ns tance , for F igure 1, if, after c4-c3, White plays Qa3xd6, 
the p l an : 

Play c 3 x b 2 or Qd6xe5 
becomes : 

Play c 3 x b 2 or c7xd6 
s ince Qd6xe5 is no longer legal and c7xd6 becomes a new 
poss ib i l i t y to cap tu re . Af ter Black plays c7xd6, Black has a 
n e w chance to capture : d6xe5 and after c7xd6, i t 
cons ide rs the p lan: 

Play c 3 x b 2 o r d6xe5 

Wh i t e cannot do anything against this plan, and the 
comb ina t i on st i l l succeeds. Naturally there are other 
v a r i a t i o n s . 

The in i t ia l analysis of a posit ion generates a set of plans. 
These plans genera te a set of moves at the first level of 
the t r e e . If one of these moves leads to a failure, the 
p r o g r a m analyzes the reasons for this failure and 
e v e n t u a l l y c reates some new plans. With these plans, we 
may g e n e r a t e moves which were not considered before. 

Play R f ) - ( 8 

Then p lay Rf8xd8 or Qd3xd5 

So the p rog ram considers Rf 1 - f 8 which was not f i rst 
cons ic lered. It is not an obvious move, because the rook 
on f8 is not p ro tec ted and is attacked twice. This is a 
check move, but the program does not consider it because 
the black king can move to h7 and because if the whi te 
r o o k is on f8 , it may be captured. After R f l - f 8 , Black may 
p lay Rd8x f8 , and then White executes the following move 
in the p lan : Qd2xd5. So Black considers Kh8-h7. If White 
p lays the fo l l ow ing move Rf8xd8, Black replies Ra8xd8 and 
the comb ina t ion fai ls. But the alternative move of the plan, 
Qd2xd5 is good. Black plays Rd8xd5 and there is a new 
poss ib i l i t y to cap tu re : Rf8xa8. 

In the same way (see Figure 1), we have seen that c4-c3 
was cons ide red only because Black realized that it was 
i n t e r e s t i n g to obs t ruc t the diagonal a3-d6. 

The p r o g r a m does not develop the tree in depth f i rst . I t 
d e v e l o p s the nodes be fore or after the enemy moves, such 
tha t , i f t hey w e r e not legal, the balance backed up wi th the 
minimax p r o c e d u r e wou ld be advantageous. If i t succeeds, 
i t app l ies the same method for the other player. Therefore 
it is necessary to represent the tree in the computer. But 
th is is feas ib le , because the tree is not very large. It is 
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not poss ib le to use the alpha-beta procedure, because 
a f te r each node the program may later add new nodes. 
But the method used takes into account the provisory 
ba lance f ound w i t h the minimax. It is diff icult to compare 
my me thod w i t h the a lpha-beta procedure, but my method 
is also v e r y se lec t ive : the program considers only the 
advan tageous moves. If, for instance, some enemy move 
e v a d e r s an at tack, it does not develop the other enemy 
moves at t he same level . 

The main d i f f i cu l t y in implementing this method is 
p r o g r a m m i n g the analysis of the initial posit ion. This is not 
a p r o b l e m of computer t ime, because this analysis is made 
o n l y once , but this p rogram is large and difficult to define. 
For th is reason , I do not program the detection of all the 
poss ib l e t y p e s of combinations. For this, it would be 
n e c e s s a r y to add some subrout ines to the program. But I 
do not be l i eve that it is possible to wr i te a chess program 
w h i c h is s imple and e f fec t ive . Playing chess is a difficult 
p r o b l e m and it wou ld be necessary for several scientists to 
w o r k severa l years to create a chess program playing as 
w e l l as a grandmaster . 

Be r l i ne r has w r i t t e n independent ly a very interesting 
p r o g r a m wh ich has several similar features. For instance, 
if a node has been developed, and if the opponent has a 
comb ina t i on af ter this move, then it is possible, wi th the 
causa l i t y fac i l i t y , to generate new moves which destroy the 
comb ina t ion . But most of the chess playing programs do 
not use such methods and systematically develop large 
t i e e s . Now they have bet te r results because the authors 
use v e r y c lever methods to develop the tree. It is now 
n e c e s s a r y to w o r k in another direct ion, using methods 
d e v e l o p e d by Ber l iner and myself (and certainly some 
o t h e r methods which have not yet been found). The 
r e s u l t s are not a lways successful at this time, because it is 
d i f f i cu l t to w r i t e and check large programs, but, in my 
o p i n i o n it is possible to considerably improve the 
p e r f o r m a n c e . 
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