
META-LEVEL KNOWLEDGE: OVERVIEW AND APPLICATIONS

Randall Davis and Bruce C. Buchanan
Computer Science Department

Stanford University
Stanford, Cali fornia 94305

Abstract
We define the concept of meta-level Knowledge, and illustrate

it by br ief ly reviewing four examples that have been described in
detail elsewhere [2-5). The examples include applications of the
idea to tasks such as transfer of expertise from a domain expert to
a program, and the maintenance and use of large Knowledge bases.
We explore common themes that arise from these examples, and
examine broader implications of the idea, in particular its impact on
the design and construction of large programs.

This work was supported in part by the Bureau of Health Sciences
Research and Evaluation of HEW under Grant HS-01544 and by the
Advanced Research Projects Agency under ARPA Order 2494. It
was carried out on the SUMEX-AIM Computer System, supported by
the NIH under Grant RR-00785. The views expressed are solely
those of the author.

(1) Introduction
The representation and use of knowledge has been a central

problem in Al research. A range of different encoding techniques
have been developed, along with a number of approaches to
applying knowledge. Most of the effort to date, however, has
concentrated on representing and manipulating knowledge about a
specific domain of application, like game-playing ([14]), natural
language understanding ([15], [19]), speech understanding ([8],
[11]) , chemistry ([7]), etc.

This paper explores a number of issues involving
representat ion and use of what we term meta-level knowledge, or
knowledge about knowledge. It begins by defining the term, then
exploring a few of its varieties and considering the range of
capabilities it makes possible. Four specific examples of meta-level
knowledge are described, and a demonstration given of their
application to a number of problems, including interactive transfer
of expert ise and guiding the use of knowledge. Finally, we consider
the long term implications of the concept and its likely impact on
the design of large programs.

{2} Meta-level Knowledge
In the most general terms, meta-level knowledge is

knowledge about knowledge. Its primary use here is to enable a
program to "know what it knows**, and to make multiple uses of its
knowledge. That is, the program is not only able to use its
knowledge directly, but may also be able to examine it, abstract it,
reason about it, or direct Its application. To see in general terms
how this can be accomplished, imagine taking some of the available
representat ion techniques and turning them in on themselves, using
them to describe their own encoding and use of knowledge. The
result is a system with a store of both knowledge about the domain
(the object level knowledge), and knowledge about its
representations (the meta-level knowledge).

{3} Background
Some early efforts in Al involved the search for a single

problem solving paradigm that would be both powerful and widely
(or even universally) applicable. By the late 1960's it became clear
that a single such paradigm was at best elusive, and that high (i.e.,
near human level) performance on non-trivial tasks required large
stores of domain specific knowledge. A number of such
knowledge-based systems have been developed and the
methodology applied to a wide range of tasks, including speech
understanding [11}, algebraic symbol manipulation [121 and
chemistry {7} Because of the magnitude of the task of assembling
the knowledge base for these systems, the accumulation,
management and use of large stores of task specific knowledge has
itself become a significant research problem.

It was this problem that provided the context for the
development and exploration of meta-level knowledge reported
here. The examples described below are all aimed toward the three
aspects of the problem noted just above (knowledge accumulation,
management, and use):

Schemata (Section 4.1) and rule models (Section 4.2)
support accumulation of knowledge via interactive transfer
of expertise from a human expert to the knowledge base of
the system.

The schemata, along with the function templates (Section
4.3), provide a mechanism for handling some aspects of
knowledge base maintenance.
Finally, meta-rules (Section 4.4) are applied to the problem
of guiding the use of knowledge by offering a means of
expressing strategies.

All of these are part of the TEIRESIAS system [2-5],an
INTERLISP program designed to function as an assistant in the
construction of high performance programs. A key element in this
construction process is the transfer of expertise from a human
expert to the program. Since the domain expert often knows
nothing about programming, his interaction with the performance
program usually requires a human programmer as intermediary. We
have sought to create in TEIRESIAS a program to supply the same
sort of assistance as that provided by the programmer, in order to
remove the programmer from the loop.

We view the interaction between the domain expert and the
performance program in terms of a teacher who continually
challenges a student with new problems to solve, and carefully
observes the student's performance. The teacher may interrupt to
request a justification of some particular step the student has taken
in solving the problem, or may challenge the final result. This may
uncover a fault in the student's knowledge of the subject, and
result in the transfer of information to correct it.

Figure 1 below shows the overall architecture of the sort of
program TEIRESIAS is designed to help construct. The knowledge
base is the program's store of task specific knowledge that makes
possible high performance. The inference engine is an interpreter
that uses the knowledge base to solve the problem at hand.

Figure 1 - architecture of the performance program

The main point of interest in this very simple design is the
explicit division between these two parts of the program. This
division allows us to assign the human expert the task of
augmenting the knowledge base of a program whose control
structure (inference engine) is assumed both appropriate and
debugged. The question of how knowledge is to be encoded and
used is settled by the selection of one or more of the available
representations and control structures. The expert's task is to
enlarge what it is the program knows. If all of the control structure
information has been kept in the inference engine, then we can
engage the domain expert in a discussion of the knowledge base
and be assured that the discussion will have to deal only with
issues of domain specific expertise (rather than with questions of
programming and control structures).

In this discussion we will assume the knowledge base
contains information about selecting an investment in the stock
market; the performance program thus functions as an investment
consultant.1 Knowledge is in the form of a collection of associative
tr iples (attr ibute, object, value) which characterize the domain, and
approximately 400 inference rules built from them (Figure 2). Each
rule is a single "chunk" of domain specific information indicating an
action (in this case a conclusion) which is justified if the conditions
specified in the premise are fulfilled.

Languages & Systems-2: Davis
920

{4.1} Example 1: Schemata
{4.1.1} Introduction: the need for knowledge about representations

As data structures go beyond the simple types available in
most programming languages, to extended data types defined by
the user, they typically become rather complex. Large programs
may have numerous structures which are complex in both their
internal organization and their interrelationships with other data
types in the system. That is, the design and organization of data
structures in any sizable system often involves a non-trivial store
of detailed information. Yet such information is typically widely
scattered, perhaps throughout comments in system code, in
documents and manuals maintained separately, and in the mind of
the system architect.

This presents a problem to someone who wants to make any
sort of change to the system. Consider, for example, the difficulties
typically encountered in such a seemingly simple problem as adding
a new instance of an existing data type to a large program. Just
finding all of the necessary information can be a major task,
especially for someone unfamiliar with the system.

One particularly relevant set of examples comes from the
numerous approaches to knowledge representations which hava
been tr ied over the years. While the emphasis in discussions of
predicate calculus, semantic nets, production rules, frames, etc. has
naturally concerned their respective conceptual power, at the level
of implementation each of these has presented a non-trivial
problem in data structure management.

The second example of meta-level knowledge involves
describing to a system a range of information about the
representations it employs. The main idea here is, first, to view
every knowledge representation in the system as an extended data
type, and write explicit descriptions of each of them. These
descriptions should include all the information about structure and
interrelations that was noted earlier as often widely scattered.
Next, we devise a language in which ail of this can be put in
machine-comprehensible terms, and write the descriptions in those
terms, making this store of information available to the system.
Finally, we design an interpreter for the language, so that the
system can use its new knowledge to keep track of the details of
data structure construction and maintenance.

This is of course easily said and somewhat harder to do. It
involves answering a number of difficult questions concerning the
content of the required knowledge, and concerning how that
information should be represented and used. This paper gives an
overview of the answers, details can be found in [2] and {3} The
discussion here demonstrates briefly that the relevant knowledge
includes information about the structure and interrelations of
representations, and shows that it can be used as the basis for a
form of knowledge acquisition.

The approach is based on the concept of a data structure
schema, a device which provides a framework in which
representations can be specified. This framework, like most, carries
its own perspectives on its domain. One point it emphasizes
strongly Is the detailed specification of many kinds of information
•bout representations. It attempts to make this specification task

easier by providing ways of organizing the information, and a
relatively high level vocabulary for expressing it.

{4.1.2} Schema example
There are three levels of organization of the information

about representations (Figure 4). At the highest level, a schema
hierarchy links the schemata together, indicating what categories of
data structures exist in the system and the relationships between
them. At the next level of organization are the individual schemata,
the basic unit around which the information about representations
is organized. Each schema indicates the structure and
interrelationships of a single type of data structure. At the lowest
level are the slotnames (and associated structures) from which the
schemata are built; these offer knowledge about specific
conventions at the programming language level. Each of these three
levels supplies a different sort of information; together they
compose an extensive body of knowledge about the structure,
organization, and implementation of the representations.

schema h i e r a r c h y - indicates categories of representations and
their organization

i n d i v i d u a l schema - describes structure of a single
representation

s l o tnames - the schema building blocks, describe
implementation conventions

Figure 4

The hierarchy is a generalization hierarchy that indicates the
global organization of the representations. It makes extensive use
of the concept of inheritance of properties, so that a particular
schema need represent only the information not yet specified by
schemata above it in the hierarchy. This distribution of information
also aids in making the network extensible (see [2] for examples
and further details).

Each individual schema contains several different types of
information:

1) the structure of its instances
2) interrelationships with other data structures
3) a pointer to all current instances
4) inter-schema organizational information
5) bookkeeping information

Figure 5 shows the schema for a stock name; information
corresponding to each of the categories listed above is grouped
together.

STOCKNAME-SCHEMA
PLIST [(INSTOF STOCKNAME-SCHEMA GIVENIT

SYNONYM (KLEENE (1 0) < ATOM >) ASKIT
TRADEDON (KLEENE (1 1 2)

<(MARKET-INST FIRSTYEAR-INST)»
ASKIT

RISKCLASS CLASS-INST ASKIT
CREATEIT]

RELATIONS ((AND* STOCKNAMELIST HILOTABLE)
(XOR* COMMON PFD CUMPFD PARTICPFD)
((OR* PFD CUMPFD) PFDRATETABLE)
((AND* CUMPFD) OMITTEDDIVS))

INSTANCES (AMERICAN-MOTORS AT&T . . . XEROX ZOECON)

FATHER (VALUE-SCHEMA)
OFFSPRING NIL

DESCR " t h e STOCKNAME-SCHEMA descr ibes the
fo rmat f o r a s tock name"

AUTHOR DAVIS
DATE 1115
INSTOF (SCHEMA-SCHEMA)

Figure 5 - schema for a stock name

The first five lines in Figure 5 contain structure information,
and indicate some of the entries on the property list (PLIST) of the
data structure which represents a stock name. The information is a
tr iple of the form

<s1otname> <b1ank> <adv1ce>
The slotname labels the "k ind" of things which fills the blank, and
serves as a point around which much of the "lower l eve r
information in the system is organized. The blank specifies the
format of the information required, while the advice suggests how
to f ind it. Some of the information needed may be domain specific,
and hence must be requested from the expert. But some may
concern solely internal conventions of representation, and hence
should be supplied by the system itself, to insulate the domain

L a n g u a r g e s & S y s t e n s - 2 : D a v i s
9 2 1

RULE027
I f [1] t h e t i m e - s c a l e o f the investment 1s l ong - t e rm ,

[2] t h e d e s i r e d r e t u r n on the investment 1s
g r e a t e r than 10%,

[3] t h e area o f the Investment 1s not known,
t h e n t h e r e 1s ev idence (. 4) t h a t the name of the s tock

to i n v e s t 1n 1s AT&T.

PREMISE (SAND (SAME OBJCT TIMESCALE LONG-TERM)
(GREATER OBJCT RETURNRATE 10)
(NOTKNOWN OBJCT INVESTMENT-AREA))

ACTION (CONCLUDE OBJCT STOCK-NAME AT&T .4)

Figure 2 - inference rule (English and LISP forms)

(4) Types of meta-level knowledge
We examine below four examples of meta-level knowledge,

and review for each (/) the general idea; (//') a specific instance,
detailing the information it contains; (iii) an example of how that
information is used to support knowledge base construction,
maintenance, or use; and (/V) the other capabilities it makes
possible. Figure 3 summarizes the type of information contained in
each of the four examples.

KNOWLEDGE ABOUT IS ENCODED IN
*************** *************
representation of objects schemata
representation of functions function templates
inference rules rule models
reasoning strategies meta-rules

Figure 3 - four types of meta-level knowledge

expert from such details. The advice provides a way of indicating
which of these situations holds in each case.

The next five lines in the schema indicate its interrelations
with other data structures in the system. The main point here is to
provide the system architect with a way of making explicit all of
the data structure interrelationships upon which his design
depends. Expressing them in a machine-accessible form makes it
possible for TEIRESIAS to take over the task of maintaining them, as
explained below.

The schemata also keep a list of all current instantiations of
themselves, primarily for use in maintaining the knowledge base. If
the design of a data structure requires modification, it is convenient
to have a pointer to all current instances to insure that they are
similarly modified.

The next two lines contain organizational information
indicating how the the stockname schema is connected to the
schema hierarchy.

Finally, there is four lines of bookkeeping information that
helps in keeping track of a large number of data structures: each
structure is tagged with the date of creation and author, along with
a free text description supplied by the author. In addition, each
structure has a pointer to the schema of which it is an instance
(note in this case that it is the schema itself which is the data
structure being described by this information).

{4.1.3} Schemata: use in knowled£e acquisition
Use of the schemata for knowledge acquisition relies on

several ideas:
- information in the schema is viewed as a guide to creating a

new instance of the representation it describes.
- that guidance is supplied by

the structure description information, which is in the form
of a prototype to be instantiated, and
the relations information, which is interpreted as pointers
to a number of structures which may require updating to
insure that necessary data structure interrelations are
maintained.

- it is this instantiation and interpretation process that drives
the knowledge transfer dialog.

- the advice present in the schema adds a level of
sophistication in the dialog.

For instance, suppose in the process of adding a new rule to
the system the expert mentions a stock the system hasn't heard
about yet. Learning about the new stock (i.e., creating a new
instance of the concept stock name) becomes a subproblem in the
task of acquiring the new rule. The stock name schema is retrieved,
and used as the basis for a dialog that requests the necessary
information from the expert. Detailed examples are found in [2] and
[3] ; an abbreviated version of the dialog is shown below. (In all
traces, computer output is in mixed upper and lower case in
t h i s f o n t , while user responses are in BOLDFACE CAPITALS, tnd
commentary is (inside braces}.).

The new r u l e w i l l be c a l l e d RULE384
If 1 - THE DESIRED RATE OF RETURN ON THE INVESTMENT IS

GREATER THAN 107.
2 - THE AMOUNT OF INVESTMENT EXPERIENCE OF THE CLIENT

IS MODERATE
3 - THE AREA OF THE INVESTMENT IS NATURAL RESOURCE

DEVELOPMENT
Then

1 - THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK
TO INVEST IN IS GEORGIA PACIFIC

S o r r y , b u t I d o n ' t unders tand
THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK T(
INVEST IN IS GEORGIA PACIFIC

because these words are unknown: GEORGIA PACIFIC

{TEIRESIAS finds it cannot generate any interpretations of the text,
so it reprints the original line, and specifies the trouble.}

Would you ca re t o t r y r eph ras i ng t ha t?
++** Y
(P l e a s e use * ' s to mark what you t h i n k might be a new
a t t r i b u t e or a new va lue o f an e x i s t i n g a t t r i b u t e)

1 - THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK
TO INVEST IN IS * GEORGIA PACIFIC *

{While the language in this example is very simple, there are more
complex cases where it would be quite hard to decide from the
context what sort of new item the expert had in mind. To avoid the
necessity for more sophisticated natural language handling, he is
asked to mark off the new word or phrase with asterisks.}

It looks as though

GEORGIA PACIFIC
r e f e r s to a new value of an a t t r i bu te , correct?
+ + * * Y

. . . 1 s 1t a name of a s tock?
+ + * * Y

{The system can then do some very simple pattern matching.}

Now p l e a s e t e l l me a few t h i n g s about 1 t . . .

{TEIRESIAS retrieves the schema for a stock, and "reads" it to find
out what it needs to know about any stock.}

On what marke ts is GEORGIA-PACIFIC t raded?
The answer shou ld be 1n the form of 1 or more of the
f o l l o w i n g - <market name> <year f i r s t t r a d e d)
[T y p e 1 s e t to a l i n e , then an empty l i n e when d o n e .]
**** NYSE 1945
**** PCE 196S

{Each of the questions from the system is prompted by the attempt
to fill in some component of the data structure being built,
according to the representation conventions indicated By the
schema. A translated form of the "blank" is printed to guide the
expert; it is then used to parse his answer and insure syntactic
validity.}

What 1s t he c u r r e n t r i s k c l a s s i f i c a t i o n of GEORGIA-
PACIFIC? The answer shou ld be 1n the form of a

<r1sk c l a s s i f i c a t i o n)
**** AMEX

S o r r y , bu t t he f o l l o w i n g are i n v a l i d -
AMEX is no t a recogn ized < r i s k c l a s s i f i c a t i o n)
P lease answer a g a i n .

**** BLUE-CHIP

{TEIRESIAS now beings working on updating other data structures
in response to the addition of the new stock name.}

Should t h i s new item be added to -
1 - the 11st of common stocks, or
2 - the 11st of preferred stocks, or
3 - the 11st of cumulative prefered stocks, or
4 - the 11st of par t i c ipa t ing prefered stocks

Select one of the above
**** 3
[A d d i n g GEORGIA-PACIFIC to CUMULATIVEPFD]

{One of these tasks involves adding the new stock to one of four
mutually exclusive lists. (Several other necessary updates are also
performed; these have been edited out here for brevity, see [3] for
details).}

Ck, done w i t h GEORGIA-PACIFIC n o w . . . Back to the r u l e .

{Having finished acquiring the new stock, the system returns to
parsing the new rule, and with some help from the expert gets the
correct result (the parsing process is omitted here, see [4] for a
detailed example),}

T h i s may take a few moments.

T h i s 1s my unde rs tand ing of your r u l e :
I f 1 - t he d e s i r e d r a t e o f r e t u r n f o r the investment

1s g r e a t e r than 10%
2 - t h e amount of investment exper ience of the

c l i e n t 1s moderate
3 - t h e area of the investment 1s n a t u r a l -

resource-deve lopment
Then

1 - t h e r e 1s ev idence (. 5) t h a t the name of the
s t o c k to choose is g e o r g i a - p a c i f 1 c

{4.1.4} Schemata: other uses
The schemata also support a number of other capabilities.

They are useful in maintaining the knowledge base, for instance,
and offer a convenient mechanism for organizing and implementing
data structure access and storage functions.

The data structure updating demonstrated in the previous
section is one instance of their maintenance capabilities. This
updating helps to insure that one change to the knowledge base
(adding a new instance of representation) will not violate necessary
relationships between data structures.

One of the Ideas behind the design of the schemata is to use
them as points around which to organize knowledge. The
information about structure and interrelationships described above,
for instance, is stored this way. In addition, access and storage

Languages & S y s t e m s - 2 : D a v i s
922

information is also organized in this fashion. By generalizing the
advice concept slightly, it is possible to effect all data structure
access and storage requests via the appropriate schema. That is,
code which wants to access a particular structure "sends" an
access request, and the structure "answers" by providing the
requested item2. This offers the well known advantages of
insulating the implementation of a data structure from its logical
design. Code which refers only to the latter is far easier to
maintain in the face of modifications to data structure
implementation.

While they have not yet been implemented, two other
interesting uses of the schemata appear possible. First,
straightforward extensions to the current system should support a
more complex form of knowledge base maintenance. Suppose, for
instance, it became necessary to modify the representation of a
stock, i.e., we want to edit the stock name schema. It should be
possible to have TEIRESIAS "watch" as the schema is modified and
then carry out the same sequence of modifications on each of the
current instances of the schema. Where new information was
required (e.g., if new structure descriptors were added to the
schema) the system could prompt for the appropriate entry for
each instance. While major redesigns would be more difficult to
carry out in this fashion, a number of common modifications could
be accommodated, easing the task of making changes to structures
in the knowledge base.

Second, the schema also appear to make possible a limited
form of introspection. If the information in the relations slot were
made accessible via simple retrieval routines, this would make it
possible to answer questions like What else in the system will be
affected if I add a new instance of this data structure? or What are
all the other structures that are related to this one? This would be
a useful form of on-line documentation.

{4.2} Example 2: Rule models
[4.2.1} Rule models as empirical abstractions of the knowledge base

In reviewing the rules in the knowledge base, a number of
regularities become apparent. In particular, rules about a single
topic tend to have characteristics in common — there are "ways"
of reasoning about a given topic. This idea of patterns of reasoning
has been given a formal (statistical) definition, and provides the
basis for the automated construction of a set of empirical
generalities about the knowledge base: the rule models.

A rule model is an abstract description of a subset of rules,
built from empirical generalizations about those rules. It is used to
characterize a " typical" member of the subset (and in this sense is
similar to the structures used in [20]), and is composed of four
parts. First, a list of EXAMPLES indicates the subset of rules from
which this model was constructed.

Next, a DESCRIPTION characterizes a typical member of the
subset. Since we are dealing in this case with rules composed cv
premise-action pairs, the DESCRIPTION currently implemented
contains individual characterizations of a typical premise and a
typical action. Then, since the current representation scheme used
in those rules is based on associative triples, we have chosen to
implement those characterizations by indicating (a) which attributes
" typ ica l ly " appear in the premise (and in the action) of a rule in
this subset, and (b) correlations of attributes appearing in the
premise (action).3

Note that the central idea is the concept of characterizing a
typical member of the subset. Naturally, that characterization would
look different for subsets of rules, procedures, theorems, etc. But
the main idea of characterization is widely applicable and not
restr icted to any particular representational formalism.

The two other parts of the rule model are pointers to models
describing more general and more specific subsets of rules. The set
of models is organized into a number of tree structures. These
structures determine the subsets for which models will be
constructed. At the root of each tree is the model made from all the
rules which conclude about <attribute>, below this are two models
dealing with all affirmative and all negative rules, and below this
are models dealing with rules which affirm or deny specific values
of the attribute.

There are several points to note here. First, these models
are not hardwired into the system, but are instead formed by
TEIRESIAS on the basis of the content of the knowledge base.
Second, where the rules in the knowledge base contain object level
information about a specific domain, the rule models contain
information about those rules, in the form of empirical
generalizations. As such they offer a global overview of the
regularities in the rules, and may possibly reflect useful trends in
the reasoning of the expert from whom those rules were acquired

Figure 6 - example of a rule model

{4.2.3} Rule models; use in knowledge acquisition
Use of the rule models to support knowledge acquisition

occurs in several steps. First, as noted above, our model of
knowledge acquisition is one of interactive transfer of expertise in
the context of a shortcoming in the knowledge base. The process
starts with the expert challenging the system with a specific
problem and observing its performance. If he believes its results
are incorrect, there are available a number of tools that will allow
him to track down the source of the error (see [2] for details).
TEIRESIAS keeps track of this debugging process, and responds to
the discovery of the source of the error by selecting the
appropriate rule model. For instance, if the problem is a rule
missing from the knowledge base that concludes about the
appropriate area for an investment, then TEIRESIAS will select the
model shown in Figure 6 as the appropriate one to describe the
rule it is about to acquire. Note that the selection of a specific
model is in effect an expression by TEIRESIAS of its expectations
concerning the new rule, and the generalizations in the model
become predictions about the likely content of the rule.

At this point the expert types in the new rule (Figure 7),
using the vocabulary specific to the domain, and expressing it as
much as possible in the associative triple format. TElRESIAS's
problem now is to try to understand what the expert has said. As is
traditional, "understanding" is determined by converting the text
into an internal representation (like that shown in Figure 2), then
converting this back into English and requesting approval from the
expert.

Since understanding natural language is known to be difficult,
we have taken a simpler approach. The basic idea is to allow the
text to "suggest" interpretations via a simple keyword-based
approach, and to intersect those results with the expectations
provided by the selection of a particular rule model. We thus have
a data directed process (interpreting the text) combined with a goal
directed process (the predictions made by the rule model). Each
contributes to the end result, but it is the combination of them that
is effective. Details of this process are described in [2] and [4].

The new ru le w i l l be cal led RULE383

Languages & Systems-2: Davis
923

{4.2.2} Rule model example
Figure 6 shows an example of a rule model, one that

describes the subset of rules concluding affirmatively about the
area for an investment. (Since not all of the details of
implementation are relevant here, this discussion will omit some.
See [2] for a full explanation.) As indicated above, there is a list of
the rules from which this model was constructed, descriptions
characterizing the premise and the action, and pointers to more
specific and more general models. Each characterization in the
description is shown split into its two parts, one concerning the
presence of individual attributes and the other describing
correlations. The first item in the premise description, for instance,
indicates that "most" rules about what the area of an investment
should be mention the attribute rate of return in their premise;
when they do mention it they "typically" use the predicate
functions SAME and NOTSAME; and the "strength", or reliability, of
this piece of advice is 3.83 (see [2] for precise definitions of the
quoted terms).

The fourth item in the premise description indicates that
when the attribute rate of return appears in the premise of a rule
in this subset, the attribute timescale of the investment "typically"
appears as well. As before the predicate functions are those
typically associated with the attributes, and the number is a
indication of reliability.

EXAMPLES ((RULE116 .33)
(RULE050 70)
(RULE037 .80)
(RULE095 .90)
(RULE152 1.0)
(RULE 140 1.0))

DESCRIPTION
PREMISE ((RETURNRATE SAME NOTSAME 3.83)

(TIMESCALE SAME NOTSAME 3.83)
(TREND SAME 2.83)
((RETURNRATE SAME) (TIMESCALE SAME) 3.83)
((TIMESCALE SAME) (RETURNRATE SAME) 3.83)
((BRACKET SAMEXFOLLOWS SAMEXEXPERIENCE SAME)

1.50))
ACTION ((INVESTMENT-AREA CONCLUDE 4.73)

(RISK CONCLUDE 4.05)
((INVESTMENT-AREA CONCLUDE) (RISK CONCLUDE) 4.73))

MORE-GENL (INVESTMENT-AREA)
MORE-SPEC (INVESTMENT-AREA-IS-UTILITIES)

I f : 1 - THE CLIENT'S INCOME TAX BRACKET IS 507.
and 2 - THE CLIENT IS FOLLOWING UP ON MARKET TRENDS

CAREFULLY
and 3 -

Then : 1 - THERE IS EVIDENCE (.8) THAT THE INVESTMENT AREA
SHOULD BE HIGH TECHNOLOGY

and 2 -

Figure 7

TEIRESIAS displays the results of this initial interpretation of
the rule (Figure 8). If there are mistakes (as there are in this case),
a rule editor is available to allow the expert to indicate required
changes. This is easily accomplished, since TEIRESIAS can often
make an effective second choice by determining the likely source of
error in its initial guess.

T h i s 1s my unde rs tand ing of your r u l e :
RULE383
If 1) The c l i e n t ' s income-tax bracket is 50%,

2) The market has followed a upward trend recently
3) The c l i e n t manages his assets carefu l ly

Then there is evidence (.8) that the area of the
investment should be high-technology

Figure 8

Once the expert is satisfied that TEIRESIAS has correctly
understood what he said, it is the system's turn to see if it is
satisfied with the content of the rule. The main idea is to use the
rule model to see how well this new rule "fits in" to the system's
model of its knowledge — i.e., does it "look like" a typical rule of
the sort expected?

In the current implementation, the presence of a partial match
between the new rule and the generalizations in the rule model
tr iggers a response from TEIRESIAS. Recall the last line of the
premise description in the rule model of Figure 6:

((BRACKET SAME) (FOLLOWS SAME) (EXPERIENCE SAME) 1.50))
This indicates that when the tax BRACKET of the client appears in
the premise of a rule of this sort, then how closely he FOLLOWS the
market, and how much investment EXPERIENCE he has typically
appear as well. Note that the new rule has the first two of these,
but is missing the last, and TEIRESIAS points this out.

I h a t e to c r i t i c i z e , Randy, but d i d you know t h a t most
r u l e s about what the area of a investment might be,
t h a t m e n t i o n -

t h e income-tax b racke t o f the c l i e n t , and
how c l o s e l y the c l i e n t f o l l o w s the market

ALSO m e n t i o n -
A] - t h e amount o f investment exper ience o f the c l i e n t
S h a l l I t r y to w r i t e a c lause to account f o r [A] ?
+ + * * Y
How a b o u t -
A] The amount o f investment exper ience o f the c l i e n t

1s moderate
Ok?
**** Y

Figure 9

If the expert agrees to the inclusion of a new clause,
TEIRESIAS attempts to create it. The system relies on the context of
the current dialog (which indicates that the clause should deal with
the amount of the client's investment experience), and the fact that
the rule must work for this case, or it won't fix the bug (earlier in
the interaction [not shown] the expert indicated that the client had
a moderate amount of experience). TElRESIAS's guess is not
necessarily correct, of course, since the desired clause may be
more general, but it is at least a plausible attempt.

It should be noted that there is nothing in this concept of
"second guessing" which is specific to the rule models as they are
currently designed, or indeed to associative triples or rules as a
knowledge representation. The most general and fundamental point
was mentioned above — testing to see how something "fits in" to
the system's model of its knowledge. At this point the system might
perform any kind of check, for violations of any established
prejudices about what the new chunk of knowledge should look like.
Additional kinds of checks for rules might concern the strength of
the inference, number of clauses in the premise, etc. Different
checks might be devised for other knowledge encoding schemes.

The automatic generation of the rule models by TEIRESIAS
has several interesting implications, since it makes possible a
synthesis of the ideas of model-based understanding and learning
by experience. While both of these have been developed
independently in previous Al research, their combination produces a
novel sort of feedback loop: rule acquisition relies on the set of

rule models to effect the model-based understanding process; this
results in the addition of a new rule to the knowledge base, and
this in turn prompts the recomputation of the relevant rule
model(s).

Note first that performance on the acquisition of the next
rule may be better, because the system's "picture" of its
knowledge base has improved — the rule models are now computed
from a larger set of instances, and their generalizations are more
likely to be valid.

Second, since the relevant rule models are recomputed each
time a change is made to the knowledge base, the picture they
supply is kept constantly up to date, and they will at all times be
an accurate reflection of the shifting patterns in the knowledge
base.

Finally, and perhaps most interesting, the models are not
hand-tooled by the system architect, or specified by the expert.
They are instead formed by the system itself, and formed as a
result of its experience in acquiring rules from the expert. Thus
despite its reliance on a set of models as a basis for understanding,
TElRESIAS's abilities are not restricted by the existing set of
models. As its store of knowledge grows, old models can become
more accurate, new models will be formed, and the system's stock
of knowledge about its knowledge will continue to expand. This
appears to be a novel capability for a model-based system.

{4.2.4} Rule models; other capabilities
As a form of meta-level knowledge, the rule models give the

system a picture of its own knowledge. The system can, for
instance, " read " a rule model to the user, supplying an overview of
the information in part of the knowledge base. This may suggest
global trends in the knowledge of the expert who assembled the
knowledge base, and thus helps to make clear the overall approach
of the system to a given topic (for examples see [2]).

{4.3} Example 3: Function templates
Associated with each predicate function in the system is a

template, a list structure which resembles a simplified procedure
declaration (Figure 10). It indicates the order and generic type of
the arguments in a typical call of that function, and makes possible
very simple versions of two interesting, parallel capabilities: code
generation and code dissection.

FUNCTION TEMPLATE
SAME (OBJ ATTRIBUTE VALUE)

Figure 10 - template for the predicate function SAME

The template is used as the basis for the simple form of code
generation alluded to in Section (42.3}. While details are beyond
the scope of this paper (see [2]), code generation is essentially a
process of "fi l l ing in the blanks": processing a line of text in a new
rule involves checking for keywords that implicate a particular
predicate function, and then filling in its template on the basis of
connotations suggested by other words in the text.

Code dissection is accomplished by using the templates as a
guide to extracting any desired part of a function call. For instance,
as noted earlier, TEIRESIAS forms the rule models on the basis of
the current contents of the knowledge base. To do this, it must be
able to pick apart each rule to determine the attributes to which it
refers. This could have been made possible by requiring that every
predicate function use the same function call format (i.e., the same
number, type, and order of arguments), but this would be too
inflexible. Instead, we allow every function to describe its own
calling format via its template. To dissect a function call, then, we
need only retrieve the template for the relevant function (i.e., the
template for the CAR of the form), and then use that as a guide to
dissecting the remainder of the form. The template in Figure 10, for
instance, indicates that the attribute would be the CADOR of the
form. This same technique is also used by TElRESIAS's explanation
facil ity, where it permits the system to be quite precise in the
explanations it provides (see [2] for details).

This approach also offers a useful degree of flexibility. The
introduction of a new predicate function, for instance, can be totally
transparent to the rest of the system, as long as its template can
be wr i t ten in terms of the available set of primitives like attribute,
value, etc. The power of this approach is limited primarily by this
factor, and will succeed to the extent that code can be described
by a relatively small set of such primitive descriptors. While more
complex syntax is easily atcomodated (e.g., the template can
indicate nested function calls), more complex semantics are more
difficult (e.g., the appearance of multiple attributes in a function
template can cause problems).

L a n g u g e s & S y s t e m s - 2 : D a v i s
924

{4.4} Example 4: Meta-rules
{4.4.1} Strategies to guide the use of knowledge

Meta-rules embody strategies — Knowledge that indicates
how to use other knowledge. This discussion considers strategies
from the perspective of deciding which knowledge to invoke next in
a situation where more than one chunk of knowledge may be
applicable. For example, given a problem solvable by either
heuristic search or problem decomposition, a strategy might
indicate which technique to use, based on characteristics of the
problem domain and nature of the desired solution. If the problem
decomposition technique were chosen, other strategies might be
employed to select the appropriate decomposition from among
several plausible alternatives.

This view of strategies can be useful because many of the
paradigms developed in Al admit (or even encourage) the possibility
of having several alternative chunks of knowledge plausibly useful
in a single situation (e.g., production rules, PLANNER-like languages,
etc.). Faced with a set of alternatives large enough (or varied
enough) that exhaustive invocation becomes infeasible, some
decision must be made about which should be chosen. Since the
performance of a program will be strongly influenced by the
intelligence with which that decision is made, strategies offer an
important site for the embedding of knowledge in a system.

This type of guidance can be especially useful in the sort of
rule-based performance program that TEIRESIAS is designed to help
build. The rules in this system are invoked in a simple
backward-chaining fashion that produces an exhaustive depth-first
search of an and/or goal tree. If the program is attempting, for
example, to determine which stock would make a good investment, it
retr ieves all the rules which make a conclusion about that topic (i.e.,
they mention STOCK-NAME in their action). It then invokes each one
in turn, evaluating each premise to see if the conditions specified
have been met. The search is exhaustive because the rules are
inexact: even if one succeeds, it was deemed to be a wisely
conservative strategy to continue to collect all evidence about a
subgoal.

The ability to use an exhaustive search is of course a luxury,
and in time the base of rules may grow large enough to make this
infeasible. As this point some choice would have to be made about
which of the plausibly useful rules should be invoked. Meta-rules
were created to address this problem.

{4.4.2} Meta-rules: examples
Figure 11 below shows two meta-rules. The first of them

says, in effect, that in trying to determine the best investment for a
non-prof i t organization, rules that base their recommendations on
tax bracket are not likely to be successful. The second indicates
that when dealing with clients nearing retirement age, more secure
stocks should be considered before more speculative ones.

METARULE001
If 1) you are attempting to determine the best stock

to invest in,
2) the c l i e n t ' s tax status 1s non-prof i t ,
3; there are rules which mention 1n the i r premise

the income-tax bracket of the c l i en t ,
then 1t 1s very l i k e l y (.9) that each of these rules

1s not going to be usefu l .

PREMISE
($AND(SAME OBJCT CURGOAL STOCK-NAME)

(SAME OBJCT STATUS NON-PROFIT)
(THEREARE OLRULES (SAND

(MENTIONS FREEVAR PREMISE BRACKET)) SET1))
ACTION (CONCLUDE SET1 UTILITY NO .9)

METARULE002
If 1) the age of the c l i en t is greater than 60,

2) there are rules which mention in thei r
premise blue-chip r i s k ,

3) there are rules which mention in the i r
premise speculative r i sk ,

then it 1s very l i k e l y (.8) that the former should
be used before the l a t t e r .

PREMISE
($AND(GREATER OBJCT AGE 60)

(THEREARE OLRULES (SAND
(MENTIONS FREEVAR PREMISE BLUE-CHIP)) SET1)

(THEREARE OLRULES (SAND
(MENTIONS FREEVAR PREMISE SPECULATIVE)) SET2))

ACTION
(CONCLUDE SET1 DOBEFORE SET2 .8)

Figure 11 - two meta-rules

It is important to note the character of the information
conveyed by meta-rules. First, note that in both cases we have a
rule which is making a conclusion about other rules. That is, where
object level rules conclude about the stock market domain,
meta-rules conclude about object level rules. These conclusions can

' (in the current implementation) be of two forms. As in the first
meta-rule, they can make deductions about the likely utility of
certain object level rules, or (as in the second) they can indicate a
partial ordering between two subsets of object level rules.

Note also that (as in the first example) meta-rules make
conclusions about the uti l i ty of object level rules, not their validity.
That is, METARULE001 does not indicate circumstances under which
some of the object level rules are invalid (or even "very likely (.9)"
invalid). It merely says that they are likely not to be useful; i.e.,
they will probably fail, perhaps only after requiring extensive
computation to evaluate their preconditions. This is important
because it has an impact on the question of distribution of
knowledge. If meta-rules did comment on validity, it might make
more sense to distribute the knowledge in them, i.e., delete the
meta-rule, and just add another premise clause to each of the
relevant object level rules. But since their conclusions do concern
uti l i ty, it does not make sense to distribute the knowledge.

Adding meta-rules to the system requires only a minor
addition to the control structure described above. As before, the
system retrieves the entire list of rules relevant to the current goal
(call it L). But before attempting to invoke them, it first determines
if there are any meta-rules relevant to that goal4. If so, these are
invoked first. As a result of their action, we may obtain a number of
conclusions about the likely utility, and relative ordering of the
rules in L. These conclusions are used to reorder or shorten L, and
the revised list of rules is then used. Viewed in tree-search terms,
the current implementation of meta-rules can either prune the
search space or reorder the branches of the tree.

{4.4.3} Meta-rules: guiding the use of the knowledge base
There are several points to note about this approach to

encoding knowledge. First, the framework it presents for knowledge
organization and use appears to offer a great deal of leverage,
since much can be gained by adding to a system a store of
(meta-level) knowledge about which chunk of object level
knowledge to invoke next. Considered once again in tree search
terms, we are talking about the difference between "blind" search
of the tree, and one guided by heuristics. The advantage of even a
few good heuristics in cutting down the combinatorial explosion of
tree search is well known. Thus, where earlier sections were
concerned about adding more object level knowledge to improve
performance, here we are concerned with giving the system more
information about how to use what it already knows.

Consider, too, that part of the definition of intelligence
includes appropriate use of information. Even if a store of (object
level) information is not large, it is important to be able to use it
properly. Meta-rules provide a mechanism for encoding strategies
that can make this possible.

Second, the description given in Section (4.4.2) has been
simplified in several respects for the sake of clarity. It discusses
the augmented control structure, for example, in terms of two
levels — the object and meta-levels. In fact, there can be an
arbi t rary number of levels, each serving to direct the use of
knowledge at the next lower level. That is, the system retrieves the
list (L) of object level rules relevant to the current goal. Before
invoking this, it checks for a list (L') of first order meta-rules which
can be used to reorder or prune L. But before invoking this, it
checks for second order meta rules which can be used to reorder
or prune L', etc. Recursion stops when there is no rule set of the
next higher order, and the process unwinds, each level of
strategies advising on the use of the next lower level.

Consider once again the issue of leverage, and recall the
value of heuristics in guiding tree search. We can apply the same
idea at this higher level, gaining considerable leverage by encoding
heuristics that guide the use of heuristics. That is, rather than
adding more heuristics to improve performance, we might add more
information at the next higher level about effective use of existing
heuristics.

The judgmental character of the rules offers several
interesting capabilities. It makes it possible, for instance, to write
rules which make different conclusions about the best strategy to
use, and then rely on the underlying model of confirmation [16] to
weigh the evidence. That is, the strategies can "argue" about the
best rule to use next, and the strategy that presents the best case
(as judged by the confirmation model) will win out.

Next, recall that the basic control structure of the
performance program is a depth-first search of the and/or goat
tree sprouted by the unwinding of rules. The presence of
meta-rules of the sort shown in Figure 11 means that this tree has
an interesting characteristic: at each node, when the system has to

Languages & S v s t e m s - 2 : D a v i s
825

choose a path, there may be information stored advising about the
best path to take. There may therefore be available an extensive
body of knowledge to guide the search, but that knowledge is not
embedded in the code of a clever search algorithm. It is instead
organized around the specific objects which form the nodes in the
tree; i.e., instead of a smart algorithm, we have a "smart tree".

Finally, there are several advantages associated with the use
of strategies which are goal-specific, explicit, and embedded in a
representation which is the same as that of the object level
knowledge. That fact that strategies are goal-specific, for instance,
makes it possible to specify quite precise heuristics for a given
goal, without imposing any overhead in the search for any other
goals. That is, there may be a number of complex heuristics
describing the best rules to use for a particular goal, but these will
cause no computational overhead except in the search for that goal.

The fact that they are explicit means a conceptually cleaner
organization of knowledge and ease of modification of established
strategies. Consider, for instance, alternative means of achieving
the sort of partial ordering specified by the second meta-rule in
Figure 11. There are several alternative schemes by which this
could be accomplished, involving appropriate modifications to the
relevant object level rules and slight changes to the control
structure. Such schemes, however, share several faults that can be
il lustrated by considering one such approach: an agenda with
multiple priority levels like the one proposed in [1]. That is, rather
than dealing with a linear list L of relevant rules, those rules would
be put on an agenda. Partial ordering could be accomplished simply
by setting the priority for some rules higher than that of others:
rules in subset A, for instance, might get priority 6 while those in
subset B were given priority 5.

But this technique presents two problems: it is both opaque
and likely to cause bugs. It will not be apparent from looking at the
code, for instance, why the rules in A were given higher priority
than the rules in B. Were they more likely to be useful, or is it
desirable that those in A precede those in B no matter how useful
they each may be? Consider also what happens if, before we get a
chance to invoke any of the rules in A, an event occurs which
makes it clear that their priority ought to be reduced (for reasons
unrelated to the desired partial ordering). If the priority of only the
rules in A are adjusted, a bug arises, since the desired relative
ordering may be lost.

The problem is that this approach tries to reduce a number
of different, incommensurate factors to a single number, with no
record of how that number was reached. Meta-rules offer one
mechanism for making these sorts of considerations explicit, and for
leaving a record of why a set of processes has been queued in a
particular order. They also make subsequent modifications easier,
since all of the information is in one place — changing a strategy
can be accomplished by editing the relevant meta-rule, rather than
searching through a program for all the places priorities have been
set to effect that strategy.

Lastly, the use of a uniform encoding of knowledge makes the
treatment of all levels the same. For example, second order
meta-rules require no machinery in excess of that needed for first
order meta-rules. It also means that all the explanation and
knowledge acquisition capabilities developed for object level rules
can be extended to meta-rules as well. The first of these
(explanation) has been done, and works for all levels of meta-rules.
Adding this to TElRESIAS's explanation facility makes possible an
interesting capability: in addition to being able to explain what it
did, the system can also explain how it decided to do what it did.
Knowledge in the strategies has become accessible to the rest of
the system, and can be explained in just the same fashion. We
noted above that adding meta-level knowledge to the system was
quite distinct from adding more object level knowledge, since
strategies contain information of a qualitatively different sort.
Explanations based on this information are thus of a
correspondingly different type as well.

{4.4.4} Meta-rules; broader implications
There are a number of interesting generalizations of the

basic scheme presented above, two of which we touch on briefly
here. First, while we have been examining the idea of strategies in
the context of the depth-first search used by the performance
program, the concept is in fact more widely applicable and can be
used with a range of control structures. Second, meta-rules effect
their selection of the relevant object level rules by what we have
termed content-directed invocation, an approach which offers
advantages over previous knowledge source invocation techniques.

Applications to other control structures
The concept of strategies as a mechanism for deciding which

chunk of knowledge to invoke next can be applied to a number of
different control structures. We have seen how it works in
goal-directed scheme, and it functions in much the same way with a

data-directed process. In that case meta-rules offer a way of
controlling the depth and breadth of the implications drawn from
any new fact or conclusion. Pursing this further, we can imagine
making the decision to use a data- or a goal-directed process itself
an issue to be decided by a collection of appropriate meta-rules. At
each point in its processing, the system might invoke one set of
meta-rules to choose a control structure, then use another set to
guide that control structure. This can be applied to many control
structures, demonstrating the range of applicability of the basic
concept of strategies as a device for choosing what to do next.

Content-directed invocation
If meta-rules are to be used to select from among plausibly

useful object level rules, they must have some way of referring to
the object level rules. The mechanism used to effect this reference
has implications for the flexibility and extensibility of the resulting
system.

To see this, note that the meta-rules in Figure 11 refer to
the object level rules by describing them, and effect this
description by direct examination of content. For instance,
METARULEOOl refers to rules which mention in their premise the
income tax bracket of the client, a description, rather than an
equivalent list of rule names. The set of object level rules which
meet this description is determined at execution time by examining
the source code of the rules. That is, the meta-rule "goes in and
looks" for the relevant characteristic (in this case the presence of
the attribute BRACKET), using the function templates as a guide to
dissecting the rules. We have termed this content-directed
invocation.

Part of the utility of this approach is illustrated by its
advantages over using explicit lists of object level rules (e.g., if
METARULEOOl had been written to indicate " i t is very l i k e l y
(. 9) t h a t RULE124, RULE065, RULE210, and RULE113 are
n o t g o i n g to be u s e f u l ") . If such lists were used, then tasks
like editing or adding an object-level rule to the system would
require extensive amounts of bookkeeping. After an object level
rule has been edited, for instance, we would have to check all the
strategies that name it, to be sure that each such reference was
still applicable to the revised rule. By using content-directed
invocation, however, these tasks require no additional effort, since
the meta-rules effect their own examination of the object level
rules, and will make their own determination of relevance.

Additional advantages of this technique are discussed in more
detail in [2] and [5]

{5] Implications
The examples reviewed above illustrate a number of general

ideas about knowledge representation and use that may prove
useful in building large programs.

We have, first, the notion that knowledge in programs should
be made explicit and accessible. Use of production rules to encode
the object level knowledge is one example of this, since knowledge
in them may be more accessible than that embedded in the code of
a procedure. The schemata, templates, and meta-rules illustrate the
point also, since each of them encodes a form of information that is,
typically, either omitted entirely or at best is left implicit. By
making knowledge explicit and accessible, we "make possible a
number of useful abilities. The schemata and templates, for example,
support the forms of system maintenance and knowledge acquisition
described above. Meta-rules offer a means for explicit
representation of the decision criteria used by the system to select
its course of action. Subsequent "playback" of those criteria can
then provide a form of explanation of the motivation for system
behavior (see [2] for examples). That behavior is also more easily
modified, since the information on which it is based is both clear
(since it is explicit) and retrievable (since it is accessible). Finally,
more of the system's knowledge and behavior becomes open to
examination, especially by the system itself.

Second, there is the idea that programs should have access
to their own representations. To put this another way, consider
that over the years numerous representation schemes have been
proposed and have generated a number of discussions of their
respective strengths and weaknesses. Yet in all these discussions,
one enti ty intimately concerned with the outcome has been left
uninformed: the program itself. What this suggests is that we ought
to describe to the program a range of information about the
representations it employs, including such things as their structure,
organization, and use.

As noted, this is easily suggested but more difficult to do. It
requires a means of describing both representations and control
structures, and the utility of those descriptions will be strongly
dependent on the power of the language in which they are
expressed. The schemata and templates are the two main examples
of the partial solutions we have developed for describing
representations, and both rely heavily on the idea of a task specific

Languages & Sys t rms-2 : Davis
926

high level language — a language whose conceptual primitives are
task specific. The main reason for using this approach is to make
possible what we might call "top down code understanding".
Traditionally, efforts at code understanding (e.g., [18], [13]) have
attempted to assign meaning to the code of some standard
programming language. Rather than take on this sizable task, we
have used the task specific languages to make the problem far
easier. Instead of attempting to assign semantics to ordinary code, a
"meaning" is assigned to each of the primitives in the high level
language, and represented in one or more informal ways. Thus, for
example, ATTRIBUTE is one of the primitives in the "language" in
which templates are written; its meaning is embodied in procedures
associated with It that are used during code generation and
dissection (see [2] for details).

This convenient shortcut also implies a number of limitations.
Most important, the approach depends on the existence of a finite
number of "mostly independent" primitives. This means a set of
primitives with only a few, well specified interactions between
them. The number of interactions should be far less than the total
possible, and interactions that do occur should be uncomplicated (as
for example, the interaction between the concepts of attribute and
value).

But suppose we could describe to a system its
representations? What benefits would follow? The primary thing this
can provide is a way of effecting multiple uses of the same
knowledge. Consider for instance the multitude of ways in which
the object level rules have been used. They are executed as code
in order to drive the consultation (see [6] and [17] for examples);
they are viewed as data structures, and dissected and abstracted to
form the rule models; they are dissected and examined in order to
produce explanations (see [2]); they are constructed during
knowledge acquisition; and finally they are reasoned about by the
meta rules.

It is important to note here that the feasibility of such
multiplicity of uses is based less on the notion of production rules
per se, than on the availability of a representation with a small
grain size and a simple syntax and semantics. "Small", modular
chunks of code written in a simple, heavily stylized form (though
not necessarily a situation-action form), would have done as well,
as would any representation with simple enough internal structure
and of mangable size. The introduction of greater complexity in the
representation, or the use of a representation that encoded
significantly larger "chunks" of knowledge would require more
sophisticated techniques for dissecting and manipulating
representations than we have developed thus far. But the key
limitations are size and complexity of structure, rather than a
specific style of knowledge encoding.

Two other benefits may arise from the ability to describe
representations. We noted earlier that much of the information
necessary to maintain a system is often recorded in informal ways,
if at all. If it were in fact convenient to record this information by
describing it to the program itself, then we would have an effective
and useful repository of information. We might see information that
was previously folklore or informal documentation becoming more
formalized, and migrating into the system itself. We have illustrated
above a few of the advantages this offers in terms of maintaining a
large system.

This may in turn produce a new perspective on programs.
Early scarcity of hardware resources led to an emphasis on
minimizing machine resources consumed, for example by reducing
all numeric expressions to their simplest form by hand. More
recently, this has meant a certain style of programming in which a
programmer spends a great deal of time thinking about a problem
first, trying to solve as much as possible by hand, and then
abstracting out only the very end product of all of that to be
embodied in the program. That is, the program becomes simply a
way of manipulating symbols to provide "the answer", with little
indication left of what the original problem was, or more important,
what knowledge was required to solve it.

But what if we reversed this trend, and instead view a
program as a place to store many forms of knowledge about both
the problem and the proposed solution (i.e., the program itself). This
would apply equally well to code and data structures, and could
help make possible a wider range of useful capabilities of the sort
i l lustrated above.

One final observation. As we noted at the outset, interest in
knowledge-based systems was motivated by the belief that no
single, domain independent paradigm could produce the desired
level of performance. It was suggested instead that a large store of
domain specific (object level) knowledge was required. We might
similarly suggest that this too will eventually reach Its limits, and
that simply adding more object level knowledge will no longer, by
itself, guarantee increased performance. Instead it may be
necessary to focus on building stores of meta-level knowledge,
especially in the form of strategies for effective use of knowledge.

Such "meta-level knowledge based" systems may represent a
profitable future direction.

{6} Conclusions
We have reviewed four examples of meta-level knowledge,

and demonstrated their application to the task of building and using
large stores of domain specific knowledge. This has showed that
supplying the system with a store of information about its
representations makes possible a number of useful capabilities. For
example, by describing the structure of its representations
(schemata, templates), we make possible a form of transfer of
expertise, as well as a number of facilities for knowledge base
maintenance. By supplying strategic information (meta-rules), we
make possible a finer degree of control over use of knowledge in
the system. And by giving the system the ability to derive empirical
generalizations about its knowledge (rule models), we make possible
a number of useful abilities that aid in knowledge transfer.

Notes
(1) TEIRESIAS was developed in the context of the MYCIN system
[17,6], which deals with infectious disease diagnosis and therapy.
The domain has been changed to keep the discussion phrased in
terms familiar to a wide range of readers, and to emphasize that
neither the problems attacked nor the solutions suggested are
restricted to a particular domain of application. The dialogs shown
are real examples of TEIRESIAS in action, with a few word
substitutions: e.g, primary bacteremia became Georgia Pacific,
infection became investment, etc.
(2) Both of these are constructed via simple statistical
thresholding operations.
(3) This was suggested by the perspective taken in work on
SMALLTALK [9] and actors [10],
(4) That is, are there meta-rules directly associated with that
goal. Meta-rules can also be associated with other objects in the
system, but that is beyond the scope of this paper. The issues of
organizing and indexing meta-rules are covered in more detail in
[2J and [5] .

References
[1] Bobrow D, Winograd T, An Overview of KRL, Cognitive
Science, vol 1, pp 3-47, Jan 1977.
[2] Davis R, Applications of meta-level knowledge to the
construction, maintenance, and use of large knowledge bases,
Stanford HPP Memo 76-7, July 1976.
[3] Davis R, Knowledge about representations as a basis for
system construction and maintenance, to appear in Pattern-Directed
Inference Systems, Academic Press, (in press).
[4] Davis R, Interactive transfer of expertise, to appear in Proc
5th IJCAI, Aug 1977.
[5] Davis R, Generalized procedure calling and content-directed
invocation, to appear in Proc AI/PL Conference, Aug 1977.
[6] Davis R, Buchanan B G, Shortliffe E H, Production rules as a
representation for a knowledge-based consultation system, Artificial
Intelligence, 8:15-45, Spring 1977.
[7] Feigenbaum E A, et. al., On generality and problem solving, in
MI6, pp 165-190, Edinburgh University Press, 1971.
[8] Fennell R D, Multiprocess software architecture for Al
problem solving, PhD Thesis, Computer Science Department, CMU,
May 1975.
[9] Goldberg A, Kay A, Smalltalk-72 User's Manual, Learning
Research Group, Xerox PARC, 1976.
[10] Hewitt C, A universal modular actor formalism for Al, Proc 3rd
IJCAI, pp 235-245,
[11] Lesser V R, Fennell R D, Erman L D, Reddy D R, Organization
of the HEARSAY II speech understanding system, IEEE Transactions,
ASSP-23, February 1975, pp 11-23.
[12] Mathlab Group, MACSYMA reference manual, 1974, MIT.
[13] Manna Z, Correctness of programs, Journal of Computer
Systems Sciences, May 1969.
[14] Samuel A L, Some studies in machine learning using the game
of checkers II - recent progress, IBM Jnl Res and Devel,
11:601-617.
[15] Schank R C, Abelson R P, Scripts, plans and knowledge, Proc
4th IJCAI, pp 151-157.
[16] Shortliffe E H, Buchanan B G, A model of inexact reasoning in
medicine, Math Biosci 23 (1975) pp 351-379.
[17] Shortliffe E H, MYCIN: Computer-based Medical Consultations,
American Elsevier, 1976.
[18] Waldinger R, Levitt K N, Reasoning about programs, Artificial
Intelligence, 5 (Fall 1974) pp 235-316.
[19] Winograd T, Understanding Natural Language, Academic Press,
1972.
[20] Winston P, Learning structural descriptions from examples,
MIT TR-76, Sept 70.

L a n g u a g e s & S y s t e n s - 2 : D a v i s

