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Abst rac t 

Mathematical proofs c o n s t i t u t e a mix ture of 
formulas w i t h a subset of na tu ra l language. They 
can be represented as a sequence of l i n e s express
i b l e in the symbolism of p red ica te ca l cu lus . The 
t r a n s i t i o n from step to step may depend on a 
ser ies o f l o g i c a l manipulat ions and/or on i n t r i 
cate mathematical knowledge associated w i t h the 
domain of the p roo f . The o rgan iza t i on of the 
proof may depend on d i f f e r e n t conventions adopted 
by mathematicians in communication w i t h each o ther . 
This paper deals w i t h problems invo lved in f o l l o w 
ing the mathematical argument along those l i n e s . 
Some of the ideas were implemented as a pa r t of a 
system fo r teaching axiomat ic set theory to c o l 
lege s tudents . The most powerful and f requen t l y 
used ru les o f in fe rence u t i l i z e a r e s o l u t i o n the 
orem prover . To the best of our knowledge t h i s 
is the only r e s o l u t i o n theorem prover , perhaps the 
on ly general purpose theorem prover used in actua l 
p roduc t ion . 
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I n t r o d u c t i o n 

A mathematician w r i t e s down a p roo f of a 
theorem on a p iece of paper and hands it to a 
co l league. The l a t t e r reads through i t , usua l l y 
understands i t , and a l l too f r equen t l y f i nds an 
e r r o r , which means tha t a t leas t in i t s present 
form i t i s not a p roo f a t a l l . Sometimes i t takes 
several readers u n t i l an e x i s t i n g e r ro r i s de
tec ted and on occasion it has taken many years to 
d iscover e r ro rs i n some d i f f i c u l t p roo f s . I t 
would be very use fu l i f our mathematician could 
type in the computer whatever he wrote and rece ive 
some f o r of the response he received from the hu
man reader. The paper examines problems encoun
te red dur ing i n i t i a l e f f o r t s toward such a goa l . 

Furthermore, i f one attempts to teach h igher -
l e v e l mathematics by computer, as i t is c u r r e n t l y 
being done f o r set theory a t S tan fo rd , i t i s es-
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s e n t i a l t ha t the machine understands the proofs 
o f the students to the extent t ha t i t accepts 
on ly the co r rec t ones. The paper w i l l d iscuss 
some of the problems and experiences w i t h the 
proo f checker which is the most important pa r t of 
the system f o r teaching axiomat ic set theory 
(named QUIP) developed at the I n s t i t u t e f o r Mathe
mat ica l Studies in the Soc ia l Sciences (IMSSS) 
[ 6 ] . 

The CAI system has been used s ince the f a l l 
quar te r of 1974 to teach Philosophy 161, " I n t r o 
duc t ion to Set Theory" , a t Stanford U n i v e r s i t y . 
The program was w r i t t e n in LISP and SAIL and runs 
on the TENEX opera t ing system f o r the DEC PDP-10 
computer. The course is f o r upper - leve l under
graduate students and presents axiomatic set 
theory as developed in [ 9 ] . The examples here 
are from proofs of theorems from the cur r icu lum of 
the course. A l l i l l u s t r a t i o n s of the ideas em
bodied in the mechanism f o r handl ing the proofs 
are as of the t ime the author l e f t IMSSS. There 
have been some improvements s ince . 

This paper w i l l focus on the issues invo lved 
in understanding mathematical p roo f s . To improve 
h i s understanding of the examples a reader un
f a m i l i a r w i t h p roo f checking should consul t Suppes 
[ 8 ] where the l o g i c a l system unde r l i n i ng the p roo f 
checker of QUIP is exp la ined. Furthermore, due to 
lack of space an exp lanat ion of the o r g a n i z a t i o n , 
fea tures and performance of the e n t i r e CAI system 
cannot be inc luded . I t i s a v a i l a b l e i n [ 6 ] . 

Natura l Language Part 

There are two major problems fac ing computer 
understanding o f mathematical p roo fs . F i r s t , the 
language of mathematics is not tha t o f p red i ca te 
ca l cu lus . I t u s u a l l y i s a mix ture o f formulas 
w i t h n a t u r a l language. Thus, one of the problems 
t h e o r e t i c a l l y approximates tha t o f understanding 
na tu ra l language. In f a c t , t h i s is not so, as 
some p r e l i m i n a r y r e s u l t s on the language of sets 
[ 6 ] i n d i c a t e t ha t the language o f mathematics, 
being a very r e s t r i c t e d subset o f na tu ra l l a n 
guage, w i l l probably be handled much more e a s i l y . 

A mathematical argument can be represented as 
a sequence of separate s teps. Our op in ion is t h a t 
the best i n t e r n a l represen ta t ion o f the formulas 
desc r i b ing a step in a proof is p red ica te c a l c u l u s . 
In t h i s view the main e f f o r t o f the n a t u r a l l a n -
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guage processing w i l l be spent in correct trans
lat ion of the steps in the argument, although it 
w i l l also affect the structure of the proof and 
the choice of how to go about making a step in the 
proof. The remaining problem, to which th is paper 
is devoted, is how to follow the logical steps in 
the proof. 

Formal and Informal Proofs 

In communications among mathematicians or 
between a teacher of mathematics and his students 
the steps in the proofs are as large as it is op
timal for understanding. They are large enough to 
avoid obvious but tedious detai ls which would 
usually make the proof less clear. On the other 
hand, they are small enough to make it possible 
for the reader to follow the proof without having 
to discover it himself. The size of the steps 
varies widely with d i f ferent proofs and in some 
cases only a very general out l ine is given, thus 
requir ing a greater e f for t on the part of the 
reader. In any event, that is what we cal l an i n 
formal proof. In addit ion, the concepts of being 
essential , unfamil iar, or t r i v i a l in a proof are 
not precise at a l l . This very vagueness of the 
c r i t e r i a governing informal proofs is a primary 
j us t i f i ca t i on for a precise def in i t ion of a formal 
proof [ 8 ] . 

Formal proofs require precise rules for jus
t i f y i ng each step. In that respect they are some
what algorithmic in character. It is no wonder 
that automatic proof checking is almost as old as 
a r t i f i c i a l intel l igence i t s e l f [ 5 ] . One of the 
f i r s t computer proof checkers was that of Abrahams 
[ 1 ] , which implemented an extension of the logical 
system of Suppes [ 8 ] . IMSSS at Stanford has of
fered a CAI course in symbolic logic using a proof 
checker based on Suppes' system since 1963. A 
later implementation is described in [ 2 ] . 

Size of the Steps 

The problem with such formal proofs is that 
the i r steps are quite small. A proof of somewhat 
greater d i f f i c u l t y in set theory (or other mathe
matical theory) could easily go up into several 
hundred steps. Such proofs cannot be used for 
teaching axiomatic mathematics and hardly for any 
other purpose. This problem has been resolved to 
a large degree in the proof checker of QUIP. 

Before discussing the techniques used in 
accepting larger steps we shal l i l l u s t r a t e some 
of the points made above with a comparative exam
ple. F i rst is the proof of Theorem 53 on page 112 
in [ 9 ] , Then follows the proof of the same theo
rem as it was accepted by QUIP. K(A) is the car
dinal number of a set A, while ≈ means equi
pol lent . Axioms, de f in i t ions , and theorems ref
erenced in example proofs are given in the appen
dix. The command to the proof checker precedes 
each l ine . Some of the commands may seem long but 
are not ent i re ly typed by the user, since the sys
tem has a recognition feature (see [ 6 ] ) . The QUIP 
proof below is presented as l i s ted by the command 
''Review". In doing the f i r s t three steps a b i t of 

Notice that the steps of the QUIP proof f o l 
low exactly the informal proof from the book. In 
the f i r s t three steps a de f in i t ion and a theorem 
are invoked as the appropriate instant iat ions are 
made. The system has sorted variables and the 
le t te rs m and n are among those used for cardinals. 
This enables us for example to get Line 1 d i rec t l y 
from the de f in i t ion of cardinal number. The QUIP 
proof requires Line 5 to obtain a formula which is 
a variant in terms of bound variables ( in th is 
case ident ical) to the statement of the theorem. 
The informal proof quits at Step 4. This is one 
of the many shortcuts used in informal proofs, 
some of which w i l l be discussed below. They w i l l 
eventually present the greatest problem in accept
ing informal text proofs and w i l l require a large 
amount of additional information to be stored with 
the internal representation of a l i ne . 

Step 4 is the most interest ing in th is proof. 
It is achieved by a ca l l to a resolution theorem 
prover giving it the l ines 1, 2, and 3 plus the 
axiom for cardinals as references. Below is the 
continuation of the proof in the formal system of 
Suppes [8 ] as implemented in [ 2 ] . Preceding each 
l ine to the l e f t are the rules of inference as 
typed by the user. In the brackets to the r ight 
the i r names are expanded. 

Axiom for Cardinals 
(4) K(A1) = K(A) <-> A1≈A 

3 LC [ L e f t Conjunct ] 
(5) A 1 ≈ A 
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additional typing is required where the user i n 
dicates that he wants to specify variables upon 
which the system asks him what values to assign. 
In the last two steps the l ines have to be typed 
af ter the command. 

A proof from "Axiomatic Set Theory" by P. 
Suppes: 

Theorem 53. There are sets A and B such t ha t 
( i ) = 0, ( i i ) K ( A ) = m, ( i i i ) K ( B ) = n. 

Proof. In view of D e f i n i t i o n 7 (Cardinal 
Number), there are sets Al and Bl such t h a t K ( A 1 ) = 
m and K ( B 1 ) = n, and by v i r t u e of Theorem 9 there 
are sets A and B such tha t A∩B = 0, A ≈ A l , and 
B ≈ B 1 . By the axiom f o r c a r d i n a l s , t hen , K ( A ) = 
m and K ( B ) = n. Q.E.D. 

Proof of the same theorem as accepted by the 
p roo f checker: 

Theorem 5.1.1 



As shown above, Step 4 requires 10 elementary 
steps. Yet the informal proof only says it f o l 
lows "by the axiom for cardinals". For the mathe
matician th is is an "obvious" step. In [9 ] one 
frequently finds l ines in proofs that follow by 
sentential logic (p. 29, p. 52) or by quant i f ier 
logic (p. 45, p.60). When a step is j u s t i f i e d by 
sentential logic it is decidable and one can safe
ly lean on a tautology checker. It is our be l ie f 
that the most e f f i c ien t mechanical way to confirm 
a tautology is to check the t ru th table and thus 
QUIP has a TAUTOLOGY rule based on that p r inc ip le . 
Steps j u s t i f i e d by logical manipulations involving 
quant i f iers are undecidable in general and conse
quently represent a much harder problem to be ver
i f i e d mechanically. For th is purpose we employ a 
resolution theorem prover with equality replace
ment. 

Resolution Theorem Prover in Action 

The experience with QUIP shows that a wel l -
organized resolution theorem prover gets most of 
the inferences seen i n t u i t i v e l y by the user while 
working on a proof. This is not quite true for 
proofs involving equali ty, where some improvements 
to the prover are needed. The user has no inter
action with the theorem prover except for asking a 
formula to be ver i f ied and supplying the refer
ences, from which he thinks the formula fol lows. 
An idea about the power of the theorem prover can 
be gained from the following theorems from the 
chapter on f i n i t e and i n f i n i t e sets in QUIP's cur
riculum, which were proved in one step. 

This proof should be transparent even to 
those unfamiliar with Suppes' logical system [ 8 ] . 
The theorem can be proved in one step, yet the 
user usually sees the exact references on which 
th is step depends only af ter developing the proof 
in the l a t te r form. Furthermore, th is form is 
more l i ke the way mathematicians prove theorems. 
S t i l l notice that the resolution prover was called 
upon for Steps 4, 6, and 7. 

The prover is used pr imari ly for the rules 
VERIFY and CONTRADICTION. While using VERIFY the 
user has to type the l i ne , whose negation together 
with the references is passed to the prover. If 
the prover is able to confirm the inference it 
signals the proof checker to accept the l i ne . For 
the CONTRADICTION rule the user merely points to 
the references which he believes form an incon
sistency. If such is detected by the prover, the 
proof checker returns the negation of the last 
assumption on which the references depend. (Pre
sumably there must be an incorrect assumption in 
order to reach a contradict ion). 
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Implementation and Strategy 

The main reason for selecting a resolution 
theorem prover was our be l ie f that for the same 
generality and the same power it can be designed 
in a much more compact way than a heurist ic theo
rem prover. For the purposes we are using i t , 
simply a mechanical tool is needed and resolution 
seems to be exactly that. Later we shall discuss 
the poss ib i l i t y of a heur ist ic coupler to the 
proof checker, which would make the prover serve 
better the needs of understanding informal proofs. 
The prover was wr i t ten in UCI-LISP. Together with 
the converter of the formulas into clausal form it 
is about 10 pages of pret ty-pr inted code. 

The prover employs the MU strategy. It con
s ists mainly of keeping only resolvents containing 
merge l i t e r a l s or having a unit parent. It is 
shown in [3 ] that if in a refutat ion there are re
solvents not sat isfy ing the above res t r i c t i on , 
there always exists another refutat ion from the 
same input set where such resolvents are obtained 
f i r s t . With th is in view the strategy occasion
a l l y allows for a round of general resolution 
af ter which the res t r i c t i on is imposed. 

One thing that has plagued work on resolution 
in the past has been preoccupation with complete
ness. Recognizing that a prover is working in an 
undecidable domain it is obvious that completeness 
is going to be rest r ic ted by the real factors of 
time and space. The main objective in choosing a 
strategy and tuning a prover's parameters is op
t imizing the number of inferences it gets. It is 
the author's conviction that in th is context i n 
completeness is a feature, rather than a drawback. 
Thus, completeness in our prover is restr ic ted 
severely in many d i f ferent ways. 

Experiments with d i f ferent strategies for 
resolut ion, carried out ear l ier by the author at 
the University of Texas have shown the MU strategy 
to be quite e f f i c ien t in the set- theoret ical do
main. One property of the MU strategy, coupled 
with a l im i t on the depth of functional nesting in 
the resolvents, is that it usually runs quickly 
out of poss ib i l i t i es to resolve when given a sat-
i s f iab le set of clauses ( i . e . , insuf f ic ient ref
erences). This is very important because one very 
frequent error of the student users has been to 
supply insuf f i c ien t or incorrect references. In 
such a case it is very desirable that the prover 
detects th is fact as soon as possible, rather than 
grind u n t i l the time l im i t is reached. This pro
perty has strongly influenced the selection of the 
MU strategy. 

Deficiencies 

ver i fy steps much larger than the user can see, 
while other times it f a i l s at steps which the user 
expects to be accepted. It would have been nice 
if one could give the users some more accurate 
idea what to expect from the prover. 

Inferences which are missed by the prover, 
while being obvious to the user, are largely due 
to the fact that resolution breaks down the form
ulas to the atomic level before it can f ind a 
proof. For example, the inference 

from 

Probably the most f rus t ra t ing property of the 
prover from a CAI point of view has been the fact 
that thus far it has been impossible to charac
ter ize the class of theorems accepted by the 
prover despite substantial e f for t on the part of 
members of the IMSSS s ta f f . This is most l i ke l y 
a consequence of the unnatural way in which reso
lut ion works. Sometimes the prover is able to 
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Of course, seen th is way, the inference is 
immediate for the prover, too. There is a pro
vision in the program for the user to pass to the 
prover the abstracted form of the formulas. What 
would be desirable here is to have a heur ist ic 
coupler between the prover and the proof checker 
which looks at the poss ib i l i t i es of abstraction 
in the set of formulas. 

Implication Rule 

Proofs in axiomatic systems frequently i n 
clude transformations of formulas j u s t i f i e d by the 
application of de f in i t ions , axioms, or theorems. 
Almost always these inferences include quanti f iers 
and would f a l l wi th in the domain of the theorem 
prover. However, such inferences are determin
i s t i c and one potent ia l ly loses power in taking a 
chance with the prover. Many def in i t ions are by 
equivalence, which is a simple connective for the 
human, but the worst one for resolut ion. Further
more, for the rules VERIFY and TAUTOLOGY the 
formula must be typed i n , which the users are not 
very enthusiastic about. 

A l l these considerations led to the develop
ment of the IMPLIES ru le . Variables bound by an 
universal quant i f ier containing the main connec
t i ve of the j us t i f y i ng formula wi th in i t s scope 
are matched to any terms in the formula to be 
transformed. For example, le t 

(1) f"C f 'D 
be a l ine in a proof (f"C means the image of the 
set C under the function f ) . From it we can 
in fer the l ine 

In a case l i ke t h i s , which happens most f re -

from 

cannot be ver i f ied by the prover. The human user, 
though, with his well-developed abstraction capa
b i l i t i e s quickly sees that the l e f t side of the 
implication can be looked at as ø(m,n,p,A,B) . 
Hence the inference becomes: 



Occasionally i t is not straightforward to 
determine which variable to match with the desig
nated variable of the schema. Then one has to 
look at which quant i f ier matched the innermost 
quant i f ier over the designated variable. Since 
the la t te r is always quant i f ied, the algorithm 
would succeed if there is a possible match. Then, 
when the rule is returning, the current designated 
variable is substituted for the value of the va r i 
able of the same schema when the match was f i r s t 
made. (Of course, any subsequent conf l i c t would 
have fa i led the match). Thus at the point of re
covering the value of FM(y) from (3), y is 
substituted for z in (the match to FM) 
and is returned as seen in (5). Recall 
that x was associated with z when was 
matched to FM(x) and now y corresponds to x. 

Embodiment of Mathematical Knowledge 

Some lines in proofs are produced by mathe
maticians without references to the j us t i f y i ng 
def in i t ions or theorems. They usually express 
well-understood and well-organized domains of 
knowledge shared by the workers in a par t icu lar 
f i e l d . Exact references in such cases would ob
struct rather than f a c i l i t a t e communication. A 
very simple example from set theory is the l ine 

(6) ASC A B£C -> A V B S C . 
To j u s t i f y th is l ine one should rea l ly refer to 
the def in i t ions of subset and union, although no 
student of set theory does so once he has grasped 
the Boolean operations and relat ions between sets. 
More complicated examples could easily be found in 
proofs on set theory, for example, in t reat ing 
functions, Cartesian products, etc. 

It would be desirable if "bags" of such know
ledge were embodied in decision methods. A good 
example is the BOOLE ru le , which is a part of QUIP 

[ 7 ] , This rule uses a decision method by Quine 
and converts the Boolean operations and relat ions 
between sets into proposit ional connectives, af ter 
which a tautology check is applied. 

This rule could possibly be extended to cover 
more of the set-theoret ical knowledge, and other 
simi lar rules could be developed. However, it is 
not clear how much of set theory could be embodied 
in decision methods. There certainly w i l l be need 
for some heur ist ic knowledge, organized as well as 
possible. In fact , such embodiments would be a 
very important part of any completed system han
dl ing some domain of mathematics. 

Goal Hierarchy 

Informal proofs employ many conventions, 
assumptions, and shortcuts not exp l i c i t l y mention
ed in the proof. They largely depend on the do
main of the theory in which the theorem is being 
proven, although there are many conventions which 
apply generally to mathematics. For example, it 
is customary when one wants to show 

(7) 
to assume 

(8) x ε A 
and eventually derive 

(9) x ε B. 

Thus the proof (or part of proof) is terminated, 
but the imp l i c i t assumptions are 

(10) (x e A -> x ε B), 
and that (7) follows from (10) and the def in i t ion 
of subset. 

We propose that th is be dealt with in the 
following way. If the user wants to prove some
thing in the form of (10), while making the as
sumption (8) he also states the goal (9). When 
the goal is legi t imately achieved, the proof moni
tor generates formula (10) and associates it with 
the l ine (9). (At the present time a lo t of addi
t ional information is being associated with each 
l i ne , i . e . , free variables, dependencies, e tc . ) . 
Then if a reference to that l ine is made there 
w i l l be no ambiguity, since the form (9) depended 
on (8) and is no longer available. (The working 
premise (8) was discarded -- see [8] -- and a l l 
l ines depending on it are not avai lable). 

In more complicated proofs the user w i l l have 
to state goals on d i f ferent levels in the proof. 
Thus the monitor w i l l deal with a hierarchy of 
embodied goals. It would be better if the goals 
were declared automatically, but at the present 
time we do not foresee any reasonable way of im
plementing the goal hierarchy handling without the 
user stat ing the goals. Top-level goals would not 
need to be e x p l i c i t l y mentioned. 

An Informal Proof 

We t r y to i l l u s t r a t e some of the above d is 
cussion with the informal proof of a simple theo
rem. The de f in i t ion of image in the proof below 
i s : 
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quently, the rule is equivalent to universal spec
i f i ca t i on and modus ponens. The rule also allows 
for (1) to be inferred from (2) by the de f in i t ion 
of subset. In some cases the matching is much 
more in t r i ca te than in the example above. The 
matching algorithm u t i l i zes a subset of un i f i ca
t ion . The same algorithm is used in matching 
terms for replacements by equality in the proof. 
More detai ls can be found in [ 4 ] . 

A more sophisticated application of the 
matching algorithm is the matching of theorem 
schemas. Sometimes axioms and theorems contain 
formula schemas which can be matched to any form
ula sat isfy ing some variable constraints. For 
example, the theorem 

Matching of Schemas 



The problems facing future work on under
standing informal proofs may be best i l l us t ra ted 
by considering another comparative example. A 
proof of Theorem 37 on page 104 in [9] is present
ed below as it is accepted by QUIP. (To f u l l y 
benefit from the comparison the reader should look 
at the proof in the book). 

The proof in the book is given in a very com
pact form and requires a lo t of thinking from the 
reader in order to follow it in de ta i l . Many 
readers would probably agree with it af ter glanc
ing through, but when asked for the j us t i f i ca t i on 
of a certain step they might have d i f f i c u l t i e s in 
explaining i t . Even a simple thing as defining 
the set K by abstraction rea l ly appeals to the 
axiom of separation to make sure that the set 
exists. 

Yet in view of the applications we have in 
mind the proof checker of QUIP is more l i ke the 
kind of system one needs. F i rs t , it is an im
portant part of the task of a proof reader to make 
sure that a l l steps in a proof were properly jus
t i f i e d . Second, in teaching axiomatic mathemat
ics it is important to insure that the student 
understands the exact j u s t i f i ca t i on of a proof he 
might read in a book. 

The knowledge necessary for understanding a 
proof as the one above w i l l be distr ibuted over 
the machinery for making large steps, the goal 
monitor, and the semantics of the mathematical 
language processor. Procedural knowledge about 
d i f ferent ways of organizing proofs w i l l be 
needed. 

Most notably the QUIP proof in the last exam
ple seems to be organized in reverse order of the 
book proof. The la t te r f i r s t states that induc
t ion is needed to show f"A ε K, whence B is f i n i t e , 
since f"A = B, and then proceeds to develop the 
induction conditions. The QUIP proof works out 
the induction by Theorem 4.1.11 (Step 18) and then 
shows the f initeness of B. In fact , the proof 
includes several occurrences of the same phenomen
on on a smaller scale. 

Processing the wide variety of ways of ex
pression seen in the mathematical l i t e ra tu re is a 
formidable problem. It w i l l require continuous 
work for time to come. But by putt ing some re
st ra ints on the form of presenting proofs one 
might soon be able to make good use of a computer 
system for the purposes outl ined in the beginning 
of th is paper. 
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The proof checker handles the steps as they 
are given here. Of course, accepting th is proof 
would require stronger natural language processing 
capabi l i t ies than there currently are available in 
the program. The semantic analysis of the text 
should show that steps (2) and (4) are applica
tions of the IMPLIES ru le , while step (3) requires 
a ca l l to the prover via VERIFY. 

Future Directions 
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