
COMPUTER UNDERSTANDING OF MATHEMATICAL PROOFS

Vesko Marinov*

I n s t i t u t e f o r Mathematical Studies in the Soc ia l Sciences
Stanford U n i v e r s i t y

S tan fo rd , C a l i f o r n i a 94305

Abst rac t

Mathematical proofs c o n s t i t u t e a mix ture of
formulas w i t h a subset of na tu ra l language. They
can be represented as a sequence of l i n e s express
i b l e in the symbolism of p red ica te ca l cu lus . The
t r a n s i t i o n from step to step may depend on a
ser ies o f l o g i c a l manipulat ions and/or on i n t r i
cate mathematical knowledge associated w i t h the
domain of the p roo f . The o rgan iza t i on of the
proof may depend on d i f f e r e n t conventions adopted
by mathematicians in communication w i t h each o ther .
This paper deals w i t h problems invo lved in f o l l o w
ing the mathematical argument along those l i n e s .
Some of the ideas were implemented as a pa r t of a
system fo r teaching axiomat ic set theory to c o l
lege s tudents . The most powerful and f requen t l y
used ru les o f in fe rence u t i l i z e a r e s o l u t i o n the
orem prover . To the best of our knowledge t h i s
is the only r e s o l u t i o n theorem prover , perhaps the
on ly general purpose theorem prover used in actua l
p roduc t ion .

Key Words

Proof unders tanding, automatic p roo f check
i n g , automatic theorem p rov i ng , computer ass is ted
i n s t r u c t i o n .

I n t r o d u c t i o n

A mathematician w r i t e s down a p roo f of a
theorem on a p iece of paper and hands it to a
co l league. The l a t t e r reads through i t , usua l l y
understands i t , and a l l too f r equen t l y f i nds an
e r r o r , which means tha t a t leas t in i t s present
form i t i s not a p roo f a t a l l . Sometimes i t takes
several readers u n t i l an e x i s t i n g e r ro r i s de
tec ted and on occasion it has taken many years to
d iscover e r ro rs i n some d i f f i c u l t p roo f s . I t
would be very use fu l i f our mathematician could
type in the computer whatever he wrote and rece ive
some f o r of the response he received from the hu
man reader. The paper examines problems encoun
te red dur ing i n i t i a l e f f o r t s toward such a goa l .

Furthermore, i f one attempts to teach h igher -
l e v e l mathematics by computer, as i t is c u r r e n t l y
being done f o r set theory a t S tan fo rd , i t i s es-

Present address: Department of Computer
Science, Oregon State U n i v e r s i t y

s e n t i a l t ha t the machine understands the proofs
o f the students to the extent t ha t i t accepts
on ly the co r rec t ones. The paper w i l l d iscuss
some of the problems and experiences w i t h the
proo f checker which is the most important pa r t of
the system f o r teaching axiomat ic set theory
(named QUIP) developed at the I n s t i t u t e f o r Mathe
mat ica l Studies in the Soc ia l Sciences (IMSSS)
[6] .

The CAI system has been used s ince the f a l l
quar te r of 1974 to teach Philosophy 161, " I n t r o
duc t ion to Set Theory" , a t Stanford U n i v e r s i t y .
The program was w r i t t e n in LISP and SAIL and runs
on the TENEX opera t ing system f o r the DEC PDP-10
computer. The course is f o r upper - leve l under
graduate students and presents axiomatic set
theory as developed in [9] . The examples here
are from proofs of theorems from the cur r icu lum of
the course. A l l i l l u s t r a t i o n s of the ideas em
bodied in the mechanism f o r handl ing the proofs
are as of the t ime the author l e f t IMSSS. There
have been some improvements s ince .

This paper w i l l focus on the issues invo lved
in understanding mathematical p roo f s . To improve
h i s understanding of the examples a reader un
f a m i l i a r w i t h p roo f checking should consul t Suppes
[8] where the l o g i c a l system unde r l i n i ng the p roo f
checker of QUIP is exp la ined. Furthermore, due to
lack of space an exp lanat ion of the o r g a n i z a t i o n ,
fea tures and performance of the e n t i r e CAI system
cannot be inc luded . I t i s a v a i l a b l e i n [6] .

Natura l Language Part

There are two major problems fac ing computer
understanding o f mathematical p roo fs . F i r s t , the
language of mathematics is not tha t o f p red i ca te
ca l cu lus . I t u s u a l l y i s a mix ture o f formulas
w i t h n a t u r a l language. Thus, one of the problems
t h e o r e t i c a l l y approximates tha t o f understanding
na tu ra l language. In f a c t , t h i s is not so, as
some p r e l i m i n a r y r e s u l t s on the language of sets
[6] i n d i c a t e t ha t the language o f mathematics,
being a very r e s t r i c t e d subset o f na tu ra l l a n
guage, w i l l probably be handled much more e a s i l y .

A mathematical argument can be represented as
a sequence of separate s teps. Our op in ion is t h a t
the best i n t e r n a l represen ta t ion o f the formulas
desc r i b ing a step in a proof is p red ica te c a l c u l u s .
In t h i s view the main e f f o r t o f the n a t u r a l l a n -

S p e c l a l i z e d Systems-4: Marinov
851

guage processing w i l l be spent in correct trans
lat ion of the steps in the argument, although it
w i l l also affect the structure of the proof and
the choice of how to go about making a step in the
proof. The remaining problem, to which th is paper
is devoted, is how to follow the logical steps in
the proof.

Formal and Informal Proofs

In communications among mathematicians or
between a teacher of mathematics and his students
the steps in the proofs are as large as it is op
timal for understanding. They are large enough to
avoid obvious but tedious detai ls which would
usually make the proof less clear. On the other
hand, they are small enough to make it possible
for the reader to follow the proof without having
to discover it himself. The size of the steps
varies widely with d i f ferent proofs and in some
cases only a very general out l ine is given, thus
requir ing a greater e f for t on the part of the
reader. In any event, that is what we cal l an i n
formal proof. In addit ion, the concepts of being
essential , unfamil iar, or t r i v i a l in a proof are
not precise at a l l . This very vagueness of the
c r i t e r i a governing informal proofs is a primary
j us t i f i ca t i on for a precise def in i t ion of a formal
proof [8] .

Formal proofs require precise rules for jus
t i f y i ng each step. In that respect they are some
what algorithmic in character. It is no wonder
that automatic proof checking is almost as old as
a r t i f i c i a l intel l igence i t s e l f [5] . One of the
f i r s t computer proof checkers was that of Abrahams
[1] , which implemented an extension of the logical
system of Suppes [8] . IMSSS at Stanford has of
fered a CAI course in symbolic logic using a proof
checker based on Suppes' system since 1963. A
later implementation is described in [2] .

Size of the Steps

The problem with such formal proofs is that
the i r steps are quite small. A proof of somewhat
greater d i f f i c u l t y in set theory (or other mathe
matical theory) could easily go up into several
hundred steps. Such proofs cannot be used for
teaching axiomatic mathematics and hardly for any
other purpose. This problem has been resolved to
a large degree in the proof checker of QUIP.

Before discussing the techniques used in
accepting larger steps we shal l i l l u s t r a t e some
of the points made above with a comparative exam
ple. F i rst is the proof of Theorem 53 on page 112
in [9] , Then follows the proof of the same theo
rem as it was accepted by QUIP. K(A) is the car
dinal number of a set A, while ≈ means equi
pol lent . Axioms, de f in i t ions , and theorems ref
erenced in example proofs are given in the appen
dix. The command to the proof checker precedes
each l ine . Some of the commands may seem long but
are not ent i re ly typed by the user, since the sys
tem has a recognition feature (see [6]) . The QUIP
proof below is presented as l i s ted by the command
''Review". In doing the f i r s t three steps a b i t of

Notice that the steps of the QUIP proof f o l
low exactly the informal proof from the book. In
the f i r s t three steps a de f in i t ion and a theorem
are invoked as the appropriate instant iat ions are
made. The system has sorted variables and the
le t te rs m and n are among those used for cardinals.
This enables us for example to get Line 1 d i rec t l y
from the de f in i t ion of cardinal number. The QUIP
proof requires Line 5 to obtain a formula which is
a variant in terms of bound variables (in th is
case ident ical) to the statement of the theorem.
The informal proof quits at Step 4. This is one
of the many shortcuts used in informal proofs,
some of which w i l l be discussed below. They w i l l
eventually present the greatest problem in accept
ing informal text proofs and w i l l require a large
amount of additional information to be stored with
the internal representation of a l i ne .

Step 4 is the most interest ing in th is proof.
It is achieved by a ca l l to a resolution theorem
prover giving it the l ines 1, 2, and 3 plus the
axiom for cardinals as references. Below is the
continuation of the proof in the formal system of
Suppes [8] as implemented in [2] . Preceding each
l ine to the l e f t are the rules of inference as
typed by the user. In the brackets to the r ight
the i r names are expanded.

Axiom for Cardinals
(4) K(A1) = K(A) <-> A1≈A

3 LC [L e f t Conjunct]
(5) A 1 ≈ A

S p e c i a l i z e Systems-4: Marlnov
852

additional typing is required where the user i n
dicates that he wants to specify variables upon
which the system asks him what values to assign.
In the last two steps the l ines have to be typed
af ter the command.

A proof from "Axiomatic Set Theory" by P.
Suppes:

Theorem 53. There are sets A and B such t ha t
(i) = 0, (i i) K (A) = m, (i i i) K (B) = n.

Proof. In view of D e f i n i t i o n 7 (Cardinal
Number), there are sets Al and Bl such t h a t K (A 1) =
m and K (B 1) = n, and by v i r t u e of Theorem 9 there
are sets A and B such tha t A∩B = 0, A ≈ A l , and
B ≈ B 1 . By the axiom f o r c a r d i n a l s , t hen , K (A) =
m and K (B) = n. Q.E.D.

Proof of the same theorem as accepted by the
p roo f checker:

Theorem 5.1.1

As shown above, Step 4 requires 10 elementary
steps. Yet the informal proof only says it f o l
lows "by the axiom for cardinals". For the mathe
matician th is is an "obvious" step. In [9] one
frequently finds l ines in proofs that follow by
sentential logic (p. 29, p. 52) or by quant i f ier
logic (p. 45, p.60). When a step is j u s t i f i e d by
sentential logic it is decidable and one can safe
ly lean on a tautology checker. It is our be l ie f
that the most e f f i c ien t mechanical way to confirm
a tautology is to check the t ru th table and thus
QUIP has a TAUTOLOGY rule based on that p r inc ip le .
Steps j u s t i f i e d by logical manipulations involving
quant i f iers are undecidable in general and conse
quently represent a much harder problem to be ver
i f i e d mechanically. For th is purpose we employ a
resolution theorem prover with equality replace
ment.

Resolution Theorem Prover in Action

The experience with QUIP shows that a wel l -
organized resolution theorem prover gets most of
the inferences seen i n t u i t i v e l y by the user while
working on a proof. This is not quite true for
proofs involving equali ty, where some improvements
to the prover are needed. The user has no inter
action with the theorem prover except for asking a
formula to be ver i f ied and supplying the refer
ences, from which he thinks the formula fol lows.
An idea about the power of the theorem prover can
be gained from the following theorems from the
chapter on f i n i t e and i n f i n i t e sets in QUIP's cur
riculum, which were proved in one step.

This proof should be transparent even to
those unfamiliar with Suppes' logical system [8] .
The theorem can be proved in one step, yet the
user usually sees the exact references on which
th is step depends only af ter developing the proof
in the l a t te r form. Furthermore, th is form is
more l i ke the way mathematicians prove theorems.
S t i l l notice that the resolution prover was called
upon for Steps 4, 6, and 7.

The prover is used pr imari ly for the rules
VERIFY and CONTRADICTION. While using VERIFY the
user has to type the l i ne , whose negation together
with the references is passed to the prover. If
the prover is able to confirm the inference it
signals the proof checker to accept the l i ne . For
the CONTRADICTION rule the user merely points to
the references which he believes form an incon
sistency. If such is detected by the prover, the
proof checker returns the negation of the last
assumption on which the references depend. (Pre
sumably there must be an incorrect assumption in
order to reach a contradict ion).

S p e c i a l i z e d Systems-4: Marlnov
853

Implementation and Strategy

The main reason for selecting a resolution
theorem prover was our be l ie f that for the same
generality and the same power it can be designed
in a much more compact way than a heurist ic theo
rem prover. For the purposes we are using i t ,
simply a mechanical tool is needed and resolution
seems to be exactly that. Later we shall discuss
the poss ib i l i t y of a heur ist ic coupler to the
proof checker, which would make the prover serve
better the needs of understanding informal proofs.
The prover was wr i t ten in UCI-LISP. Together with
the converter of the formulas into clausal form it
is about 10 pages of pret ty-pr inted code.

The prover employs the MU strategy. It con
s ists mainly of keeping only resolvents containing
merge l i t e r a l s or having a unit parent. It is
shown in [3] that if in a refutat ion there are re
solvents not sat isfy ing the above res t r i c t i on ,
there always exists another refutat ion from the
same input set where such resolvents are obtained
f i r s t . With th is in view the strategy occasion
a l l y allows for a round of general resolution
af ter which the res t r i c t i on is imposed.

One thing that has plagued work on resolution
in the past has been preoccupation with complete
ness. Recognizing that a prover is working in an
undecidable domain it is obvious that completeness
is going to be rest r ic ted by the real factors of
time and space. The main objective in choosing a
strategy and tuning a prover's parameters is op
t imizing the number of inferences it gets. It is
the author's conviction that in th is context i n
completeness is a feature, rather than a drawback.
Thus, completeness in our prover is restr ic ted
severely in many d i f ferent ways.

Experiments with d i f ferent strategies for
resolut ion, carried out ear l ier by the author at
the University of Texas have shown the MU strategy
to be quite e f f i c ien t in the set- theoret ical do
main. One property of the MU strategy, coupled
with a l im i t on the depth of functional nesting in
the resolvents, is that it usually runs quickly
out of poss ib i l i t i es to resolve when given a sat-
i s f iab le set of clauses (i . e . , insuf f ic ient ref
erences). This is very important because one very
frequent error of the student users has been to
supply insuf f i c ien t or incorrect references. In
such a case it is very desirable that the prover
detects th is fact as soon as possible, rather than
grind u n t i l the time l im i t is reached. This pro
perty has strongly influenced the selection of the
MU strategy.

Deficiencies

ver i fy steps much larger than the user can see,
while other times it f a i l s at steps which the user
expects to be accepted. It would have been nice
if one could give the users some more accurate
idea what to expect from the prover.

Inferences which are missed by the prover,
while being obvious to the user, are largely due
to the fact that resolution breaks down the form
ulas to the atomic level before it can f ind a
proof. For example, the inference

from

Probably the most f rus t ra t ing property of the
prover from a CAI point of view has been the fact
that thus far it has been impossible to charac
ter ize the class of theorems accepted by the
prover despite substantial e f for t on the part of
members of the IMSSS s ta f f . This is most l i ke l y
a consequence of the unnatural way in which reso
lut ion works. Sometimes the prover is able to

S p e c i a l i z e d Systems-4: Marlnov
854

Of course, seen th is way, the inference is
immediate for the prover, too. There is a pro
vision in the program for the user to pass to the
prover the abstracted form of the formulas. What
would be desirable here is to have a heur ist ic
coupler between the prover and the proof checker
which looks at the poss ib i l i t i es of abstraction
in the set of formulas.

Implication Rule

Proofs in axiomatic systems frequently i n
clude transformations of formulas j u s t i f i e d by the
application of de f in i t ions , axioms, or theorems.
Almost always these inferences include quanti f iers
and would f a l l wi th in the domain of the theorem
prover. However, such inferences are determin
i s t i c and one potent ia l ly loses power in taking a
chance with the prover. Many def in i t ions are by
equivalence, which is a simple connective for the
human, but the worst one for resolut ion. Further
more, for the rules VERIFY and TAUTOLOGY the
formula must be typed i n , which the users are not
very enthusiastic about.

A l l these considerations led to the develop
ment of the IMPLIES ru le . Variables bound by an
universal quant i f ier containing the main connec
t i ve of the j us t i f y i ng formula wi th in i t s scope
are matched to any terms in the formula to be
transformed. For example, le t

(1) f"C f 'D
be a l ine in a proof (f"C means the image of the
set C under the function f) . From it we can
in fer the l ine

In a case l i ke t h i s , which happens most f re -

from

cannot be ver i f ied by the prover. The human user,
though, with his well-developed abstraction capa
b i l i t i e s quickly sees that the l e f t side of the
implication can be looked at as ø(m,n,p,A,B) .
Hence the inference becomes:

Occasionally i t is not straightforward to
determine which variable to match with the desig
nated variable of the schema. Then one has to
look at which quant i f ier matched the innermost
quant i f ier over the designated variable. Since
the la t te r is always quant i f ied, the algorithm
would succeed if there is a possible match. Then,
when the rule is returning, the current designated
variable is substituted for the value of the va r i
able of the same schema when the match was f i r s t
made. (Of course, any subsequent conf l i c t would
have fa i led the match). Thus at the point of re
covering the value of FM(y) from (3), y is
substituted for z in (the match to FM)
and is returned as seen in (5). Recall
that x was associated with z when was
matched to FM(x) and now y corresponds to x.

Embodiment of Mathematical Knowledge

Some lines in proofs are produced by mathe
maticians without references to the j us t i f y i ng
def in i t ions or theorems. They usually express
well-understood and well-organized domains of
knowledge shared by the workers in a par t icu lar
f i e l d . Exact references in such cases would ob
struct rather than f a c i l i t a t e communication. A
very simple example from set theory is the l ine

(6) ASC A B£C -> A V B S C .
To j u s t i f y th is l ine one should rea l ly refer to
the def in i t ions of subset and union, although no
student of set theory does so once he has grasped
the Boolean operations and relat ions between sets.
More complicated examples could easily be found in
proofs on set theory, for example, in t reat ing
functions, Cartesian products, etc.

It would be desirable if "bags" of such know
ledge were embodied in decision methods. A good
example is the BOOLE ru le , which is a part of QUIP

[7] , This rule uses a decision method by Quine
and converts the Boolean operations and relat ions
between sets into proposit ional connectives, af ter
which a tautology check is applied.

This rule could possibly be extended to cover
more of the set-theoret ical knowledge, and other
simi lar rules could be developed. However, it is
not clear how much of set theory could be embodied
in decision methods. There certainly w i l l be need
for some heur ist ic knowledge, organized as well as
possible. In fact , such embodiments would be a
very important part of any completed system han
dl ing some domain of mathematics.

Goal Hierarchy

Informal proofs employ many conventions,
assumptions, and shortcuts not exp l i c i t l y mention
ed in the proof. They largely depend on the do
main of the theory in which the theorem is being
proven, although there are many conventions which
apply generally to mathematics. For example, it
is customary when one wants to show

(7)
to assume

(8) x ε A
and eventually derive

(9) x ε B.

Thus the proof (or part of proof) is terminated,
but the imp l i c i t assumptions are

(10) (x e A -> x ε B),
and that (7) follows from (10) and the def in i t ion
of subset.

We propose that th is be dealt with in the
following way. If the user wants to prove some
thing in the form of (10), while making the as
sumption (8) he also states the goal (9). When
the goal is legi t imately achieved, the proof moni
tor generates formula (10) and associates it with
the l ine (9). (At the present time a lo t of addi
t ional information is being associated with each
l i ne , i . e . , free variables, dependencies, e tc .) .
Then if a reference to that l ine is made there
w i l l be no ambiguity, since the form (9) depended
on (8) and is no longer available. (The working
premise (8) was discarded -- see [8] -- and a l l
l ines depending on it are not avai lable).

In more complicated proofs the user w i l l have
to state goals on d i f ferent levels in the proof.
Thus the monitor w i l l deal with a hierarchy of
embodied goals. It would be better if the goals
were declared automatically, but at the present
time we do not foresee any reasonable way of im
plementing the goal hierarchy handling without the
user stat ing the goals. Top-level goals would not
need to be e x p l i c i t l y mentioned.

An Informal Proof

We t r y to i l l u s t r a t e some of the above d is
cussion with the informal proof of a simple theo
rem. The de f in i t ion of image in the proof below
i s :

S p e c i a l i z e Systems-4
855

Marinov

quently, the rule is equivalent to universal spec
i f i ca t i on and modus ponens. The rule also allows
for (1) to be inferred from (2) by the de f in i t ion
of subset. In some cases the matching is much
more in t r i ca te than in the example above. The
matching algorithm u t i l i zes a subset of un i f i ca
t ion . The same algorithm is used in matching
terms for replacements by equality in the proof.
More detai ls can be found in [4] .

A more sophisticated application of the
matching algorithm is the matching of theorem
schemas. Sometimes axioms and theorems contain
formula schemas which can be matched to any form
ula sat isfy ing some variable constraints. For
example, the theorem

Matching of Schemas

The problems facing future work on under
standing informal proofs may be best i l l us t ra ted
by considering another comparative example. A
proof of Theorem 37 on page 104 in [9] is present
ed below as it is accepted by QUIP. (To f u l l y
benefit from the comparison the reader should look
at the proof in the book).

The proof in the book is given in a very com
pact form and requires a lo t of thinking from the
reader in order to follow it in de ta i l . Many
readers would probably agree with it af ter glanc
ing through, but when asked for the j us t i f i ca t i on
of a certain step they might have d i f f i c u l t i e s in
explaining i t . Even a simple thing as defining
the set K by abstraction rea l ly appeals to the
axiom of separation to make sure that the set
exists.

Yet in view of the applications we have in
mind the proof checker of QUIP is more l i ke the
kind of system one needs. F i rs t , it is an im
portant part of the task of a proof reader to make
sure that a l l steps in a proof were properly jus
t i f i e d . Second, in teaching axiomatic mathemat
ics it is important to insure that the student
understands the exact j u s t i f i ca t i on of a proof he
might read in a book.

The knowledge necessary for understanding a
proof as the one above w i l l be distr ibuted over
the machinery for making large steps, the goal
monitor, and the semantics of the mathematical
language processor. Procedural knowledge about
d i f ferent ways of organizing proofs w i l l be
needed.

Most notably the QUIP proof in the last exam
ple seems to be organized in reverse order of the
book proof. The la t te r f i r s t states that induc
t ion is needed to show f"A ε K, whence B is f i n i t e ,
since f"A = B, and then proceeds to develop the
induction conditions. The QUIP proof works out
the induction by Theorem 4.1.11 (Step 18) and then
shows the f initeness of B. In fact , the proof
includes several occurrences of the same phenomen
on on a smaller scale.

Processing the wide variety of ways of ex
pression seen in the mathematical l i t e ra tu re is a
formidable problem. It w i l l require continuous
work for time to come. But by putt ing some re
st ra ints on the form of presenting proofs one
might soon be able to make good use of a computer
system for the purposes outl ined in the beginning
of th is paper.

S p e c i a l i z e d S y s t e m s - 4 : M a r i n o v
856

The proof checker handles the steps as they
are given here. Of course, accepting th is proof
would require stronger natural language processing
capabi l i t ies than there currently are available in
the program. The semantic analysis of the text
should show that steps (2) and (4) are applica
tions of the IMPLIES ru le , while step (3) requires
a ca l l to the prover via VERIFY.

Future Directions

Acknowledgements

Many of the presented ideas were formed in
conversat ions w i t h P. Suppes, L. B la ine , H. Graves,
and R. Smith. A l so , W. Bledsoe has made many
h e l p f u l suggest ions. The research has been sup
por ted by the U.S. Nat iona l Science Foundation
under Grant EC43997 to Stanford U n i v e r s i t y .

References

1. Abrahams, P., "Machine V e r i f i c a t i o n of Mathe
mat i ca l P roo f " , 1963, Doctora l D i s s e r t a t i o n ,
MIT.

2. Goldberg, A . , "A General ized I n s t r u c t i o n a l
System f o r Teaching Elementary Mathematical
Log ic " , Tech.Rep.No.179, 1971, IMSSS, Stanford
U n i v e r s i t y .

3. Marinov, V . , "Maximal Clause Length Resolu
t i o n " , 1973, Doctora l D i s s e r t a t i o n , U n i v e r s i t y
of Texas at A u s t i n .

4. Marinov, V . , "Replace Formula", 1974, IMSSS
i n t e r n a l memo, Stanford U n i v e r s i t y .

5. McCarthy, J . , "Computer Programs f o r Checking
Mathematical P roo fs " , 1961, Proc.Amer.Math.
Soc. on Recursive Funct ion Theory, New York.

6. Smith, R., Graves, H. , B la ine , L. and Marinov,
V. 1975. "Computer Ass is ted Axiomatic Mathe
mat ics : In formal R igo r . " In : Computers in
Educat ion, 0. Lecarne and R. Lewis, eds. IFIP
Second World Conference on Computer Educat ion.
North Ho l land , Amsterdam, pp.803-809.

7. Smith, R., "B00LE--A Decis ion Method", 1974,
IMSSS i n t e r n a l memo, Stanford U n i v e r s i t y .

8. Suppes, P., I n t r o d u c t i o n to Logic, 1957, Van
Nostrand, P r ince ton , N.J.

9. Suppes, P., Axiomat ic Set Theory, 1972, Dover,
New York.

Appendix

Axioms, D e f i n i t i o n s , and Theorems References in
the Proofs .

S p e c i a l i z e d Systems-4: Marinov
857

