
STRUCTURED PLANNINC AND DEBUCCINC

Mark L. Miller and Ira P. Goldstein
Artificial Intelligence Laboratory

Massachusetts Institute Of Technology
Cambridge, Massachusetts 02139

Abstract

The SPADE theory uses linguistic formalisms to model the
program planning and debugging processes. The theory begins with a
taxonomy of basic planning concepts covering strategies for
identification, decomposition and reformulation. A handle is provided
for recognizing interactions between goals and deriving a lincnr
solution. A complementary taxonomy of rational bugs and associated
repair techniques is also provided. SPA OK. introduces a new data
st ructure to facil i tate debugging -- the derivation tree of the
program.

SPADE generalizes recent work in Artificial Intelligence by
Suasman and Sacerdoti on automatic programming, and extends The
theory of program design developed by the Structured Programming
movement. It provides a more structured information processing
model of human problem solving than the production systems of
Newell and Simon, and articulates the type of problem solving
curriculum advocated by Papert's Logo Project.

1. A Multi-Faceted Approach

The SPADE theory is being developed in three contexts:
1. Education: an editor called SPADEE-0 has bern implemented

that encourages students to define and debug programs in terms of
explicit SPADE design choices, thereby providing a highly structured
programming environment.

2. A I : an automatic programmer called PATN has been
designed using an augmented transition network embodiment of the
SPADE theory. This results in a framework which unifies recent
work on planning and debugging by Sacerdoti [75] and Sussrnan [75].

3. Psychology: a parser called PAZATN has been designed that
applies the SPADE theory to the analysis of programming protocols.
PAZATN produces a parse of the protocol that delineates the
planning and debugging strategics employed by the problem solver.
PAZATN extends the series of automatic protocol analysers developed
at Carnegie-Mellon University [Waterman & Newell 72, 73; Bhaskar &
Simon 76].

Hand-simulat ions of PATN and PAZATN on elementary
programming problems and informal experiments with the SPADEE-0
editor attest to the theory's cogency in accounting for a wide range of
planning and debugging techniques [Goldstein & Mil ler 76a,b;
Miller & Goldstein 76b,c,d].

2. A Linguistic Analogy

In developing a representation for problem solving techniques,
we have been guided by an analogy to computational linguistics, for
three reasons.

1. Thc concepts and algorithms of computational linguistics,
though originally intended to explain the nature of language per .se,
supply perspicuous yet powerful descriptions of complex compulations
in general.

2. Computational linguistics decomposes computations into
syntactic, semantic, and pragmatic components. This decomposition
clarif ies the explanation of complex processes when viewed in the
following manner: syntax formalizes the range of possible decisions;
semantics the problem description, and pragmatics the. procedural
relationship between the two.

3. Computational linguistics has undergone an evolution of
procedural formalisms, beginning with finite state automata, later
employing recursive transition networks (context free grammars), next
moving on to augmented transition networks, and culminating in the
current set of theories involving frames [Minsky 75, Winograd 75,
Schank 75]. Each phase captured some properties of language, but
was incomplete and required generalisation to more powerful and

elaborate formal ism*. Following this evolut ionary sequence
illuminates the complexity of language theory. We have pursued a
similar evolutionary approach to clarify the complexity of prohlrm
solving processes.

• To date, our theory of program design has evolved as follows:
we first explored context free grammars for planning and debugging,
and subsequently their generalisation to ATN's; we then examined
the metaphor of protocol analysis as parsing, init ial ly using the
planning and debugging grammars to reveal the constituent structure
of protocols and later using the derivations produced by the ATN
formal ism; and, most recently, we have studied the use of a
chart-based parser to discover these analyses.

introspection, by examining problem solving protocols [Mi l ler &
Goldstein 76b], by studying the l i terature on problem solving
[Pglya 57, 65, 68; Newell & Simon 72; Sussman 75; Saecrdoli 75], and
by enumerating techniques for finding procedural solutions to
problems expressed at predicate calculus formulae [Emden &
Kowalski 76] This last criterion demonstrates that the taxonomy is
cu r ren t l y incomplete -- for example, techniques for handl ing
disjunctions have not yet been analysed thoroughly enough to warrant
inclusion. However, the taxonomy is adequate for a wide range of
elementary programming problems.

There are three major classes of plans in the taxonomy:
identification, decomposition, and reformulation. Identification means
recognizing a problem at previously solved. Decomposition refers to
strategics for d iv id ing a problem into simpler sub-problems.
Reformulat ion plans alter the problem descript ion, seeking a
representat ion which is more amenable to iden t i f i ca t ion or
decomposition. The figure indicates how these classes of plans are
further subdivided in the SPADE theory.

Planning, according to the theory, is a process in which the
problem solver sclccis the appropriate plan type, and then carries nut
the subgoals defined by that plan applied to the current problem.
From this viewpoint, the planning taxonomy represents a decision tree
of alternative plans. The decision process can be modeled by the
context free grammar given below. The grammar explicitly stairs
which planning rules involve recursive application of solution
techniques to subgoals: setup, interface, mainstep, cleanup, and

Spec ia l i zed Systems-1:
773

M i l l e r

paral le l .

The gremmer is written using the following syntex "I" is disjunction, V is
ordered conjunction, "&" is unordered conjunction, "<..>'" is iterstton, [,] is
optionality, end a lower csse phrese in quotation msrks (eg, "repest step"/
describes $ lexicel Item which is not further expended in the grsmmsr.

PLAN -> IOENTIFY | DECOMPOSE | REFORMULATE
IDENTIFY -> PRIMITIVE | DEFINED
DEFINED -> " c a l l user subprocedure" & PLAN
DECOMPOSE -> CONJUNCTION | REPETITION
CONJUNCTION -> SEQUENTIAL | PARALLEL

SEQUENTIAL -> [SETUP] + (MAINSTE-P + [INTERFACE])* + [CLEANUP]
PARALLEL -> <PLAN>*
SETUP -> PLAN
MAINSTEP -> PLAN
INTERFACE -> PLAN
CLEANUP -> PLAN
REPETITION -> ROUND | RECURSION
ROUND -> ITER-PLAN | TAIL-RECUR
ITER-PLAN -> repeat s tep" + SEQUENTIAL
TAIL-RECUR -> " i t o p s tep" + SEQUENTIAL + " recur s tep"

The SPADE theory is not restricted to any particular domain
However, to provide concrete examples, we have concentrated on
problems from elementary Logo graphic* programming [Papert 71].
This domain was chosen because of the availability of extensive
student performance data. The grammar rules for primitives in this
domain arc:

PRIMITIVE -> VECTOR | ROTATION | PENSTATE
VECTOR -> (FORWARO | BACK) + "number"
ROTATION -> (LEFT | RIGHT) + "numbtr"
PENSTATE -> PENUP | PENDOWN

A typical task undertaken by beginners
in the Logo environment is to draw a
wishingwell picture using the computer
(f ig. 2). Fig. 3 illustrates a solution to
the wishingwell problem with its hier
archical annotation according to our
planning grammar.

The grammar characterizes the decision process involved in
selecting plans from the taxonomy. We illustrate its uti l i ty in the
next two sections by constructing an editor that embodies the
grammar and analyzing debugging in terms of the grammar. Then we
show how the grammar can be augmented to include not only the
syntax of plans, but their semantics and pragmatic* a* well.

4. SPADEE-0. A Planning Assistant

One reason for calling our theory of planning and debugging
structured is to emphasise the link between our research and the
Structured Programming movement. Dahl, Dijkstra, and Hoare [72]
call for a style of programming which reflects coherently structured
problem solving; but a detailed formalization of what this style
entails is lacking. Our efforts in this direction, therefore, supplement
the work of Dijkstra and others. How can we judge, though, whether
a particular gremmer of plans captures the planning dceisions
involved in solving problems for some domain? One methodology is to
incorporate the grammar into an editor (SPADEE-0) whose purpose is
to augment and direct the capabilities of a human user. The critical
question then becomes the extent to which the editing system aids or
hinders the user.

Suppose a problem solver is defining a Logo program for
drawing the wishingwell shown earlier. In SPADEE-0, th is is
accomplished by applying the planning.grammar in generative mode:

l a . What 1s the name of your procedural
l b . >WW

2a. Tht r u l e is: PWK -> IDENTIFY | DECOMPOSE l REFORMULATE
What now?

2b. >DECOMPOSE

Spec ia l i zed Sy
7

4a . The r u l e is: CONJUNCTION -> SEQUENTIAL . . .

-> [SETUP] + <MAINSTEP+[INTERFACE]>* + [CLEANUP].
Oo you want to d e f i n t the opt iona l SETUP?

4b. >Latar

SPADEE-0 thus encourages users to articulate their design
decisions in top-down order. At the same time, the system allows the
user to escape from this strict discipline if an alternative solution
order seems preferable. This was illustrated by the user's "later"
instruction, which suspends the current goal for subsequent solution.

SPADEE-0 was implemented by assigning an interpretive
procedure to each grammatical operator. In essence, the editor is a
bookkeeper for the user's goal tree. Though simple, the editor serves
three useful purposes.

1. From an educational standpoint, the editor encourages
students to ar t icu la te their problem solving strategies. The
fundamental hypothesis of the Logo Project, as presented by Paperl
[71], is that such articulate problem solving is beneficial to the
learner. SPADEE-0, with its extreme form of articulation, provides
an experimental vehicle for evaluating Papert's claim. Our experiment
will he to test whether students exposed to SPADEE-0 learn Logo
faster than controls whose problem solving is more tacit.

2. From an AI standpoint, its use will indicate whether the
planning grammar is adequate, or whether certain plans are not
present that competent problem solvers feel arc necessary,

3. From a psychological standpoint, we will collect transcripts of
individuals using the editor and formulate pernonal grnmmars based
on the particular rules usually employed by each user. The personal
grammar will model the problem solving skills of that individual. In
the past we have manually analysed protocols from standard Logo.
SPADEE-0 protocols, with their explicit planning choices, should be

s t e m s - 1 : M i l l e r
7k

f a r more reveal ing.

5. RAID, A Debugging Assistant

SPADE ineludcs a theory of debugging. Sueh a theory is
essential, since problem solvers must often formulate plans in the fare
of imper fect knowledge and l imited resources. Under such
circumstances, even carefully reasoned judgments may be mistaken.

Given a grammatical theory of planning, debugging can be
analyzed as the localixation and repair of errors in applying grammar
rules during planning. Since our planning rules were constructed
from operators for conjunction, disjunction, and oplionality, three
basic classes of errors arise:

1. syntactic bugs, in which the basic grammar is violated, such
as when a required conjunct is missing;

2. semantic bugs, in which a Romantic constraint arising from
the part icular problem is violated, such as when a syntactically
optional const i tuent , needed because of the semantics of the
particular problem, is missing;

3. pragmatic bugs, in which an inappropriate selection from a
set of mutually exclusive disjuncts is made.

Fig. 4 exemplifies these bug types. Although additional
FIGURE ;4A - SYNTACTIC.\I,IA I N C O K P I A ' 1

A NECESSARY roN.iur.rv ir MTr.- !v<

categories (including execution and efficiency hup*) must he defined
to make this taxonomy of bugs complete, these classes are adequate lo
characterize many examples which arise in elementary programming.

RAID is a debugging assistant for SPADKK-0 implemented on
the basis of this taxonomy of errors. As SPADKK-0 prompts the user
through the planning process, those choices which might lead to
syntactic, semantic, or pragmatic bugs arc recorded by the system. In
subsequent debugging episodes, RAID alerts the user to the relevant
bug warnings, thereby aiding in diagnosis. Moreover, the SPADKK-0
planning editor can then be reinvoked to guide repair of the bug by
resuming planning in the context of the culpable decision. An
interaction with RAID that would arise from premature execution of
a program is illustrated below:

The user has continued defining the wishingwell program begun
earlier, with iti current definition as shown in fig. 4b. Although
an initial SETUP and an INTERFACE have not yet been supplied,
the user requests execution of the program.

l b . >RUN WISHINGWELL

2a. OK. (Fig. 4b shows the result.) What now?
2b. >Diagnose

3a. The r u l e 1s: DIAGNOSE -> (PARSE|CODE|HO0ELI PROCESS)*.
Which t y p t of d iagnosis do you want to use?

3b. >Parsa

4a . The r u l e 1 i : PARSE -> SYNTAX|SEMANTICS!PRAGMATICS.
Which bug type do you want to consider?

4a . >Semant1ci

5a. The f o l l o w i n g op t i ona l steps are m iss ing :
The SETUP and the WELL-POLE INTERFACE.

5b. >Repa1r

6a . The r u l e 1s: REPAIR -> COMPLETE \ REPLAC£.
6b. >Complete I n t a r f a c e between we l l and p o l e .

7a. The rule is: COMPLETE -> PLAN -> IDENTIFY | . . .

In this example, the interaction with SPADKK-0 was again
guided by a grammar; this debugging grammar is given below.

DIAGNOSE -> <PARSE I CODE | MOOEL | PROCESS)*
PROCESS -> <ASK | TRACE>*

CODE -> "pr in t def in i t ion"
MODEL -> RUN
PARSE -> SYNTAX | SEMANTICS | PRAGMATICS
SYNTAX -> " rev iew con junc t i ve choices 1n p l an "
SEMANTICS -> " rev iew op t i one l choices 1n p l e n "
PRAGMATICS -> " rev iew d i s j u n c t i v e choices in p l e n "
REPAIR ■> COMPLETE | CORRECT

COMPLETE -> "so lve f o r miss ing con junc t "
CORRECT -> "choose a l t e r n a t i v e d i s j u n c t "
RUN -> " run code l ine" + [" e r r o r msg"] + [DEBUG]
ASK -> " p r i n t d e f i n i t i o n " | " p r i n t va lue"

TRACE -> [SELF-DOC*] + RUN*
SELF-DOC -> "add break" | "add p r i n t " I "add t r a c e "

The grammar is intended to include the traditional debugging
strategics employed by programmers as well as the PARSK-bascd
strategies made possible by the derivation tree.

For more complex programs, there will be too many potential
bug locations for RAID's undirected advice to be helpful. Hence,
following SPADKK-O's structured bookkeeping philosophy, we allow
the user to set caveats during planning regarding those decisions
which appear to be potential t rouble spots. In this fashion,
SPADKK-0 permits an exploratory style of problem solving, as
illustrated below.

Suppose the wishingwell program is part of n large project. Then
the number of optional constituents that have not been defined
will he large. The user will probably have some insight into which
of these is actually needed. To facilitate debugging, the user is
encouraged to place caveats at those decisions he suspects may
require later debugging.

6a .
6b.

Do you want to de f ine the op t lone l SETUP?
>No.

7a. Do you wish to record a caveat here?
7b. >Yes.

6a. OK. ROOF, POLE, and WELL are pending. . .

Another mechanism to make SPADEE's and RAID's advice more
directed it to supply the semantics for problems. This it the topic of

Snecia1f7<»H S y s t e m s - 1 :
775

M i l l e r

the next section.

6. P A T N - An A T N for Planning

While context free grammar* can represent a useful abstraction
of planning decisions, they have limitations which prevent them from
providing a complete theory. They provide no representation for the
semantics of the prohlem nor for the pragmatics involved in choosing
one plan over another. For this reason, we have designed and arc
current ly implementing PATN, an augmented transition network
(ATN) problem solver. We have adopted the ATN formalism for the
same reasons that led Woods [70] to introduce it into computational
linguistics: the semantic and pragmatic limitations of contest free
grammars.

Fig. 5 provides a global view of PATN [Goldstein & Miller 76b]

The topology of the network embodies the planning grammar.
Registers contain descriptions of the problem, the solution, and
various temporary constructs built during planning. Arc predicates
supply pragmatic guidance by examining the registers and
appropriately directing the planning process. For example, an
identification plan cannot proceed if the problem description cannot be
found in the answer l ib rary . PATN has been successful ly
hand-simulated on elementary Logo and Blocks World problems.

PATN allows us to elaborate our notion of a completed plan by
defining an annotated derivation tree.. Associated with each node of
the plan derivation is a snapshot of the values of the ATN registers
at the point in the planning process when that node was created. A
derivation tree reveals the constituent structure of the plan; these
semantic variables reveal the semantic intent. A set of pragmatic
assertions at each node, derived as instances of PATN 's arc
predicates, reveal the reasons for preferring a given plan over its
competitors. Fig. 6 shows the annotated derivation tree for the
wishingwell program given earlier.

S p e c i a l i z e d Sys tems-1 :

7e. OK. The ROOF 1s complete. Pending goals a re :
POLE, WELL, and the preparatory s t e p s . . .

PATN's Linearisation Loop provides a superstruclure for
handling dependent, interacting subgoals. The approach is to view a
non-linearity as a property of the problem description. That is, even
though one description of the problem leads to an unsuccessful
refinement process because of interactions between subgoals, another
description can succeed by making the dependent constraints explicit.
For example, consider the SQUARE-INSIDK-TRIANCLE of f ig. 4C
If the problem description is:

M i l l e r

2a. Would you l ike to de f ine • model?
2b. >WI5HIN6WELL

3a. OK. WISHINGWELL found 1n Modal L i b r a r y .
PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE
What now?

3b. >ROOF POLE WELL

4 a . Ara thasa subgoals f o r LINEAR DECOMPOSITION?
4 b . >YES

5a. The pending m a i n i t t p i ara ROOF, POLE, WELL.
5b. >ROOF

6a . In t h t model ROOF 1s de ie r lbed as a t r i a n g l e .
TRIANGLE 1s a procedure 1n the answer l i b r a r y .
Would you U k a to use 1t?

6b . >YES

SQUARE X;
TRIANGLE Y;
INSIDE X Y;

then a decomposit ion that draws the square and t r iangle independently
and then at tempts to f i t them together lo achieve the inside re la t ion
w i l l f a i l . However, a problem descript ion of the fo l lowing f o r m a l low*
a successful decomposit ion:

SQUARE X, WITH SIDE * 100;
TRIANGLE Y, WITH SIOE - 300;
CENTER OF X ■ CENTER OF Y.

T h e 1 N T K R A C T I O N S predicate is a conjunct ion of tests on the
model r e g i s t e r . Kach test is responsible f o r d e t e c t i n g a g i v e n
non- l i nea r i t y . A corresponding action modifies the model, adding new
statements lo make the interact ion expl ic i t . The R E F I N K M K N T loop
is the reposi tory fo r what Sussman [75] calls the Cr i t i cs Gal lery. T h r
t h e o r e t i c a l p rogress o f P A T N i s l o i n t e g r a t e the C r i t i c s G a l l e r y
concept in to a theory of planning. In Sussman's H A C K E R , the c r i t i c s
ga l le ry and l i b ra r y of programming techniques were separate modules:
t h e r e was no integrated theory.

Of course, at any point in t ime the system may be unaware of a
g i v e n t ype of n o n - l i n e a r i t y . In such cases, the absence of an
in te rac t ion test w i l l lead to a sequential decomposition that u l t ima te l y
fa i ls . The design of a program for debugging such fa i lures is the
sub jec t of the next section.

7. DAPR — An A T N for Debugging

P A T N can make mis takes. T h a t is, P A T N w i l l somet imes
in t roduce what we te rm rational hug* into i ts plans, due to mak ing
arc t rans i t ions w i th imperfect knowledge of subt let ies or in teract ions
i n t h e t a s k d o m a i n . Hence , P A T N m u s t b e e q u i p p e d w i t h a
complementary debugging module, DAPR (f ig . 7).

DAPR 's task i t easier than that o f R A I D : DAPR mus t analyze
the closed set of bug types to which P A T N is subject, whereas R A I D
is intended to assist human programmers in f ind ing and cor rec t ing a
wide assortment of buys. DAPR employs three diagnostic techniques:

mode l , process, and plan diagnosis. Model d iagnosis is t he basic
technique. I t amounts to comparing the effects of execut ing a plan to
a fo rma l descr ipt ion of i ts goals, to determine i f , and in what fashion,
the plan has fai led. Another DAPR technique, based on Susctnan's
H A C K K R [75] , is examining the state of the process at the t ime of
t he e r r o r m a n i f e s t a t i o n . Plan d iagnosis, a D A P R f i r s t , i nvo l ves
e x a m i n i n g t he caveat* l e f t by the planner as va r i ous nodes were
cons t ruc ted .

D A P R w i l l also be used to provide addit ional guidance to R A I D .
T h i s i l l us t ra tes the synergism possible when educational, psychological
and AI face ts of a cogn i t i ve theory are s tud ied in an i n t e g r a t e d
fashion. Th i s in tegrat ion is f u r t h e r exemplif ied in the next section
when we apply the SPADK theory to protocol analysis.

8. P A Z A T N , a Protocol Analyser

As soon as one has an heur is l ica l ly adequate theory of p rog ram
design, i t is na tu ra l to ask, "Can the theory provide an account of
how people design programs?". An experimental technique we employ
f o r a n s w e r i n g t h i s ques t ion is the analysis o f p ro toco ls co l l ec ted
d u r i n g problem solving sessions. By adopting this methodology we
f o l l o w the precedent estab l ished in seminal s tud ies conduc ted a t
C a r n e g i e M e l l o n U n i v e r s i t y [N e w e l l & S imon 72 ; W a t e r m a n &
Newel l 72, 73; Rhaskar & Simon 76]. Our work extends the i r approach
along three dimensions.

1. W i t h the exception of the recent Rhaskar & Simon e f f o r t , the
C M U studies have been restr icted lo very l imi ted domains such as
c r y p l a r i t h m e l i c Rather than l im i t ing the task domain, we l imi t t h r
r a n g e o f responses . T y p i c a l l y p r o t o c o l s are t r a n s c r i p t i o n s o f
t h i n k - a l o u d v e r b a l i s a t i o n s ; w e f o c u s o n t he m o r e r e s t r i c t e d
i n t e r a c t i o n s a r i s i n g f r o m a p rob lem so lv ing session at a c o m p u t e r
console. The analysis task in this set t ing is lo in terpret user act ions
— ed i t i ng , execut ing, t rac ing , etc. — in terms of the SPADK theory
of p lanning and debugging.

2. The C M U theory centers on the production systemn model.
A l t h o u g h product ions arc T u r i n g universal, they encourage a less
h i e r a r c h i c a l , less local p r o g r a m o rgan i za t i on than the l i n g u i s t i c
f o r m a l i s m s o f the S P A D K theo ry . I n P A T N , each arc t r a n s i t i o n ,
c o n s i s t i n g of a p red ica te and an ac t ion , can be t h o u g h t of as a
p roduc t ion . However, P A T N organizes these product ions in to local
contexts , each of which consists of the arcs ex i t ing f rom a given node.
N o t al l of the arc product ions arc present at any moment in t ime; an
arc is present only when the problem solver is at the relevant node.
In t h e p r o d u c t i o n systems discussed in Human Problem Solving
[Newe l l & Simon 72], al l of the productions are always present and are
tested in serial order.

3. C M U analyses are based on the problem behavior graph.
P u r s u i n g an ana logy to c o m p u t a t i o n a l l i n g u i s t i c s , we de f i ne an
i n t e r p r e t a t i o n of a p ro toco l to be a parte tree supp lemented by
semantic and pragmat ic annotation. The parse tree characterizes the
c o n s t i t u e n t s t r u c t u r e o f the p ro toco l . Semant ic and p r a g m a t i c
annota t ion — variables and assertions attached to nodes of the parse
t r ee - - f o r m a l i z e the p rob lem desc r ip t i on and the r a t i o n a l e f o r
p a r t i c u l a r planning choices. Annotated parse trees closely re f lect the
loca l s t r u c t u r e o f P A T N ' s l i n g u i s t i c p rob lem so l v i ng m a c h i n e r y ,
leading more d i rec t l y to inferences regarding indiv idual d i f ferences
than is evident f rom problem behavior graphs.

R u v c n B r o o k s [7 5] a p p l i e d t he C M U a p p r o a c h l o t h e
p rog ramming domain, developing a model of coding -- the t rans la t ion
of h igh level plans in to the statements of a par t icu lar p rog ramming
language — and test ing the model by analyzing protocols. His model
is a set of product ion rules whose conditions match the pat terns of
p lan elements and whose actions generate code statements. Protocols
are analyzed manual ly , w i th the experimenter a t tempt ing to in fer the
p lan w h i c h is then expanded by the p roduc t i on sys tem i n t o code
para l le l ing t ha t of the protocol. The processes of understanding the
p r o b l e m , g e n e r a t i n g the p lan , and debugg ing arc no t f o r m a l i z e d .
S P A D E goes beyond th is in tha t it can be used to parse protocols and
t h a t the parse const i tutes a formal hypothesis regarding not only the
c o d i n g know ledge b u t also the p lann ing and d e b u g g i n g s t r a t e g i e s
employed by the problem solver.

[M i l l e r & Goldstein 76b] provides an example of such analysis
being per formed by hand. The example is a segment f r o m a protoco l
several hundred lines long in which a high school s tudent uses Logo

S p e c i a i l z e d S y s t e n s - 1 : M i l l a r
777

to draw the letters of his name. By examining the grammar rules
present in the derivation, we can observe various properties of the
student's problem solving such as: reliance on certain planning
choices to the exclusion of others (e.g., the student employed iteration,
but aever recursion); the misuse of certain optional constituents (e.g.,
a setup was usually included in each procedure even when it was
unnecessary); and certain situations where his problem solving
violates the grammar and hence is susceptible to syntactic errors (e.g.,
programs were often executed before their subprocedures had been
defined).

Just as a context free grammar is incomplete as a theory .of
planning, likewise a parse is only a partial analysis of a protocol. The
theory of annotation developed in the PATN work led us from
describing only the syntactic structure lo more complete analyses of
protocols: an interpretation of a protocol is the selection of a
particular annotated PATN plan derivation. Fig. 8 shows such an

analysis of a simplified protocol in which a wishingwell program is
defined, executed and debugged.

PAZATN is a chart-based parser [Kay 73; Kaplan 73] being
implemented to interpret protocols in terms of PATN's annotated plan
derivations [Mi l ter & Coldstein 76d]. It will operate by causing
PATN to deviate f rom its preferred approach in response to
bo t tom-up evidence (f i g . 9). By taking advantage of parsing
s t ra teg ies developed in research on speech unde rs tand ing
[Lesser ct al. 75; Paxton A Robinson 75], as well as the economical
chart representation of ambiguities, PAZATN has been successfully
band-simulated on ten I/Ogo protocols.

PAZATN will operate by matching PATN-generated plans with
protocol data. Two charts.wi l l be used to represent alternative
interpretations. The PLANCHART keeps track of the set of plausible
subgoals which have been proposed by PATN. Kig. 10 shows a
planchart for a wishingwell in which PATN has proposed two
alternative decompositions. The structure is a chart because it shares
substructures, as exemplified by the common solution to the WELL
subgoal pointed to by both wishingwell decompositions'. The
DATACHART records the state of partially completed interpretations.

F I G . 10 PARTIAL PLANCHART OF ALTERNATIVES FOR WW
Fig. 11 shows how the datachart links events into the planrhart for a
PAZATN interpretation of the wishingwell protocol given earlier.

These charts are grown as follows. First PAZATN requests
PATN to generate its most plausible plan. This plan is inserted into
the PLANCHART. Then protocol events are analyzed one hy one, and
matched with subgoals in the PATN plan. The match is recorded in
the DATACHART. If no plausible matches are found, PATN is asked
to generate the next most plausible plan. The PLANCHART is
thereby extended. Common subgoals share the same structure in the
chart.

At f irst, PAZATN will be implemented interactively, with the
user -- a psychologist analyzing a protocol — directing PAZATN to
select d i f fe ren t PATN plans. This follows the incremental
implementation strategy used in two of the CM I) protocol analyzers
[Waterman & Newell 72; Rhaskar & Simon 76]. PAZATN, even in its
early interactive stages, should provide strong evidence regarding
PATN's adequacy as a cognitive theory.

PAZATN will also be tested in the SPADEE. contest. Below is

778
M i l l e r

FIGURE 11 DATACHART L INKING PROTOCOL EVENTS TO PLANCHART LEAVES

a hypothetical dialogue with SPADEE-2, representing the original
'SPADEE-O augmented by both PATN and PAZATN.

l a . S o l v i n g f o r WISHINGVEIL. Pending subgoais a ra :
ROOF, POLE. WELL, i n t e r f aces . What now?

l b . >SQUARE

2a. OK. WELL has baen solvad by a c a l l to SQUARE.
SQUARE has a l ready btan so lved. What now? •

P A Z A T N w i l l increase the e d i t o r ' s f l e x i b i l i t y i n h a n d l i n g
amb iguous events, and in a l leviat ing what m igh t seem to some users
to be an executive al location of t ime and e f f o r t to the planning phase

9. Conclusions

T h e use of tools f rom computat ional l inguist ics — grammars ,
A T N ' s , der iva t ion trees, parsing a lgor i thms, charts -- has led to a
perspicuous representat ion for a theory of planning and debugg ing .
C o m p u t a t i o n a l l i n g u i s t i c s i s also responsib le f o r s u g g e s t i n g t he
p rop i t i ous decomposit ion of problem solving processes in to components
i nvo l v ing syntact ic , semantic and pragmatic knowledge.

O u r mu l t i - f ace ted approach — study ing problem solv ing in the
th ree d is t inc t contexts of A I , education, and psychology - - holds o u t
the poss ib i l i ty of a synergist ic effect. Rut proof of th is must awa i t
f u r t h e r exper imentat ion. A l though all of the programs have been
designed and hand-s imulated, as of th is w r i t i n g only the S P A D K K - 0
ed i to r has been implemented. Fur thermore, the theory has not yet
been exercised in enough contexts to prove its general i ty . However,
at least f o r the three domains in which the theory has been explored
— Logo, the Blocks Wor ld , and elementary calculus — it has provided
a u n i f i e d t r e a t m e n t of plans and bugs , a s i g n i f i c a n t s t r i d e f o r a
t heo ry of p rogram design.

The automatic problem solving aspect was supported by the Advanced Research
Protects Agency of the Department of Defense under Office of Neval Research
contract NOOO14-75-C-O643, the educational aspect by the National Science
Foundation under grant C40708X, and the protocol analysis aspect by the Bolt
Beranek A Newman Intelligent Instructional Systems Croup under contract
MDA 903-76 -C-0108 jointly sponsored by Advanced Research Projects Agency, Air
Force Human Resources Laboratory, Army Research Institute, and Naval Personnel
Research A Development Center.

References

Bhasker, R., and H Simon, 1976 "Problem Solving in Semenlically Rich Domains An
Example, from Engineering Thermodynamics" Carnegie-Mellon U, CIP Working
Paper 314

Brooks, R., 1975 A Model of Human Cognitive Behavior in Writing Code for Computer
Programs Carnegie-Mellon U, Report AF0SR-TR-1084

Dahl, 0 J , E. Dijkstrs and CAR Hoare 1972. Structured Programming London,
Academic Press

Emden, M Van, and R Kowelski, 1976 "The Semantics of Predicate Logic as a
Programming Language " JACM 23 4, pp 733-742

Goldstein, I, and H Miller, 1976a AI Baaed Personal Learning Environments MIT AI
Memo 384

Goldstein, I, and M Miller, 1976b Structured Planning and Debugging A Linguistic
Theory of Design MIT AI Memo 387

Kaplan, R, 1973 "A General Syntactic Processor" in R Rustin (ed), Natural Language
Processing, NY, AlgOrithmicS Press, pp 193-241

Key, M, 1973. "The MIND System" in R Rustin (ed), Natural Language Processing,
NY, Algorithmics Press, pp 155-186

Lesser, V, R Fennell, L Ermen and DR Reddy, 1975 "Organization of the Heersoy II
Speech Understanding System" IEEE Transactions on Acoustics, Speech, and Signal
Processing Assp-23:, pp. 11-24

Miller, M, and I Goldstein, 1976b Parsing Protocols Using Problem Solving Grammars
MIT AI Memo 385

Millar, M, and I Goldstein, 1976c SPADE A Grammar Based Editor For Planning and
Debugging Programs MIT AI Memo 386

Miller, M, and I Goldatein, I976d PAZATN A Linguistic Approach To Automatic
Analysis of Elementary Programming Protocols MIT AI Memo 388

Minsky, M, 1975 "Frame-Systems A Framework for Representation of Knowledge"
in P Winston (ed), The Psychology of Computer Vision, NY, McGraw-Hill

Newell, A, and H. Simon, 1972. Human Problem Solving N.J, Prentice-Hall

Papert, S, 1971 Teaching Children Thinking MIT AI Memo 247

Paxton, W, and A. Robinson, 1975. "System Integration and Control in a Speech
Understanding System * AJCL 5, pp. 5-16

Polya, G, 1957 How to Solve It NY, Doubleday Anchor Books

Polya, G, 1965 Mathematical Discovery (Vols 142) NY, Wiley and Sons

Polye, G, 1968 Mathematics and Plausible Reasoning (Vols t&2) NJ , Princeton
U. Press

Sacerdoti, E, 1975 "The Nonlinear Nature of Plans" 4IJCAI, Tbilisi, Georgia. USSR,
pp 206-218

Schank, R, 1975. "Using Knowledge to Understand" in R Schank & B Nesh-Webber,
Theoroticet Issues in Natural Language Processing, pp 117-121

Suss man, G, 1975 A Computational Model of Skill Acquisition NY, American Elsevier

Waterman, D, and A Newell, 1972 Preliminary Results with a System For Automatic
Protocol Analysis Cernegie-Mellon U, CIP Working Paper 211

Waterman, 0, and A Newell, 1973 "PAS-II An Interactive Task-Free Version of An
Automatic Protocol Analysis System" SIJCAI, Stanford, Ca, pp 431-445

Winograd, T., 1975. "Frame Representations and the Declarative-Procedural
Controversy" in 0. BobrOw A A Collins, Representation and Understanding,
Academic Press, pp. 185-2)0.

Woods, W, 1970 "Transition Network Grammars for Natural Language Analysis"
CACM 1310, pp 591-606

S p e c i a l i z e d S y s t e m s - 1 : M i l l a r
779

