
RECENT WORK WITH THE AL SYSTEM

Ron Goldman
Stanford Artif icial Intelligence Laboratory

Stanford, California 94505

ABSTRACT

A first level implementation of AL, a high-level
programming system for manipulator control, has been completed
and is now in operation. Several new modules have been added
to the system i.-.cluding: POINTY an interactive system for
specifying representation of parts, and ALAID an interactive
debugger for AL. Recent work in vision has been incorporated
into the AL system. This paper describes the present
implementation of AL and discusses current work.

INTRODUCTION

This paper summarizes recent work done by the Hand-Eye
group at the Stanford Artificial Intelligence Laboratory. For a
complete discussion the original papers should be consulted [see
bibliography].

General purpose robot manipulators such as the "Unimate"
provide a possible answer to the problems of automation of
assembly for small scale batch manufacturing and of materials
handling where special purpose equipment is too costly. We are
implementing a system called AL for the specification of these
tasks. The principal aim of our work is not to provide a
programming system for the factory floor, but rather to do
research on the underlying issues inherent in such a system.

AN OVERVIEW OF THE AL SYSTEM

We have a Digital Equipment Corporation KLIO processor
supporting the SAIL language (a dialect of ALGOL), and a
Digital Equipment Corporation 11/45 minicomputer which is
programmed in PALX assembly language. Two six degree of
freedom Scheinman Stanford arms and several other small
devices such as a mechanical screwdriver and a pneumatic vise
are controlled by the 11/45.

The main modules of the AL system are shown in figure 1.
Through POINTY the user generates a description of the parts
to be used in the assembly. This data structure together with a
user written AL program is then compiled. The resultant code
(caHed the' pseudocode) is interpreted by the runtime system
causing the manipulators to perform the desired task. ALAID
provides debugging facilities and an interface to other programs
such as a vision module.

In the current implementation the runtime system and part
of ALAID reside on the 11/45. The remainder of the system uses
the KL10.

A BRIEF SUMMARY OF THE AL LANGUAGE

At the heart of our work is the AL programming language
[5,71 AL is an ALGOL-like source language extended to handle
the problems of manipulation. Much of the design of AL grew

figure J.

out of experience with the Stanford WAVE system [91

In addition to the normal scalar variables found in most
programming languages, available data types in AL include those
types necessary to specify three-dimensions! measures like
directed distances, locations and orientations. Arithmetic operators
such as rotation and translation are provided to handle these new
data types.

Provision is made for simultaneous execution of several
processes. This allows calculation and arm movement to take
place concurrently. Several manipulators can be operated in
independent or coordinated motion. Synchronization of parallel
processes is accomplished by signal and wait primitives.

A rich vocabulary for specifying manipulator motion is
provided. Included in this is the ability to monitor various
conditions (e.g. force or touch) and to perform an appropriate
action if the tested condition occurs.

A general purpose text macro facility ii also available

REPRESENTATION OF OBJECTS

One goal in the design of AL was for ease of
programming, and in specific, ease in representing objects and
the relationships between objects. Even for a simple part like the
box in figure 2 there are several features: two screw holes, a
grasping point, and the box's location. When the box is moved
the other features should move with it. Also when the hand is

R o H o t ? c s - l : Goldman
733

FRAME box, box-grasp, scl, sc2;
AFFIX box-grasp TO box

ATFRAME(ROT(YHAT,l80),VECTOR(i,l.5,l));
AFFIX scl TO box

AT FR AM E(ROT(YHAT, 180),VECTOR(0,0,2));
AFFIX sc2 TO box

ATFRAME(ROT(YHAT,180),VECTOR(2A2»;
box <- FRAME(nilrotn,VECTOR(12,21,0))

Declarations necessary to describe the affixment relations of the
box in figure 2.

figure 3.

grasping the box one would like to specify motion in terms of the
box and let the system compute the necessary movement of the
arm. AL allows the user to declare the affixment relations
between objects and then automatically takes care of the
subsequent bookkeeping operations.

From a study of sample AL programs it has become
apparent that these declarations occupy a substantial proportion
of the code. They also tend to be more difficult to write than the
procedural statements (see figure 3). With the development of
even higher level manipulator languages, declaration of a
detailed world model will become a significant problem.

POINTY is a prototype system that allows the user to
interactively build the necessary data structures using the
manipulator itself to point to the objects and their features [8].
The output from a session with POINTY is a text file of AL
declarations. To increase the manipulator's precision as a
measuring tool a sharp pointer is grasped by the hand. The
pointer is shaped so it can reach into such awkward places as the
inside of a screw hole or the interior of a box. In order to make
the shape of the pointer compatible with all kinds of unforseen
obstructions the pointer may be bent by the user into an arbitrary
shape. When the pointer's shape is changed, recalibration of the
pointer's tip is quickly accomplished by pointing to a known
position.

The current POINTY system contains three major
modules: an affixment editor, arithmetic routines, and an
interface to the manipulator. The affixment editor contains
facilities for creating and modifying the affixment relations
between the objects being modelled. The arithmetic routines
permit the user to perform arithmetic operations and to modify
the location attributes of parts. The manipulator interface
contains facilities for moving the manipulator under either system
or user control and for retrieving the current position of the
manipulator for use by the rest of the system.

A preliminary version of the system has been implemented
and tested. This preliminary system demonstrates that specifying
object modules can be a much easier process than might
otherwise have been believed. A fuller version of the system is
currently under development.

DEBUGCINC MANIPULATOR PROGRAMS

Experience has shown that most programs of moderate size
contain errors, and that debugging is a significant part of
software production. This work is greatly facilitated by the use
of debugging tools that know about the language the program is
written in. For example BAIL, a debugger for SAIL, knows about

SAIL's data types, primitive operations and procedure
implementation [101

Debugging an AL program involves examining and
modifying variables, altering the flow of control, triggering
condition monitors, and patching code. Provision must also be
made to handle both the explicit and implicit parallelism in the
program. Another factor is that manipulator programs work in
the real world which is less tractable than the highly controlled
world of the computer. Many actions are irreversible. Backing up
to an earlier state usually involves the repositioning of physical
objects, including the manipulator. Failures arise due to
discrepancies between the program's model of the world and the
actual state of affairs. Indeed the idea of a program crashing
takes on new meaning.

ALAID has been designed to meet these problems and to
assist the programmer in preparing correct manipulator code [6].
Since our system resides on two computers, we further require
ALAID to provide a link between the two machines. This allows
debugging to proceed from either machine. It also allows a clean
interface between an AL program running on the 11/45 and a
higher level strategy program on the KL10. ALAID enables the
two processes to signal each other using the synchronization
primitives in AL and it also allows the program running on the
KL10 to examine and set variables in the memory space of the
AL manipulator program on the 11/45.

The state of ALAID at the moment is fairly primitive. It
connects the two machines, can examine and set variables, signal
and wait for events, and cause the runtime system to enter
11DDT, a symbolic assembly language debugger. ALAID resides
on both machines and runs as a parallel process with the runtime
system. A more advanced version of ALAID is currently being
implemented which will allow the user to alter the flow of control,
set breakpoints, and examine/modify the pseudocode.

INTERFACING VISION TO AL

There are many manipulator tasks which are greatly
enhanced by the use of vision. Visual feedback can provide
better positioning, inspection, error detection, and error recovery.
Recent work in visual information processing here has taken
advantage of the fact that in assembly tasks there is a great deal
of prior knowledge about the type, placement, and appearance of
the objects that form the scene [41 The goal is to verify an
object's presence (e.g. is the screw on the screwdriver), or to refine
the location of some object (e.g. where exactly is the screw hole).
From the model of the expected scene one knows roughly where
each object should be. They may be misplaced by half an inch or
rotated fifteen degrees, but there will not be any big surprises.
This class of visual tasks has been named verification vision.

Through the use of ALAID it is possible to have a
verification vision program running on the KL10 interfaced to
an AL program on the 11/45. The vision module can be
coordinated with the manipulator code to provide a large degree
of visual feedback. Whenever the manipulator program needs
visual feedback it can signal the verification vision program.
Using ALAID the vision module can examine variables in the
manipulator program to see which of several tasks It is to
perform. It can then take a picture and compute the needed
information which, again via ALAID, can be stored into the
appropriate variables in the manipulator code.

R o b o t i c s - 1 : G o l d m a n
734

A manipulator program making use of visual feedback has
been successfully demonstrated. The manipulator, holding a
mechanical screwdriver, picks up a screw from a dispenser and
inserts it into a screw hole in a carburetor assembly. A quick
visual check is made to confirm that a screw has actually been
retrieved from the dispenser, and if not, another try is made. The
precise location of the screw hole is determined visually and this
information is made available to the manipulator program.

OTHER WORK

The present AL system calculates trajectories for the
manipulators at compile time. We are presently investigating
possible algorithms for runtime trajectory calculation [3]. Doing
the calculation at runtime will reduce the load on the planning
system in the compiler, possibly to the vanishing point. This will
make it easier to add arrays and procedures to the AL language.
It also opens the possibility for an interactive manipulator system.

We are also improving the force-feedback features of AL
[3]. A new force-sensing wrist is being added to the manipulator
allowing more precise force monitoring. Better touch sensors are
also being investigated. Software to allow compliant motions and
the application of forces, in addition to better force-sensing, has
recently been completed. This work will make our manipulators
capable of much more delicate motions.

There are still several minor features of AL that have yet
to be implemented, such as library functions. These will be
added to AL shortly and a number of demonstration assemblies
will be programmed. A film of AL in operation will be available
soon.

Finally, work will shortly begin on two arm cooperative
■motions when our second arm interface is finished.

SUMMARY

The first version of the AL language is now operational.
Experience obtained from writing AL programs for various
assembly tasks has shown that the declarations necessary to
describe the parts occupies a substantial portion of the code, and
that these declarations tend to be more difficult to write than the
procedural statements. POINTY, a system to allow the user to
interactively generate these declarations, has been written and
successfully tested, providing a solution to the problem of parts
specification. Work has been done investigating the requirements
of debugging tools for manipulator programs. A preliminary
system, called ALAID, which knows about the data types in AL
has been implemented. Using ALAID, a vision module has been
interfaced to the AL system, enabling a manipulator program to
utilize visual feedback.

Other current work deals with runtime trajectory
calculation, manipulator path specification, improved
force-sensing and application of forces, and two arm cooperative
motions.

ACKNOWLEDGEMENTS

This work was supported by the National Science

RoKnt i c s - 1 : 7 3 5

Foundation through grant NSF-APR-74-01390-A04. Thanks
also go to all the members of the Stanford Hand-Eye group who
have worked with the AL system.

BIBLIOGRAPHY

1. T.O.Binford, R.C.Bolles, R.Finkel, T.A.Cafford,
D.D.Grossman, E.Miyamoto, M.S.Mujtaba, M.D.Roderick,
B.E.Shimano, R.H.Taylor; Exploratory Study of Computer
Integrated Assembly Systems; Second Report, Sept 15, 1974 to
Nov 30,1975; Artificial Intelligence Laboratory, Stanford
University.

2. T.O.Binford, R.C.Bolles, R.Finkel, T.A.Cafford,
R.Goldman, D.D.Grossman, J.P.Jarvis, C.R.Liu, M.S.Mujtaba,
M.D.Roderick, V.D.Scheinman, B.E.Shimano, R.H.Taylor;
Exploratory Study of Computer Integrated Assembly Systems;
Third Report, Dec 1,1975 to July 31,1976; Artificial Intelligence
Laboratory, Stanford University.

3. T.O.Binford, T.A.Cafford, G.Gini, M.Cini, I.GIaser,
R.Coldman, T.Ishida, C.R.Liu, M.S.Mujtaba, H.Nabavi,
E.Nakano, E.Panofsky, V.D.Scheinman, D.Schmelling,
B.E.Shimano; Exploratory Study of Computer Integrated
Assembly Systems; Fourth Report, Aug 1,1976 to March 31,1977;
Artificial Intelligence Laboratory, Stanford University.

4. R.C.Bolles; Verification Vision within a Programmable
Assembly System; Memo AIM-295; December 1976; Artificial
Intelligence Laboratory, Stanford University.

5. R.Finkel, R.H.Taylor, R.C.Bolles, R.Paul, and JAFeldman;
AL, A Programming System for Automation; Memo AIM-243;
November 1974; Artificial Intelligence Laboratory, Stanford
University.

6. R.Finkel; Constructing and Debugging Manipulator
Programs; Memo AIM-284; August 1976; Artificial Intelligence
Laboratory, Stanford University.

7. R.Goldman, M.S.Mujtaba; AL Users Manual; forthcoming;
Artificial Intelligence Laboratory, Stanford University.

8. D.D.Grossman, R.H.Taylor; Interactive Generation of
Object Models with a Manipulator; Memo AIM-274; December
1975; Artificial Intelligence Laboratory, Stanford University.

9. R.P.Paul; WAVE, A Model-Based Language for
Manipulator Control; First North American Industrial Robot
Conference and Exposition, October, 1976.

10. J.F.Reiser; BAIL, a Debugger for SAIL; Memo AIM-270;
October 1975; Artificial Intelligence Laboratory, Stanford
University.

11. R.H.Taylor, A Synthesis of Manipulator Control Programs
From Task-Level Specifications; Memo AIM-282; July 1976;
Artificial Intelligence Laboratory, Stanford University.

12. <A film of AL in operation; forthcoming; Artificial
Intelligence Laboratory, Stanford University.

Ool Hfrvin

