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Abstract 
This paper is a condensed version of the author's thesis 

[Bolles 1976], which investigates a subclass of visual information 
processing referred to as verification vision (abbreviated VV). 
VV uses a model of a scene to locate objects of interest in a 
picture of the scene. The characteristics that distinguish VV from 
the other types of visual information processing are: (1) the 
system has a great deal of prior knowledge about the type, 
placement, and appearance of the objects that form the scene and 
(2) the goal is to verify and refine the location of one or more 
objects in the scene. VV includes a significant portion of the 
visual feedback tasks required within programmable assembly. 
For example, locating a screw hole and determining the relative 
displacement between a screw and the screw hole are both VV 
tasks. Two types of VV tasks are discussed in the thesis: 
inspection and location. This paper only discusses location tasks, 
but essentially the same capabilities are required for both types of 
tasks. 

This paper describes (1) a structure for a VV system that 
makes it easier for programmers who are not experts in computer 
vision to program VV feedback, and (2) a set of combination 
rules that are capable of using the results of several different 
types of operators to estimate the confidences and precisions that 
are necessary within VV. 

An interactive VV system based upon these ideas has been 
implemented. It helps the programmer select potentially useful 
operator/feature pairs, provides a training session to gather 
statistics on the behavior of the operators, automatically ranks the 
operator/feature pairs according to their expected contributions, 
and performs the desired task. The VV system has also been 
interfaced to the AL control system for the mechanical arms and 
has been tested on tasks that involve a combination of touch, 
force, and visual feedback. 

Introduction 
Verification vision is a type of visual information 

processing that uses a model of a scene to locate objects of interest 
in a picture of the scene. The characteristics that distinguish 
verification vision (abbreviated VV) from the other types of 
visual information processing are: (1) the system has a great deal 
of prior knowledge about the type, placement, and appearance of 
the objects that form the scene and (2) the goal is to verify and 
refine the location of one or more objects in the scene. The 
following situation illustrates a typical use of VV: 

During the assembly of a pump, a 
mechanical arm places the pump base 1n a vise. 
The next step 1s to insert an aligning pin 
into one of the screw holes 1n the base. But 
the locat ion of the screw hole is not known 
precisely enough to insert the p1n d i rec t ly . 
The programmable assembly program needs to 
improve its estimate for the location of the 
hole. W 1s one way to accomplish th is 
subtask. 

In this task the pump base may be mispositioned to the extent of 
perhaps plus or minus half an inch and rotated pius or minus 
fifteen degrees, but there will not be any big surprises: the base 
will not be upside down or at the other end of the workstation. 
VV is designed to use this predictability to minimize the cost of 
reducing the uncertainties associated with the location of an 
object. It bridges the gap between the known tolerances on an 
object and the desired tolerances when the initial tolerances 
greatly restrict the possible appearance of the object. 

If the locations and appearances of the objects are greatly 
restricted, why not use any of several correlation operators to 
match corresponding features and use the positions of these 
matches to deduce the location of the screw hole? If the 
constraints on the objects guarantee unique matches for all of the 
features, this procedure may be acceptable. However, there are 
two main reasons why it is difficult to guarantee unique matches: 

(1) Constraints, even quite tight constraints, often do not 
guarantee a single match. For example, if a visual 
operator is designed to locate a certain corner, often 
there are other corners that are near the desired 
corner and look almost identical to it. Sometimes the 
operator may locate one of these decoys instead of the 
desired corner. The desired feature and the decoy 
features will be jointly referred to as known 
alternatives for the operator. 

(2) Visual operators, such as correlation operators, are 
not completely reliable; they do not always locate one 
of the known alternatives. Low level operators are 
notorious for occasionally locating something 
completely unexpected. This type of match will be 
referred to as a surprise. 

Thus, almost any interesting class of VV tasks includes situations 
in which the visual operators do not locate unique features. The 
VV system has to decide which known alternative or surprise has 
been matched by each operator. 

In VV there are several sources of information that can be 
used to help make these decisions. For example, the system may 
have previous pictures of the scene and constraints on the 
locations of the objects. The previous pictures can be used to 
predict the range of values produced by an operator and the 
constraints can be used to determine the portion of the picture in 
which a feature might appear. 

There are also sources of information that can be used to 
simplify the programming of VV tasks. For example, previous 
pictures of the scene or models of the objects in the scene can be 
used to suggest potentially useful features to be located. 

This paper describes a VV system that has been designed 
to take advantage of these diverse sources of knowledge. The 
second and fourth sections outline a structure for a VV system 
that makes it easier for programmers who are not experts in 
computer vision to program VV feedback. The third section 
presents a set of combination rules that are capable of combining 
the results of several different types of operators into the 
confidences and precisions that are required within VV. 
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A V Vsystem based upon these ideas has been implemented 
and interfaced to the AL control system for mechanical arms 
[Finkel 1976]. The VV system helps the user select potentially 
useful operator/feature pairs, provides a training session to gather 
statistics on the behavior of the operators, automatically ranks the 
operator/feature pairs, and performs the task. The fifth section 
briefly describes the results of using this system. 

There are a few excellent, special-purpose systems that 
perform VV tasks (e.g., see [Baird 1976] and [Kashioka 1976]). 
There are also a few systems that handle a subclass of VV tasks 
(e.g., see [Fischler 1971], [Agin 1973], [Chien 1975] and [Holland 
1975]), but none of these programs deal with the wide variety of 
available information or concentrate on the combination of 
precision and confidence to the extent required by the general 
class of VV tasks. 

The motivation for this research came mainly from the 
domain of programmable assembly. Some of the techniques have 
been optimized to take advantage of specific properties of this 
environment, but the basic methods are more widely applicable. 
Other possible applications include aerial photograph 
interpretation and medical image processing. 

A Structure for VV 
This section briefly describes the basic philosophy of a VV 

system and introduces some of the terminology. It characterizes 
the subtasks that are involved in setting up and performing VV 
tasks. Later sections will describe specific techniques that can be 
used to perform some of these subtasks. 

A V V system can be (somewhat arbitrarily) partitioned into 
four stages: 

(1) PROGRAMMING TIME: the user states the goal of 
the task, calibrates the camera, and chooses potential 
operator/feature pairs. 

(2) TRAINING TIME: if previous pictures of the scene 
are available, the system applies the operators to 
several sample pictures and gathers statistical 
information about their effectiveness. 

(3) PLANNING TIME: the system ranks the operators 
according to their expected contribution, determines 
the expected number of operators to be needed, and 
predicts the cost of accomplishing the task. 

(4) EXECUTION TIME: the system applies operators 
one at a time, combines the results into confidences 
and precision, and stops when the desired levels have 
been reached or a cost limit has been exceeded. 

These stages represent different conceptual steps in the 
development of a VV program. Different types of knowledge and 
techniques are applicable at different stages. 

To accomplish a VV task requires progress from one stage 
to the next in the order shown above. However, for clarity, the 
execution time will be discussed first. 

If one ignores the intermediate details, the VV process can 
be roughly characterized as follows: the programmer states the 
goal of the task in terms of the following three quantities. 

(a) the confidence that the system has found the 
correct object(s), 

(b) the precision within which the system has 
located the object(s), 

and (c) the cost involved in determining this 
information; 

and the system, at execution time, tries to extract useful 
information from a picture and combine the results of these 
extractions into estimates of the quantities of interest. 

The implementation of the VV system discussed in this 
paper gathers information by applying operators, such as edge 
operators, correlation operators, and region growers, that are 
designed to locate and describe features, such as line segments, 
correlation points, and regions. The information produced by 
such operators can be roughly classified into two types: value 

information and position information. Value information includes 
the value of a correlation coefficient, the contrast across an edge, 
and the intensity of a region. Position information, in addition to 
(x,y) or (x,y,z) information, may include orientation information. 
For example, an edge operator might return (1) the (x,y) position 
of a point on an edge, (2) an estimate of the orientation of the 
edge, (3) the confidence that there is an edge at that position, and 
(4) the contrast across the edge. The first two quantities are types 
of position information; the second two are examples of value 
information. 

Given the position and value information from several 
operators, what is the best estimate of the location of an object? 
What is the precision associated with that estimate? What should 
the combination rules be? The next section will describe a set of 
mathematical tools that form a set of combination rules for the 
class of VV tasks. The basic approach is to use Bayesian 
probability to estimate the confidences in the assignment of known 
alternatives to the matches and a least-squares technique to 
combine the available position information to form a current, best 
estimate of the location of the object (plus a tolerance about that 
estimate). These techniques are well-known, but they combine 
particularly nicely to answer the various needs of a VV system. 

Combination Rules for Location 
Within VV the purpose of applying operators to a picture 

of a scene is to establish a correspondence between features on an 
object in the scene and their two-dimensional positions in the 
picture. Given this correspondence, it is possible to use the 
camera calibration and a fitting scheme to determine the current 
location of the object in the scene. If the correspondence is 
correct, the deduced location will be correct. If the correspondence 
is not correct, the fitting scheme may be able to detect the 
inconsistency and possibly even identify the incorrect matches. 
However this checking process is not reliable enough to be 
depended upon as the main filtering mechanism for incorrect 
matches. Thus, it is important to produce as good a 
correspondence as possible before it is given to the fitting routine. 
This section reviews some of the attributes of one of the most 
common fitting procedures, least-squares fitting, and then 
develops a set of combination rules to express the confidence that 
an assignment of features to a set of matches is correct. 

Least-squares Fitting 
There are two important quantities in a location task: (1) 

an estimate for the location of the object and (2) the precision 
associated with that estimate. In the context of VV the location of 
an object refers to the position and orientation of the objects 
coordinate system in terms of some other coordinate system (e.g., 
the workstation coordinate system). In the most general case the 
location of an object may involve three rotations and three 
displacements. Often, however, there are constraints on the 
location of the object that reduce the number of unknown 
parameters. For example, if an object is known to be sitting 
up-right on a table, there are only three unknown parameters: two 
displacements and one rotation. The purpose of the fitting 
scheme is to use the correspondence between object features and 
picture positions to estimate the unknown parameters and produce 
precisions about these estimates. 

A least-squares fitting routine was chosen for the first 
implementation of a VV system because it provides the necessary 
location and precision information and a generalized, non-linear, 
least-squares fitting routine was available (see [Gennery 1975]). 
Given estimates of the location parameters, one can predict the 
location of any point on the object. If the routine is given the 
uncertainties associated with each match, it can produce an 
estimate for the precision about each of the location parameters. 
Given the precisions about the location parameters, one can 
estimate the precision about points on the object. This ability to 
propagate the precisions is of major importance. It makes it 
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possible to estimate the precision about the features of interest, 
such as the screw hole. It also makes it possible to use the location 
of some ini t ial features to predict the location and uncertainty 
about new features to be found. For example, if five features on 
the pump base have been located and the least-squares fitting 
routine has been called, the precision of the matches can be 
translated into a precision about the screw hole. If the precision is 
not sufficiently tight, the system needs to locate more features. 
T h e parameters and uncertainties produced by the first five 
matches can be used to predict the location and uncertainty region 
for a sixth feature. 

The ability to estimate locations and precisions depends 
upon a correct correspondence between the object features and 
their picture positions. If there are several incorrect associations 
between operator results and object features, a fitting technique is 
probably useless because it will produce incorrect parameter 
values and wi l l not be able to distinguish between correct and 
incorrect associations. If there are only a few incorrect 
assignments, however, the correct assignments may be able to 
override the incorrect assignments sufficiently to produce 
reasonable parameter values. If that is the case, the residuals 
associated with each assignment can be used to cull bad 
assignments. (The residual associated with an assignment is the 
difference between the position at which the operator located the 
image of the feature and the position of the feature predicted by 
the parameter values.) 

The ability of a least-squares fitting routine to do this 
cul l ing, however, is limited. For example, consider figure 1. 

Figure l.a shows the actual locations of the four features. Figure 
l.b shows the positions returned by the operators. If the object is 
known to be sitting up-right on a table so that there are only 
three unknown parameters, the best f it to this data will probably 
be at the position shown in figure I.c. In that case the incorrect 
assignment has a very large residual and the culling procedure 
would work. However, if all six parameters are unknown, the 
least-squares routine wil l take ful l advantage of the available 
f lexibi l i ty in order to try to reduce the residuals, even it means 
rotat ing the object one-hundred twenty degrees and placing it at 
the other end of the table. The size of the resulting residuals 

would indicate that something is wrong, but the residual 
associated with the incorrect assignment would probably not be 
the largest. In fact, it may very well be the smallest. Us distance 
f rom the other group of matches acts as a lever arm that forces 
the f i t t ing routine to minimize its error at the expense of the 
others. Thus, one has to be careful about using the fitting routine 
to cull incorrect matches. 

The conclusion is to insure that the assignments are as 
correct as possible before they are handed to the fitting routine. 
The information available to make these assurances consists of the 
value and position information returned by the operators. The 
remainder of this section develops a sequential decision procedure 
to estimate the confidence that the assignment of a feature to the 
results of an operator is correct. The idea is to use only as much 
information as necessary. For example, if the value information 
returned by an operator clearly indicates the known alternative 
being matched, the system immediately makes the indicated 
assignment and adds it to the correspondence. However, if the 
confidence produced by the value information is not high enough, 
the system uses progressively more information from other 
operators to raise (or lower) the confidence associated with the 
assignment. 

Confidences f rom Value Informat ion 
In order to use the value information produced by an 

operator one needs either an analytic method or an experimental 
method to estimate the expected ranges of values associated with 
the different possible matches. Since analytic methods are still 
quite l imited, the current V V system uses experimental data. A 
supervised training session is used to apply each operator to 
several example pictures and gather three types of information: 

(1) an estimate of the a priori probability that 
the operator will locate a certain known 
alternative, 

(2) an estimate of the distribution of values 
produced by the operator when it locates a 
certain known alternative (actually an 
estimate of the density function), 

and (3) an estimate of the density of values 
produced by the operator when it locates a 
surprise. 

Figure 2 displays this information for an example operator. This 
simple model of the operator only distinguishes between two 
possibilities: (a) the operator locates the correct feature and (b) the 
operator locates a surprise. At execution time if the operator is 
applied to a picture and it returns a value of 1.67 (see figure 2), 
what is the probability that the operator has located the correct 
feature? Bayes' theorem (e.g., see [Hoel 1971]) is a standard way 
of combining the a priori probabilities with the density functions 
to answer this question. Bayes' theorem expresses the estimate of 
the desired a posteriori probability that the operator has located 
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A V V system based upon these ideas has been implemented 
and interfaced to the AL control system for mechanical arms 
[Finkel 1976]. The VV system helps the user select potentially 
useful operator/feature pairs, provides a training session to gather 
statistics on the behavior of the operators, automatically ranks the 
operator/feature pairs, and performs the task. The fifth section 
briefly describes the results of using this system. 

There are a few excellent, special-purpose systems that 
perform VV tasks (e.g., see [Baird 1976] and [Kashioka 1976]). 
There are also a few systems that handle a subclass of VV tasks 
(e.g., see [Fischler 1971], [Agin 1973], [Chien 1975] and [Holland 
1975]), but none of these programs deal with the wide variety of 
available information or concentrate on the combination of 
precision and confidence to the extent required by the general 
class of VV tasks. 

The motivation for this research came mainly from the 
domain of programmable assembly. Some of the techniques have 
been optimized to take advantage of specific properties of this 
environment, but the basic methods are more widely applicable. 
Other possible applications include aerial photograph 
interpretation and medical image processing. 

A Structure for VV 
This section briefly describes the basic philosophy of a VV 

system and introduces some of the terminology. It characterizes 
the subtasks that are involved in setting up and performing VV 
tasks. Later sections will describe specific techniques that can be 
used to perform some of these subtasks. 

AW system can be (somewhat arbitrarily) partitioned into 
four stages: 

(1) PROGRAMMING TIME, the user states the goal of 
the task, calibrates the camera, and chooses potential 
operator/feature pairs. 

(2) TRAINING TIME, if previous pictures of the scene 
are available, the system applies the operators to 
several sample pictures and gathers statistical 
information about their effectiveness. 

(3) PLANNING TIME: the system ranks the operators 
according to their expected contribution, determines 
the expected number of operators to be needed, and 
predicts the cost of accomplishing the task. 

(4) EXECUTION TIME, the system applies operators 
one at a time, combines the results into confidences 
and precision, and stops when the desired levels have 
been reached or a cost limit has been exceeded. 

These stages represent different conceptual steps in the 
development of a VV program. Different types of knowledge and 
techniques are applicable at different stages. 

To accomplish a VV task requires progress from one stage 
to the next in the order shown above. However, for clarity, the 
execution time will be discussed first. 

If one ignores the intermediate details, the VV process can 
be roughly characterized as follows: the programmer states the 
goal of the task in terms of the following three quantities: 

(a) the confidence that the system has found the 
correct object(s), 

(b) the precision within which the system has 
located the object(s), 

and (c) the cost involved in determining this 
information; 

and the system, at execution time, tries to extract useful 
information from a picture and combine the results of these 
extractions into estimates of the quantities of interest. 

The implementation of the VV system discussed in this 
paper gathers information by applying operators, such as edge 
operators, correlation operators, and region growers, that are 
designed to locate and describe features, such as line segments, 
correlation points, and regions. The information produced by 
such operators can be roughly classified into two types: value 

information and position information. Value information includes 
the value of a correlation coefficient, the contrast across an edge, 
and the intensity of a region. Position information, in addition to 
(x.y) or (x,y,z) information, may include orientation information. 
For example, an edge operator might return (1) the (x,y) position 
of a point on an edge, (2) an estimate of the orientation of the 
edge, (3) the confidence that there is an edge at that position, and 
(4) the contrast across the edge. The first two quantities are types 
of position information; the second two are examples of value 
information. 

Given the position and value information from several 
operators, what is the best estimate of the location of an object? 
What is the precision associated with that estimate? What should 
the combination rules be? The next section will describe a set of 
mathematical tools that form a set of combination rules for the 
class of VV tasks. The basic approach is to use Bayesian 
probability to estimate the confidences in the assignment of known 
alternatives to the matches and a least-squares technique to 
combine the available position information to form a current, best 
estimate of the location of the object (plus a tolerance about that 
estimate). These techniques are well-known, but they combine 
particularly nicely to answer the various needs of a VV system. 

Combination Rules for Location 
Within VV the purpose of applying operators to a picture 

of a scene is to establish a correspondence between features on an 
object in the scene and their two-dimensional positions in the 
picture. Given this correspondence, it is possible to use the 
camera calibration and a fitting scheme to determine the current 
location of the object in the scene. If the correspondence is 
correct, the deduced location will be correct. If the correspondence 
is not correct, the fitting scheme may be able to detect the 
inconsistency and possibly even identify the incorrect matches. 
However this checking process is not reliable enough to be 
depended upon as the main filtering mechanism for incorrect 
matches. Thus, it is important to produce as good a 
correspondence as possible before it is given to the fitting routine. 
This section reviews some of the attributes of one of the most 
common fitting procedures, least-squares fitting, and then 
develops a set of combination rules to express the confidence that 
an assignment of features to a set of matches is correct. 

Least-squares Fitting 
There are two important quantities in a location task: (1) 

an estimate for the location of the object and (2) the precision 
associated with that estimate. In the context of VV the location of 
an object refers to the position and orientation of the objects 
coordinate system in terms of some other coordinate system (e.g., 
the workstation coordinate system). In the most general case the 
location of an object may involve three rotations and three 
displacements. Often, however, there are constraints on the 
location of the object that reduce the number of unknown 
parameters. For example, if an object is known to be sitting 
up-right on a table, there are only three unknown parameters: two 
displacements and one rotation. The purpose of the fitting 
scheme is to use the correspondence between object features and 
picture positions to estimate the unknown parameters and produce 
precisions about these estimates. 

A least-squares fitting routine was chosen for the first 
implementation of a VV system because it provides the necessary 
location and precision information and a generalized, non-linear, 
least-squares fitting routine was available (see [Gennery 1975]). 
Given estimates of the location parameters, one can predict the 
location of any point on the object. If the routine is given the 
uncertainties associated with each match, it can produce an 
estimate for the precision about each of the location parameters. 
Given the precisions about the location parameters, one can 
estimate the precision about points on the object. This ability to 
propagate the precisions is of major importance. It makes it 
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possible to estimate the precision about the features of interest, 
such as the screw hole. It also makes it possible to use the location 
of some init ial features to predict the location and uncertainty 
about new features to be found. For example, if five features on 
the pump base have been located and the least-squares fitt ing 
routine has been called, the precision of the matches can be 
translated into a precision about the screw hole. If the precision is 
not sufficiently tight, the system needs to locate more features. 
T h e parameters and uncertainties produced by the first five 
matches can be used to predict the location and uncertainty region 
for a sixth feature. 

The ability to estimate locations and precisions depends 
upon a correct correspondence between the object features and 
their picture positions. If there are several incorrect associations 
between operator results and object features, a fitting technique is 
probably useless because it will produce incorrect parameter 
values and wi l l not be able to distinguish between correct and 
incorrect associations. If there are only a few incorrect 
assignments, however, the correct assignments may be able to 
override the incorrect assignments sufficiently to produce 
reasonable parameter values. If that is the case, the residuals 
associated with each assignment can be used to cull bad 
assignments. (The residual associated with an assignment is the 
difference between the position at which the operator located the 
image of the feature and the position of the feature predicted by 
the parameter values.) 

The ability of a least-squares fitting routine to do this 
cul l ing, however, is limited. For example, consider figure I. 

Figure l . c 

Figure La shows the actual locations of the four features. Figure 
l.b shows the positions returned by the operators. If the object is 
known to be sitting up-r ight on a table so that there are only 
three unknown parameters, the best fit to this data will probably 
be at the position shown in figure l.c. In that case the incorrect 
assignment has a very large residual and the culling procedure 
would work. However, if all six parameters are unknown, the 
least-squares routine wil l take ful l advantage of the available 
f lexibi l i ty in order to try to reduce the residuals, even it means 
rotating the object one-hundred twenty degrees and placing it at 
the other end of the table. The size of the resulting residuals 

would indicate that something is wrong, but the residual 
associated with the incorrect assignment would probably not be 
the largest. In fact, it may very well be the smallest. Its distance 
from the other group of matches acts as a lever arm that forces 
the fitting routine to minimize its error at the expense of the 
others. Thus, one has to be careful about using the fitting routine 
to cull incorrect matches. 

The conclusion is to insure that the assignments are as 
correct as possible before they are handed to the fitting routine. 
The information available to make these assurances consists of the 
value and position information returned by the operators. The 
remainder of this section develops a sequential decision procedure 
to estimate the confidence that the assignment of a feature to the 
results of an operator is correct. The idea is to use only as much 
information as necessary. For example, if the value information 
returned by an operator clearly indicates the known alternative 
being matched, the system immediately makes the indicated 
assignment and adds it to the correspondence. However, if the 
confidence produced by the value information is not high enough, 
the system uses progressively more information from other 
operators to raise (or lower) the confidence associated with the 
assignment. 

Confidences from Value Information 
In order to use the value information produced by an 

operator one needs either an analytic method or an experimental 
method to estimate the expected ranges of values associated with 
the different possible matches. Since analytic methods are still 
quite limited, the current VV system uses experimental data. A 
supervised training session is used to apply each operator to 
several example pictures and gather three types of information: 

(1) an estimate of the a priori probability that 
the operator will locate a certain known 
alternative, 

(2) an estimate of the distribution of values 
produced by the operator when it locates a 
certain known alternative (actually an 
estimate of the density function), 

and (3) an estimate of the density of values 
produced by the operator when it locates a 
surprise. 

Figure 2 displays this information for an example operator. This 
simple model of the operator only distinguishes between two 
possibilities: (a) the operator locates the correct feature and (b) the 
operator locates a surprise. At execution time if the operator is 
applied to a picture and it returns a value of 1.67 (see figure 2), 
what is the probability that the operator has located the correct 
feature? Bayes' theorem (e.g., see [Hoel 1971]) is a standard way 
of combining the a priori probabilities with the density functions 
to answer this question. Bayes' theorem expresses the estimate of 
the desired a posteriori probability that the operator has located 
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the correct feature in terms of the a priori probabilities and 
condit ional probabilities as follows: 

where V is the value of the operator. 
Given a particular value of V, the ratio of conditional 

probabil i t ies (i.e., the likelihood ratio) is simply the ratio of the 
values of the density functions at that value. This observation 
makes it particularly easy to evaluate formula 1. It is also 
important to point out that formula 1 can be evaluated for any 
density functions. No particular form, such as a normal 
distr ibut ion, is required. 

Formula I can be applied to the VV problem in a 
straightforward way: apply an operator, estimate the probability 
that it has located the correct feature, if that probability is above 
a certain threshold, add the feature and its match position to the 
correspondence to be used by the fitting routine, otherwise discard 
the results. This approach guarantees a certain probability of 
correctness for each operator used by the fitting routine. 

If there are several known alternatives for an operator, this 
simple, two-possibility model is not sufficient. For example, 
consider the operator whose density functions are shown in figure 
2. If several of the surprise matches are actually the result of the 
operator locating another feature that looks similar to the original 
one, the density function and the a priori probability associated 
wi th the surprise matches can be divided into two parts. See 
f igure 3. In this case, when the operator returns a certain value at 
execution, the system has to decide which of the following 
situations is the most likely: 

ka l a <the op. has located known a l t e r n . 1> 
ka2 = <the op. has located known a l t e r n . Z> 

or s u r p r i s e < h e op. has located a s u r p r i s e ) , 
where k a l is the same as the correct match in the two-possibility 
model. 

Bayes' theorem can be extended to produce the probabilities 
associated with the three possible explanations for the results of 
the operator. For example, 

Formula 4 can be generalized to handle operators with N known 
alternatives and a surprise. Let Aj, for J equal 1 to N, represent 
the N known alternatives and let AO represent the surprise. Then 

Th is formula is convenient because it states the desired 
probabil i ty in terms of the a priori probabilities and the 
l ikelihood ratios. Given the value of an operator, the probability 
of each alternative can be computed, and the alternative with the 
highest probability is declared the best match. If the example 
operator returns a value of 1.67, as it did earlier, the probability 
that it has matched the first known alternative is still the same. If 
the operator happens to return a value of 1.22, the old 
formulat ion would have estimated that the operator had located a 
surprise. In this new formulation, the system would predict that 
the operator has located the second known alternative with a 
probabil i ty of .94. Thus, knowing about ka2 and incorporating it 
into the formula has increased the percentage of times the system 
can associate a known alternative with the results of the operator. 
It has also increased the percentage of times the system can make 
the assignment with sufficient confidence to add the assignment to 
the correspondence. 

Confidences f rom Position Informat ion 
In the scheme discussed so far, if the probability associated 

wi th the best alternative is less than the acceptance threshold, the 
results of the operator are simply discarded. If the probability is 
less than the threshold, but close, is there any way to incorporate 
addit ional information in order to raise or lower the probability? 
One possibility is to extend Bayes' theorem to incorporate the 
position information returned by the operator. In fact, it is 
possible to estimate P [ka l | v , p ] , but the position information 
of one operator by itself usually does not add any significant 
constraints because the operator is just as likely to find the feature 
at one location as another (within a certain tolerance region). 

The position information produced by each individual 
operator may not be helpful, but the relative positions of two or 
more features can add important, discriminating information. For 
example, consider figure 4.a, which is a picture of a screw with 
two features marked. Assume that the location of the screw is 
known within plus or minus one quarter inch along each axis and 
that the orientation of the screw is known to be within plus or 
minus fifteen degrees of vertical. If the operators trying to locate 
these two features happen to f ind their best matches at the 
positions shown in figure 4.b, what is the probability that they 
have located the correct features? The probability is small 
because it would require the screw to be rotated 140 degrees from 
vertical, which is highly unlikely, given the initial uncertainties. 
If the two matches are at the positions shown in figure 4.c, the 
probabi l i ty that the matches are correct is significantly higher. 
Thus , the relative structure of two or more matches can be an 
important source of information. It can be used to measure the 
consistency of a set of matches. 
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This intuitive idea can be captured in a form of Bayes' 
theorem. For example, assume that two operators have been 
applied and their value information did not clearly indicate which 
known alternatives they matched. The relative position of their 
matches may be able to clarify the situation. The probabilities of 
interest are the probabilities associated with the different possible 
assignments of known alternatives to the results of the two 
operators. That is, given the fact that the operators have located 
their matches at positions p1 and p2, what is the probability that 
the first operator has located its jth known alternative and the 
second operator has located its kth known alternative? Let fj 
represent the proposition that the jth known alternative is the 
best assignment to the results of the first operator and let gk 
represent the proposition that the kth known alternative is the 
best assignment for the second operator. Then the probability of 
interest is: 

and the denominator in formula 7 is the same for all j's and k's, 
the program can simply choose the assignment that has the 
highest value of P[f J,gk,pl ,p2]. 

The probability P[ f j ,gk ,p l ,p2] represents the probability 
that the first operator locates its match at p1, the second operator 
locates its match at p2, the best assignment for operator one is 
known alternative f j, and the best assignment for operator two is 
known alternative gk. In effect this probability is the probability 
that the object would be at a location such that the features would 

appear at the indicated positions in the picture. One way to 
express this probability is in terms of the parameters that describe 
the location of the object. For example, consider a task in which 
there are three unknown parameters: two displacements, dx and 
dy, and a rotation, dt. Statistics can be gathered at training time 
that describe the expected density functions for these parameters. 
Then if the results of two operators imply that dx=.l, dy=-.2, 
and dt=-2.3, the probability P[f j , gk ,p l , p2] can be expressed 

To a first approximation the fuzzy logic convention can be used 
to approximate this probability of a conjunction by the minimum 
of the probabilities of the conjuncts. 

Once the best assignment has been found, the probability 
that it is the correct assignment can be estimated by the following 
formula: 

Formula 9 can be extended to evaluate the assignments for 
more than two operators, but unfortunately the number of terms 
in the denominator quickly becomes prohibitively large. For 
example, ten operators, each with two alternatives, require 1023 
probabilit ies to be computed in order to determine the best 
assignment. This fact implies that formula 9 should only be used 
to assign alternatives to small subsets of the operators. The 
overall probabil ity that the complete assignment is correct can be 
estimated by a function of the probabilities associated with the 
subsets For example, it is possible to modify a maximal clique 
algori thm so that it determines the most consistent structure of 
pairwise evaluated matches (i.e., subsets of order two) [Barrow 
19761 

If subsets of the operators are used to develop confidences, 
since it may be computationally expensive to evaluate all possible 
subsets, it is important to choose subsets that are expected to 
produce distinct patterns. For example, consider figure 5, which 
shows the known alternatives for four operators. If the program 
is try ing to assign one of the two alternatives to the results of 
operator 1, and the relative position information is needed to 
distinguish between the two alternatives, which of the other 
operators should be used? Operator 2 may not be helpful because 
it is dif f icult to distinguish between assignments [la,2b] and 
[ lb,2a] . If the init ial constraints allow for a small angular 
uncertainty and a small scale uncertainty, it may be difficult to 
distinguish between assignments [la,4] and [lb,4]. However, even 
if the scale is allowed to change fifty percent and the orientation 
in the plane is completely unconstrained, it is still possible to 
distinguish between assignments [la,3a] and [lb,3a], or between 
t la ,3b] and [ lb,3b]. Therefore, a good subset to be evaluated is 
the subset consisting of operator 1 and operator 3. 



Since the known alternatives for the operators are known in 
advance and the task constraints are known in advance, it is easy 
to estimate the distinctness of patterns and choose the best subsets 
at planning time. 

Summary 
This section described a fitting scheme and an ordered set 

of rules to estimate confidences. The least-squares fitting scheme 
is well-known and produces the desired location and precision 
information, if the assignment of known alternatives is correct. 
The combination rules provide ways to estimate the confidences 
associated with the assignments. Some of the rules use the value 
information produced by the operators, some of them use the 
position information. 

Techniques to Simplify VV Proeramming 
The purpose of this section is to present a sample of the 

possible techniques that can simplify the programming of VV 
tasks. These techniques are designed to automate the 
programming process to such an extent that a programmer who is 
not an expert in computer vision can set up programs to perform 
VV tasks. A version of each of the techniques mentioned in this 
section has been implemented in the current VV system. Out of 
necessity the descriptions are brief. More techniques and more 
complete descriptions can be found in the author's thesis [Bolles 
1976]. 

Estimate the Desired Resolution of a Picture 
Civen an initial set of constraints and a desired precision 

about some point of interest, the VV program can use the 
expected precisions of the operators to help determine a good 
resolution for the picture. The resolution is important because (a) 
it may not be possible to achieve the desired precision with the 
available operators if the resolution is too low, and (b) the amount 
of searching may be excessive if the resolution is too high. 

Civen a calibrated camera it is possible to convert the 
two-dimensional uncertainty about the position of an operator's 
match in the picture coordinate system into a three-dimensional 
uncertainty about the feature in the workstation coordinate system. 
Given a set of features and their associated uncertainties, the 
least-squares routine can predict the precision about the point of 
interest. 

Sueeest Operator/Feature Pairs 
In addition to providing a convenient environment within 

which a programmer can experiment with different operators, 
there are two methods that a VV system can use to suggest 
potentially useful operator/feature pairs: 

( i ) The VV program can analyze a typical picture of the 
scene and produce a list of visually distinct features. 
For example, an edge operator can be applied to a 
picture in order to pick out all pairs of line segments 
that form a corner of a certain minimum size. 
Hannah and Moravec have each implemented 
interest operators of this type that search for good 
correlation features (see [Hannah 1974] and [Moravec 
1976]). 

(2) The VV program can analyze a model of the scene 
and produce a list of features on the objects that can 
be seen and are expected to be distinctive. For 
example, a three-dimensional model and a 
hidden-line elimination scheme may be used to 
predict visible corners. Bolles has partially 
implemented a suggestion system of this type [Bolles 
1976]. It is based upon an object modelling system 
designed by Miyamoto and Binford [Miyamoto 1975] 
and it suggests potentially useful curve segments. 

Both of these automatic suggestion methods reduce the amount of 
detailed work required of the programmer. The programmer only 

has to filter out suggestions that may be difficult to locate reliably 
or that produce unreliable position information. In theory, the 
second method should produce better suggestions because it can 
have access to all of the knowledge associated with the real 
objects: their appearance, their structure, and their function. For 
example, the first method may suggest a corner feature, one side 
of which is formed by a shadow. Such a feature may not produce 
reliable position information if the location of the shadow changes 
as the object moves about within its range of uncertainty. The 
second method, on the other hand, could directly determine that 
one side of the corner is formed by a shadow and not make such 
a suggestion. 

Gather Statistics 
Given a set of operator/feature pairs, the programmer has 

to supervise the training session. Each operator is applied to each 
training picture and the superviser has to specify which known 
alternative or surprise was matched. This process could be 
tedious unless it is carefully human-engineered. 

The current system displays two pictures side-by-side, a 
reference picture with the known alternatives marked and the 
training picture with the matches of the operators marked. The 
system uses the value and position information to assign known 
alternatives to matches and asks the user for confirmation. In this 
way the interaction between the programmer and the training 
system is minimized. 

Determine the Order of the Operators 
There are several factors that can enter into the ordering of 

the operators: for example, the expected cost, the expected 
precision of the match, and the expected contribution to the 
confidence associated with the best known alternative. There are 
relatively straightforward methods to estimate the first and second 
quantities, but the third is more complicated. Consider the 
following definition of the contribution of an operator that has N 
known alternatives and has returned a value of V: 

Since it is difficult to expand this integral symbolically, a 
numerical integration technique can be used instead. 

Given values for the expected cost, the expected precision, 
and the expected contribution for all of the operator/feature pairs, 
one simple ordering scheme is to rank them according to: 

largest first. 
The exact ordering is not critical because several operators 

are applied for each task. As long as the better operators are 
applied first, the overall cost will be close tc the minimum. 

The linear ordering of operator/feature pairs is a simple 
example of a strategy. Other researchers have investigated more 
general strategies and more general strategy optimization 
techniques within similar domains (e.g., see [Taylor 1976] and 
[Sproull 1977]), 



Results 
The VV system has been used to locate fifteen to twenty 

different objects, such as a vise, a screw dispenser, a pencil 
sharpener base, and an engine casing. The programming time for 
a new task (using 4 to 5 training pictures) was about an hour. 
Programming consisted of (1) stating the task; (2) calibrating the 
camera; (3) choosing potential operator/feature pairs; (4) setting 
up, taking, and analyzing training pictures; and (5) letting the 
system rank the operator/feature pairs. The execution time 
depended upon several factors, the most important of which was 
the ratio of known precision to desired precision. For a typical 
task in which this ratio was 1:10, four or five operators were 
required and the execution time was a few seconds The time to 
teach a person to use the system was about an hour or two, most 
of which was spent watching the system being used. 

Cross-correlation was the main operator used for these 
tasks, however, an edge operator and a blob characterizer were 
used in a few tasks. Approximately thirty percent of the operators 
had more than one known alternative. If an operator had more 
than two known alternatives, it was generally not cost effective to 
use it because of the expense involved in determining which 
known alternative had been matched. 

The training pictures were used for two slightly different 
purposes in different tasks: (1) to set a threshold that 
distinguishes reasonable operator values from values that indicate 
that the operator did not find a known alternative, and (2) to 
determine a set of density functions that could be used to estimate 
the confidence that the operator matched a particular known 
alternative. Four or five training pictures were sufficient for the 
first purpose; forty or fifty were needed for the second. The 
structural information was more reliable because it was difficult to 
control the lighting, background, and camera sensitivity from one 
day to the next. Therefore, the value information was mainly 
used to eliminate obvious mistakes and the structural information 
was used to make the final assignments of known alternatives and 
to determine the location of the object. 

Conclusion 
There are two main conclusions of this paper: 
(1) A large class of visual feedback tasks can be 

formulated and accomplished within one 
framework. 

(2) The framework can be implemented in such 
a way that it is relatively easy for a 
programmer who is not an expert in vision 
research to construct programs that perform 
visual feedback tasks. 

7 he justification for each of these statements was essentially a 
proof by construction. A class of visual feedback tasks, referred to 
as verification vision tasks, was characterized and an interactive 
system that greatly simplifies the programming of such tasks was 
implemented. 

A VV task is a task in which the scene is highly 
predictable; there are no big surprises. The problem is to 
coordinate all of the available knowledge in order to accomplish 
the task in as efficient way as possible. This paper outlined the 
different subtasks within VV and the different types of 
information that can be used to perform these subtasks. It 
presented an ordered set of rules that evaluate the results of 
operators and a scheme to produce the desired location and 
precision information. Finally, the paper gave a sample of the 
techniques that can be used to simplify the programming of VV 
tasks. 
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