Robert E. Shostak
Stanford Research Institute
Menlo Park, California 94025

I Introduction

A deductive system for program verification must be able to reason proficiently about equality. Equality is often handled in an ad hoc and incomplete way-most usually with a rewrite rule that substitutes equals for equals with some heuristic guidance. We present a simple algorithm for reasoning about equality that is fast, complete, and useful in a variety of theorem-proving situations. We also present a proof of the theorem on which the algorithm is based.

The following formula is of the kind one encounlers in verifying programs involving array Indoxing:
$(I=1 \wedge K=L \wedge A[I]=B \mid K] \wedge J=A\{J] \wedge M=B[L])$
$\leadsto A \mid M]=B[K\})$.

Here, A and B are function symbols while I,... M are universally quanified variables.

One might approach such a formula by working backwards from the conclusion, substituting equals for equals until the left-hand-side is transformed in to the right-and-side:

$A[M]=A[B \mid L]]=A[B[K]]=A[A[I]]=A[A[J]]=A[J]=A[I]=B[K]$

One could also work from BfK] rather than from AfM"], or from both simultaneously; the links needed in the chain are the same in either case.

While this "backward substitution" method and other methods that transform formulas through a sequence of substitutions are logically sound, they are not well-suited to machine deduction because there is no easy way of selecting the right substitution to make at each step.

Intuitively, it would not seem necessary to generate terms beyond a certain depth. However, the critical depth (the smallest depth necessary to consider) cannot be calculated solely as a function of the depths of the terms appearing in the original formula; in particular, the critical depth is not simply the maximum of these depths. For example, no backward-substitution proof can be carried out for the above formula without generating a term of at least depth 3 . Even if one could conveniently calculate the critical depth, one would still, in general, generate many more terms than are necessary.

This difficulty with substitution transformation methods is not inherent in the problem. The next section presents a more efficient method that considers only the terms appearing in the original formula.

III The Procedure

Our method is a decision procedure for the subclass of predicate calculus with function symbols and equality whose formulas have only universal quantifiers in prenex form. While the decidability of this subclass is well-known, the
classical decision procedure for it (W. Ackermann
[1]) produces a combinational explosion that makes that method infeasible for non-trivial problems.

The procedure is as follows. The matrix of the formula F is first negated and placed in disjunctive normal form. Next, all atomic formulas other than equalities are replaced by equalities as follows. For each D -ary predicate symbol $\mathrm{P}_{1}^{\mathrm{n}}$ ocecurring in the formula, a new n-ary function symbol fin is introduced. Each atomic formula $\mathrm{P}_{1}^{1}\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots\right.$ t_{n}) occurring in the formula is then replaced by the equality $f_{1}^{n}\left(t_{1}, t_{2} \ldots, t_{n}\right)=c$, where c is a constant. The modified d.n.f. is intersatisfiable with the original one, and is satisfiable if and only if one of its disjuncts is satisfiable. Each disjunci, moreover, consists of a confunction of oqualities and negations of equalities. The problem is thus reduced to testing the satisfiability of each such conjunction.

It romains to test each conjunction for satisflabilily. Let S be the set of equalities and negations of equalities occurring in the conjunction to be lested. Let T be the set of terms and subterms of terms occurring in S, and define the binary relation - as the smallest relation over $T \times T$ (where $u_{1}, u_{2} \ldots u_{n}, t_{1}, t_{2}, v_{1}, v_{2} \ldots v_{n}$ denote terms and f denotes a function symbo1) that:
(1) Contains all pairs $<1, l_{2}>$ for which ${ }^{\prime} t_{1}=t_{2}^{\prime} \in S$
(2) Is reflexive, symmetric, and transitive
(3) Contains the pair $<f\left(u_{1}, u_{2} \ldots u_{r}\right), f\left(v_{1}, v_{2}, \ldots v_{r}\right)$:
whenever it contains the pairs $\left\langle u_{i}, v_{i}\right\rangle, 1$ i $\because r$, and $f\left(u_{1}, u_{2} \ldots u_{r}\right), f\left(v_{1}, v_{2} \ldots v_{r}\right)$ are both in T.

The test for salisfiability of S depends on the following theorem (to be proved later) :
Theorem. S is unsatisfiable there exist terms t_{1}, $\mathrm{t}_{2} \in \mathrm{~T}$ such that $\mathrm{t}_{1} \neq \mathrm{t}_{2}^{\prime} \in \mathrm{S}$ and $\mathrm{t}_{1}-\mathrm{t}_{2}$.

The theorem tells us that to determine the satisflability of S it sufflecs to consider the negated equalities of S one at a iime. If one is found (say $t_{1} \neq t_{2}$) for which $t_{1} \leq t_{2}$, s is unsalisfiable; otherwise S is satisfiable. Note that the definition of - involves only terms in T.

To use the theorem, we must bo able to calculate whether a given pair of terms is in the relation .. This can be done by building the relation from the definilion: (1) is used as a basis, and (2) and (3) are repeatedly applied until no new torms are generated. Since - is an equivalence relation, one can conveniently represent it during the construction as a collection of sets of elements of T, each set containing elements known to be in the relation with the other elements of that set.

For example, for the set $S=\{I=J, K=L, A \mid I\}=$ B[K], J=A[J], M=B[L], A[M] $]=\mathrm{B}[\mathrm{K}]]$ that arises from the earlier example, - is constructed as follows. From the basis (1), one obtains:
$\{[I, J\},\{K, L\},\{A\{I], B[K]\},\{J, A[J]\},\{M, B[L]\}\}$
Using (2):
$\{[1, J, A[J]\}\{K, L\}\{A[I], B[K]\},\{M, B[L]]\}$

Using (3): $\{\{\mathrm{I}, \mathrm{J}, \mathrm{A}[\mathrm{J}]\}\{\mathrm{K}, \mathrm{L}\}\{\mathrm{A}[1\}, \mathrm{B}[\mathrm{K}]\},\{\mathrm{M}, \mathrm{B}[\mathrm{L}]\}$, $\{A[I], A[J]\},\{B[K], B[L]\}\}$
Using (2): $\{[\mathrm{L}, \mathrm{J}, \mathrm{A}[\mathrm{y}], \mathrm{A}[\mathrm{I}], \mathrm{B}[\mathrm{K}], \mathrm{B}\{\mathrm{L}], \mathrm{M}\},[\mathrm{K}, \mathrm{L}]\}$
Using (3): \{\{I, J, AlJ],A[I],B[K],B[L],M\},\{K,L,], [A[M],AlI]\}, \{A[M],A|J]\}\}
using (2): \{[I, J,AlJ],A[I],B[K],B[L],A[M]\},\{K,L\}\}]
Since(3) yields no now pairs, the construction is complete. Since $A[M]=\mathrm{B}[\mathrm{K}], \mathrm{S}$ must be unsatisfiable.

The rules for building up. can be implemented quite efficiently. D. Oppen and G. Nelson* have recently coded a very fast $1 m p l e m e n t a t i o n ~ t h a t ~ r e p-~$ resents terms as graphs and uses the Tarjian [4] set-union algorthm in the closure step. Oppen and Nelson have fath that their implementation requires only order n${ }^{2}$ deterministic time and linenr space, where n is the length of the inputis.

IV Proof of the Theorem

The maln import of the theorem on which the algorithm is based is that it surfices to "constrer" only the terms occurring in the formula to be dectded. The proof is largely concerned with extending the model provided by from T to the entire Herbrand Universe.
 $\mathrm{t}_{1} \not \mathrm{t}_{2}$ and ${ }^{\prime} \mathrm{t}_{1} \neq \mathrm{i}_{2}^{\prime} \in \mathrm{S}$.
Proof \rightarrow Suppose s is satisfiable, $1_{1}, 1_{2} \in T$ and ${ }^{t_{1}}-\mathrm{t}_{2}$. Let M be a motel for S .
Because M satisfies the reflexivity, symmetry, transitivity and substitutivity

t_{1} and t_{2} masi have the same values in M. Hence, $\mathrm{t}_{1} \neq \mathrm{t}_{2}{ }^{4}$ is not in s .
$F \quad$ Suppose there aro no terms t_{i}, t_{2} in T such that $\mathrm{L}_{1} \pm \mathrm{t}_{2}$ and $\mathrm{t}_{1} \neq \mathrm{t}_{2}$ ' $e \mathrm{~S}$. We will show that S is satisfiable by constructing a Herbrand model M for S.

We first construct the term universe
$T_{\infty}={ }_{i} \bigcup_{0} T_{i}$ of S inductively as follows:
$T_{0}=T \quad T_{i+1}=\left\{\left(t_{1}, \ldots, t_{r}\right) \mid t_{i} \in T_{i}\right\} \cup T_{i}$
(where f ranges over all function symbols occurring in s).

Next, plek a representative term from each of tho equivalunce classes induced by $=$ on T, and define tho function $a: T \rightarrow T$ that assigns to each term in T the representative of its class.

The model M is now constructed inductively as follows:

1. If $t \in T_{o}$, let $v_{M}(t)=a(t)$
II. If $t \in T_{j+1}^{0}-T_{j}, j \geq 0$, and $t=f\left(t_{1}, t_{2} \ldots t_{r}\right)$, then $10{ }^{j}$
$v_{M}(t)=\left\{\begin{array}{l}v_{M}\left(f\left(x_{1}, \ldots, x_{r}\right)\right) \text { if 价 }\left(x_{1}, \ldots, x_{r}\right) \varepsilon T_{j} \\ \text { and } v_{M}\left(x_{i}\right)=v_{M}\left(t_{1}\right), 1 \text { i<r } \\ f\left(v_{M}\left(t_{1}\right), \ldots, v_{M}\left(t_{r}\right)\right) \text { otherwise }\end{array}\right.$
Note that M is a Merbrand model, i.e., it always assigns values from the Borbrand Universe. The notation $" f\left(v_{M}\left(t_{1}\right), \ldots, v_{M}\left(t_{r}\right)\right)$ is intended

[^0]to represent the function symbol denoted by f followed by the terms obtained by evaluating $v_{M}\left(t_{1}\right)$ for each i.

To see that M satisfies S, first note thei.
${ }^{+} t_{1}=t_{2}^{\prime} \in S \Rightarrow t_{1}-t_{2} \Rightarrow a\left(t_{1}\right)=B\left(t_{2}\right) \cdots v_{M}\left(t_{1}\right)=$ $v_{M}{ }^{\left(t_{2}\right)}$
and
$t_{1} \neq i_{2}^{+} \in S \rightarrow t_{1}$ / $t_{2} \Rightarrow a\left(t_{1}\right) \neq a\left(t_{2}\right) \Rightarrow v_{M}\left(t_{1}\right) \neq$ $v_{m}\left(t_{2}\right)$.

It remains to show that
$v_{M}\left(x_{i}\right)=v_{M}\left(y_{1}\right), 1 \leq i \because r, i m p l i e s$ that
$v_{M}\left(d^{\prime}\left(x_{1}, \ldots, x_{r}\right)\right)=v_{M}\left(f\left(y_{1}, \ldots y_{r}\right)\right)$.
This follows strayghtforwaraly by induction on the maximum of the term unjverse heights of

$$
r\left(x_{1}, \ldots, x_{r}\right), r\left(y_{1}, \ldots, y_{r}\right) \quad \text { Q.E.D. }
$$

v Acknowledgement
The author is grateful to Drs. R. E: Boyer, J. Strother Moore. E. Horowitz, and the reviewers for their observations and suggestions.

VI References

1. Ackermann, W., Solvable Cases of the Decision Problem, North-Holland Publishing Co. . Amsterdam (1954). pp. 102-103.
2. Mendelson, E., Introduction to Mathematical l,ogic, D. Van Nostrand Co., Inc.. Princeton, New Jersey (1964).
3. Robinson, G., and Wos, L. "Paramodulation and Theorem-Proving in First-order Thenries with Equality." Machine Intelifgence IV (1969), ed. by D. Michie and B. Meltzer, pp. 135-150.
4. Tarjian, R., "Efficiency of a good but not linear set-union algorithm," J.ACM, V. 22, No. 2. (April 1975), pp. 215-225.

[^0]: *Personal communication. A paper describing this work is forthcoming.

