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ABSTRACT 

Because of v e r y high branching factors, a backgammon 
p r o g r a m must re ly on knowledge rather than search for 
p e r f o r m a n c e . We here discuss insights gained about 
the s t r u c t u r e of evaluat ion functions for a large domain 
such as backgammon. Evaluation began as a single linear 
po lynomia l of backgammon features. Later, we introduced 
Ma te -c lasses , each w i th its own evaluation function. This 
i m p r o v e d the play, but caused problems wi th 
o d g e - e f f e c t s be tween state-classes. Our latest ef for t 
uses models of posi t ion potential to select across the 
set of best members of each represented state-class. 
"This has p roduced a significant jump in performance of 
BKG. 

Because of the localization of knowledge, state-classes 
permi t re la t i ve ly easy modif ication of knowledge used in 
eva lua t ion . They also permit the building of opponent 
models based upon what evidence shows the 
o p p o n e n t knows in each state-class. 

Our p rog ram plays a general ly competent game at an 
i n te rmed ia te level of skill. It correct ly solves a high 
pe rcen tage of intermediate level problems in books. 

I. Why Yet Another Game? 

Backgammon is a game of skill and chance. It is an 
i n t e r e s t i n g ob jec t of study for AI because in any given 
pos i t i on (of w i t h there are 1 0 ? 0 [Le76]), there are 21 
poss ib le combinat ions that the throw of two dice can 
p roduce . Each of these, can be played legally in the 
ave rage board posi t ion about 40 di f ferent ways ( 
about 17 in actual game posit ions). Thus if one were to 
i nves t iga te a backgammon posit ion by tree searching, it 
w o u l d be necessary to deal wi th a branching factor of 
more than 8 0 0 (!!) at every node. Clearly this is 
comp le te l y impract ical . Therefore backgammon must be 
app roached w i t h evaluat ion and knowledge in mind. 
Pos i t ion Pi wi l l have to p re fe r red over posit ion P2 
because it has fea tu res that more endear it to the player 
who can produce it than the features that obtain in P2. 

In a game such as chess, it has been customary to 
search v e r y large t rees of 5000 to 2 million terminal 
nodes. In such a paradigm, the execution of a terminal 
eva lua t ion funct ion requires a certain amount of time, 
wh i ch must then be mult ipl ied by the expected number 
of te rmina l nodes in the search. Thus designers of 
chess programs are very circumspect in creating 
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eva lua t i on funct ions which require lengthy execution 
t imes. For this reason certa in features that are not 
t r i v i a l to compute are usually left out, so that the 
p r o g r a m may opera te faster and search more. Since 
t h e r e can be l i t t le or no searching in a practical 
backgammon p rogram, these contingencies will not apply. 
On the c o n t r a r y , it is desirable to apply all possible 
know ledge to successor posit ions of the root node, in an 
a t tempt to f ind the best next move. Further, the fact 
that modern backgammon involves doubling places an 
e v e n g rea te r emphasis on the use of knowledge, since it 
r equ i r es an understanding of a posit ion (not just the 
ab i l i t y to d iscr iminate the best move) to know when to 
doub le and when to accept or refuse. 

I I . t he S t ruc tu re of BKG 

BKG is an in terac t ive program. For a given roll of the 
d ice, it genera tes a list of all possible legal plays. If it is 
the p rogram's t u r n to play, i t serves these potential 
p lays up one at a time to the evaluation procedure. It 
t hen selects the best. If it is a human opponents's turn 
to p lay, it wai ts to receive a legal play from its 
env i ronmen t . 

BKG now plays a completely legal game of backgammon. It 
is capable of doubl ing and accepting or refusing doubles 
at all t imes. It wi l l also resign positions in which there is 
no poss ib i l t y of winning, and accept resignations when 
t h e r e is no poss ib i l i ty of it winning a gammon. 

I I I . Some Evaluat ion Terms 

In vers ions of BKG up to the end of 1976, a linear 
po lynomia l of backgammon features was used to 
p roduce evaluat ions in posit ions where the two sides 
w e r e st i l l engaged. This polynomial der ived most of its 
s t r e n g t h f rom excel lent recognit ion of blot danger (the 
danger of a man being hit by the opponent on his next 
ro l l ) , and blockading factor (the abil i ty to keep 
o p p o n e n t ' s men bot t led up). Both these calculations 
wen t t h rough a considerable history of experimentat ion 
wh i ch is descr ibed in [Be77] . Below, we br ief ly 
desc r i be their cur rent form. When the sides are 
d i sengaged , a running game calculation is per formed 
since cap tu r i ng and blocking are no longer possible. 

A. Blot danger calculat ion 

Our p rocedu re considers all h i t t ing relations between 
po ten t i a l h i t te rs and blots. It f inds the optimal way to 
p lay e v e r y potent ia l rol l so as to hit the greatests 
number of b lots or point on a blot. If only one blot can 
be h i t , it calculates hi t t ing the most advanced one. Thus 
it can decide for any posit ion what the probabi l i ty is of 
hav ing one or more men hit, and what the expected 
loss of pips in being hit is. This information is basic to 
unde rs tand ing the r isk of any potential play. 

B. B lockading Factor 

A b lockade consists of a set of points "made" by one 
s ide , wh ich p reven t an opposing man from having access 
to those points . Clear ly, such points can have a great 
e f f ec t on the opponent 's movements, and their location is 
of g rea t impor tance. 
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We no te that since there are only 15 men on a side, it is 
imposs ib le to have more than 7 blockading points. For 
each combinat ion of zero to seven blockading points at a 
d is tance of 1 to 12 spaces in f ront of a man, we 
compu ted the number of rolls that could legally be 
p l a y e d by the blockade runner. This number was put 
in to a tab le associated wi th the blockading pattern. This 
a l lows quick lookup of the degree to which each man is 
b lockaded . 

C. The Running Game 

BKG has been doubl ing and accepting doubles in the 
r unn ing game almost since its inception. There has been 
much pub l i shed on when to double and accept in the 
runn ing game phase of backgammon [Ke75, Th75, 
7a77 ] . We have t r ied to fol low this advice in 
s t r u c t u r i n g algor i thms for deciding who is winning and 
by how much. This has resulted in quite good 
p e r f o r m a n c e by the program, even in situations where 
the dec is ion is close. 

To s u p p o r t decision making during the bearing off 
phase, BKG has extensive tables which give the 
p r o b a b i l i t y for a g iven posit ion of one side, of bearing 
off all men in 1,2,-- 8 rolls and the expected number of 
ro l ls (ENR) to bear all men off. The tables cover all 
s i tua t ions for up to and including 8 men in the home 
b o a r d , and up to and including 25 pips wor th of men in 
the home board . 

The use of the tables in move selection is simple. BKG 
moves to the posi t ion w i th the lowest ENR. There are 
t w o except ions to this case; that is when it is far behind 
or far enough ahead to have a chance of winning a 
gammon. In the former case, it moves to the posit ion 
w h i c h has the greatest probabi l i ty of bearing all men off 
in the number of rol ls that are expected for the 
o p p o n e n t to get off. When it is far ahead, it moves to the 
pos i t i on wh ich gives it the greatest chance of bearing all 
men off in the number of rolls it expects to have before 
the opponen t gets his f i rst man off. 

f o r doub l ing and accepting doubles the situation is more 
in t r i ca te . Whenever , BKG can legally double during this 
phase, or when it has been doubled, it executes a win 
p r o b a b i l i t y calculat ion. If the positions of both sides 
can be looked up in the tables, then BKG can calculate 
the exact p robab i l i t y of the side on move winning 
by i t t e r a t i v e l y calculat ing the probabi l i ty that the side 
on move wi l l get all its men off on this ro l l , and then 
chang ing whose move it is, unti l the sum of the 
p robab i l i t i es - 1.0. If both positions cannot be looked 
up , the w in p robab i l i t y calculation is based on adjusted 
p ipcoun t of bo th sides, but this is notably less accurate 
than the table lookup method, which performs 
supe r l a t i ve l y . 

The p o w e r of the bear -o f f tables is very impressive. 
To i l l us t ra te the t ype of thing BKG does to amaze its 
au tho r , we show an example. 

24 23 22 21 20 19 W h i t e 18 17 16 15 14 13 

Figure 1 

In the bo t tom part of Figure 1, White is to play a 6,2. 
The 6 must obviously be played from the 21 point. But 
wha t is the cor rec t way to play the 2? Almost every 
human p layer would say 21-23. However, this is not 
c o r r e c t ; 2 2 - 2 4 is bet ter . The bear-off tables report the 
r e s p e c t i v e ENR's to be 2.748 and 2.739. Upon 
examina t ion , it turns out that all sequences of future 
to l l s p roduce the same results in the two positions 
except when one of the next two rolls is 1,1. If this 
o c c u r r e d , it wou ld leave men on the 21 and 23 points 
w i t h the p r e f e r r e d play, which allows 6 additional 
combinat ions of get t ing them both off on the next roll 
ove r the other way of playing it. 

The second example in the top part of Figure 1 has 
similar fea tures . Here Black is to play a 6,1. The 6 must 
be p l a y e d f rom the 4 point; the question is how to play 
the 1. Again human players would automatically play 
2 - 1 , but this is incorrect . 3-2 is correct because of 
f u t u r e double 2ns. For these two examples it would seem 
that the ru le : "When there are a small odd number of 
men on the board , play to maximize use of doubles" 
w o u l d seem to be the correct way for humans to 
c a p t u r e the knowledge that is contained in the tables. 
This i l lus t ra tes that at times precise calculation will 
o u t d o good in tu i t ion. 

IV. The Evaluat ion Process 

In the f i r s t several years of development of BKG, we 
used a l inear polynomial to order states in the s ta te-
space. This was fine while new and bet ter terms were 
be ing deve loped for the polynomial. However, once a 
f i r m basis for detect ing advantages and disadvantages 
was es tab l i shed, it became apparent (as indeed the 
r e s e a r c h of Samuel [Sa63, Sa67] would indicate) that 
such a po lynomia l would not serve. It was possible to tell 
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BKG about the general ut i l i ty of any feature, but not 
enough about the ut i l i ty of the feature in specific 
c i rcumstances. 

T h e r e f o r e , we began part i t ioning the state-space into 
s ta te -c lasses . The issues associated wi th state-classes 
are these : We assume that it is possible to part i t ion alt 
s ta tes in the s ta te-space into mutually exclusive s ta te-
c lasses. This is not diff icult and can be 
accompl ished by merely having recognizers for a set of 
s ta te -c lasses , invoking these recognizers in a canonical 
o r d e r , and pu t t ing all not-recognized states into a 
g r a b - b a g class. We fur ther assume that within a s tate-
c lass, a l inear polynomial funct ion exists which can order 
the members of this class according to goodness. It is 
a p p a r e n t that this is t rue in the limit, when there is a 
s ta te -c lass for each state; however, the degree to which 
th is is possib le when there are a large number of 
members in a g iven class is not clear. In practice it is 
poss ib le to get ve ry good (if not perfect) order ings, and 
to spl i t a state-c lass when the order ing procedure 
becomes too complex. 

This approach produced a significant improvement, but 
also b rough t some additional problems to the fore f ront . 
Wheneve r it was normal to progress from one state-class 
to another , but such a t ransi t ion required the program 
to submit to temporary danger, it would not do so unless 
t h e r e was no safe al ternat ive. With this organization as 
w i t h ear l ie r ones, BKG was unwil l ing to take any 
u n f o r c e d r isk, since it had no understanding of the 
advantages that could be accrued if the risk succeeded, 
but d id unders tand the dangers of the risk. Another 
cause of vaci l la t ion comes up when a reshaping of the 
advantage is requ i red in the transit ion. This can occur 
w h e n the new state-class does not value highly what is 
va lued highly in the old state-class. An example of this 
w o u l d be re luctance to give up containment of enemy 
men in o rder to make a t ransi t ion to a superior running 
game pos i t ion . This t ype of problem occurs in chess too. 

To co r rec t the above problems within the f ramework 
of the l inear polynomial , it would be necessary to 
p inpo in t w h e r e postponing the taking of the risk could 
no longer be jus t i f ied , or when a certain advantage had 
o u t l i v e d its useful lness. 

We t r i e d to overcome these problems by having some 
func t ions wh ich were invoked only when a change of 
s ta te -c lass occured. This type of recognit ion produces 
in e f fec t a d i f fe rent state-class for two identical 
pos i t i ons , g i ven that one is reached from a member of 
the same state-c lass and the other not. We found this 
to be a very d i f f icu l t method of doing business that did 
not look any th ing like a long term solution to the 
p r o b l e m . 

The pu rpose of having state-classes was to get away 
f r o m the p u r e l y l inear relat ions among terms in the 
eva lua t i on funct ion. This way we could emphasize 
c e r t a i n fea tu res that would have a strong impact on 
f u t u r e s i tuat ions der ivab le f rom the current state-class. 
Such fea tu res include the stabi l i ty (l ikelihood of being hit 
in the case of backgammon) of the state, and measures of 
the degree of d i f f icu l ty in making fur ther progress. 
Usual ly , the side that is closest to winning wil l want 

more stable posi t ions, and the side that is closest to 
los ing more unstable ones. However, this is not always 
the case. The side that has a slightly better posit ion 
may want to in t roduce some instabi l i ty in the hope it wil l 
resu l t in an even more favorable posit ion (or even 
won ) , wh i le r isk ing losing the advantage or possibly 
g e t t i n g s l ight ly the worse of it. This kind of decision is 
v e r y d i f f icu l t to program, unless the terms in the 
eva lua t i on func t ion interact w i th one another. 
H o w e v e r , the edge-ef fec t situation between s ta te-
classes became ext remely diff icult to overcome. 

Ac tua l l y , not ions such as progress and risk are crutches 
that are not needed when a universal measure of 
goodness such as expectat ion exists, as it does in 
backgammon. Thus we should always move to the state 
w i t h the grea tes t expectat ion, and state-classes are not 
needed at all. However, this is only in a system wi th 
p e r f e c t knowledge. When there is imperfect knowledge, 
such c ru tches appear necessary. 

T h e r e f o r e , our present system attempts to overcome 
e d g e - e f f e c t s in the fo l lowing way: For each applicable 
s ta te -c lass , the best member is chosen by the linear 
po lynomia l for that state-class. Then we compute the 
e x p e c t a t i o n associated w i t h each selected state-class 
r e p r e s e n t a t i v e , and choose the one wi th the highest 
expec ta t i on as the actual move. This has the advantage of 
a p p l y i n g the l inear polynomial of a state-class to select 
the p lay w i t h best local features, and then lett ing 
p r o c e d u r e s w i t h more global knowledge select the best 
across s ta te-c lasses. The diff icult part of this is to be 
able to compute the expectat ion in complicated positions. 
In F igure 2 be low, we show how this can be done for 
a modera te l y d i f f icul t example. 

Problem-Sol v i n r , - l 
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c h a r a c t e r i z e d by the winning side being ahead in the 
p i pcoun t , hav ing to cross exactly two more enemy points 
w i t h his most -back man, and having no hitable blots. 
We can now imagine an evaluation function for this 
class wh ich wou ld consider the posit ion of the doubling 
cube , the exact d i f ference in the pipcount, the ease wi th 
w h i c h the most -back man can be safely moved up, the 
con ta inment power of the losing side should he succeed 
in h i t t i ng a b lot , the time lost in enter ing such a hit blot, 
and the number of pips that arc available to be played as 
slack b e f o r e any of these values are materially 
changed . This funct ion would compute the expectation of 
Wh i te . Such a funct ion could be der ived either by 
ana ly t ie means or by actual simulation of positions in 
the class to f ind out how each of the above variables 
a f f ec ted the expecta t ion of White. Further, such a 
f unc t i on could be tuned as experience is accumulated. 
Let us assume that such a function exists and 
p r e d i c t e d that in the si tuat ion of Figure 2 White should 
w i n 667 of the t ime, win a gammon 27 of the time, lose 
3 0 / of the t ime and lose a gammon 27 of the time, for a 
net expec ta t i on for White of +.36. 

Now f r om this posi t ion it is possible to move to four 
s ta te classes: the present one (class I), an unstable 
s ta te -c lass w h e r e White has two points to cross, but 
has a blot in danger of being hit (class II), an unstable 
class w h e r e White has only one more point left to cross 
(class IV), and a stable class where White has only one 
po in t lef t to cross (class III). Further, if a blot is 
hit in s ta te-c lasses II or IV, we have another s ta te-
class (V) in which White has a man on the bar which 
must en te r in f ron t of Black's blocking posit ion. For 
each of these state-c lasses an evaluation function will be 
able to calculate the expectat ion. 

Wh i te ' s w in p robab i l i t y , W, in a state where he is to move 
is the SUM i**l to n (T^W,-) where T ; is the probabi l i ty of 
t r ans i t i ng to state i on the play by playing it optimally, 
and Wy is the p robab i l i t y of winning once state i is 
reached . If it is Black to play, White's win probabi l i ty 
can be computed in a like manner. This method can be 
used to decide be tween plays that result in d i f fer ing 
s ta te classes even though one class may be unstable and 
the o the r not. We i l lustrate by an example. 

Let PH denote the probab i l i t y of a blot being hit on the 
next ro l l . Let W ' j be the p robab i l i t y of winning in s ta te-
class i if the losing side is on move. Further, assume W2 ■ 
.85 , W- " " ' " 

Wn< 

v3 - .92, and W4 - . 9 2 . Then: 

-• PH * W5 + (1-PH) * W 2 , and 

W'/ , - PH * W5 + (1-PH) * W4. 

To get W5 we must compute the probabi l i ty of White 
escap ing over the blockade on his next ro l l , as otherwise 
he wi l l be doubled and wil l have to resign. If he does 
escape, he has about an even chance in the result ing 
pos i t i on . These constants should make clear the 
compu ta t i on below. It should be noted that when W for a 
side that is on rol l and can double is £ .75 (i.e. his 
e x p e c t a t i o n > .50) he can double and force his 
o p p o n e n t ' s res ignat ion. Thus such terms should be 
i g n o r e d as their value drops to 0. This is t rue for 
ins tance of the te rm dealing wi th the situation where 
Whi te is hit and contained. 

Problem-Solving 
431 

Wo now use this method to decide how to play a 
d i f f i cu l t ro l l , 6 - 1 , in Figure 2. There are basically two 
p lays : r un one man f rom the 12 point result ing in a 
pos i t i on of class I I , or play both men from the 18 point 
remain ing in class I. For the f i rst play: 

W- (1 - P H ) * W 2 + PH*W 5 

- 20/36 * .85 + 16/36 * 2/36 *.5 - .48 

For the second play, there are 5 rolls which result in 
t r ans i t i on to s tate-c lass III ( 2 -2 , 3 -3 , 4 -4 , 5 -5 , 6-6), 2 
ro l ls that resul t in a class II posit ion (6-2) , 8 rolls that 
resu l t in class IV posit ions ( 6 - 1 , 6 -3 , 6 -4 , 6-5), and 21 
ro l ls that resul t in remaining in state-class I. The 
a p p r o p r i a t e computat ion is: (note that Wj has dropped 
to .55 since White reduced his chances of bringing up 
his mos t -back man safe ly) 

U~ (21 * .55 ( I ) 
+ 8* (16/36 * 2 /36 * . 5 + 20/36 v< .85) ( I I ) 
•f 5 * .92 ( I I I ) 
+ 2vc (23/36 * 2/36 * . 5 + 13/36 * . 7 5 ) ) (IV) 

/36 - 20.61 / 36 * .57 

T h e r e f o r e , it can be seen that it is bet ter to make play 
two . It should be noted that as the probabi l i ty of 
con ta in ing a hit man varies wi th Black's defensive 
f o rma t i on , this calculation will also vary accordingly. The 
Wj- "s we have given above are very crude and probably 
of f by a considerable amount. However, the main purpose 
of this exerc ise was exposi tory. As of this wr i t ing, 
we have implemented somewhat as sketched the 
s ta te -c lass computat ions required for the above example. 
BKG now plays all rol ls involving 6's correct ly. 

The method we have descr ibed above can be used for 
dec id ing the ve ry important problem of when to move to 
a s ta te that is in a state-class di f ferent from the one we 
are c u r r e n t l y in. However, the whole method assumes 
that an evaluat ion funct ion exists for each s ta te-
class wh ich p rope r l y orders its members, and that 
reasonab le expectat ions can be produced across s ta te-
classes. At the moment we have confidence in the f i rst 
pa r t of this p rocedure , and the second part has been 
coming along ex t remely wel l . 

We wou ld st i l l like to comment on how such a system 
can be improved in the face of error . For each 
s ta te -c lass there are new state-classes that can be 
reached in one optimal play for each side without a 
c a p t u r e being made. We call these classes forward w i th 
respec t to the or iginal class. Likewise, there are new 
classes that can be reached from the current class in 
one opt imal play by each side, when there has been at 
least one capture of a man. We call these classes 
hack-ward w i t h respect to the original class. 

It is possib le to start wi th a class for which we have 
exce l len t expecta t ion data, i.e. the class of bearing off 
pos i t ions that can be looked up in our tables (class B). 
Next , we consider all classes for which class B is 
f o r w a r d , and improve the evaluation funct ion for those 
c lasses, tun ing the coeff icents of exist ing terms and 
adding new ones as required. This wil l improve these 
eva lua t i on funct ions. We also note all classes that are 
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backward to this class, and put them on a list together 
with the name of the current class. We can continue 
this process indefinitely, but painfully until every class 
has been encountered. Whenever the evaluation 
function of a class that is on the backward list is 
improved, we go back and modify all the evaluation 
functions of the affected classes. We can thoh 
continue our process or go back to one of the classes 
whose function has just been modified and start anew 
from there. It is clear that this is a converging 
procedure. It would probably be necessary to 
eventually automate this proceedure, if for no other 
reason than that eventually the evaluation functions 
would become so good that they would do a better job 
of ordering members of a class than the experimenter 
would. Such automation except for the introduction of 
new terms has been previously done by Samuel [Sa63] 
for checkers. It would appear likely that for a game 
such as backgammon, it would be possible to get a 
selection of terms such that no new ones will ever be 
required. Then it will be merely a matter of tuning old 
evalution functions, and occasionally trying a new (but 
known) term to see if it can improve prediction. 

BKG has a simulation facility which can be useful in 
acquiring the above data. We can ask BKG to play both 
sides repeatedly any number of times. It will play as it 
ordinarily does; doubling and accepting when 
appropriate. BKG plays all running game positions and 
those where one side is bearing off, with one or fewer 
points to cross, nearly perfectly. Data from simulations 
can then be used to determine the expectation for the 
winning side as a function of various parameters of 
the original state. We have now done this for 
representative states of some of the simpler state-
classes and used the data for fitting curves of 
critical variables to the statistically expected 
outcome. The equations derived appear reasonable, 
and are working out quite well in practice. 

As data are collected and the evaluation functions 
improve, two things become possible. It is possible to 
keep track of how the prediction works out for the 
program's own play, which can be used as an indicator of 
which functions need to be tuned next. It is also 
possible to keep track of individual opponent's results 
nnd come to the conclusion that they don't appraise 
certain state-classes correctly, and use this information 
in future games. 

V. Testing of BKG 

When testing BKG (we refer now to the version before 
the expectation models were put in) on typical beginners 
books, it gets the right answer in excess of 707 of the 
time. A much better appraisal of the program can be 
obtained by analyzing its successes and failures on 
more difficult tasks. For this we chose, the problems in 
a very fine intermediate level book [Ho74]. There are 
74 doable problems in this book (alt the time of these 
experiments, BKG could not do problems involving 
doubling decisions before disengagement). We have 
classified the problems according to the major 
knowledge required to get the right answer. This is a 
rather arbitrary way of looking at things, but it is 
helpful in trying to understand the strengths and lacks 

in the program. We divided the problems into seven 
categories: 

1) General positional, 
2) Running game: bearoff, 
3) Engaged: bearoff, 
4) Back game (this a special defensive posture), 
5) Timing (this involves advantages that presently exist 

going away because one side or the other must destroy 
his position), 

6) Defensive plays, 
7) Advanced defensive plays (including the return play). 

We followed the practice in scoring the results of 
giving BKG part credit for answers that were not 
perfectly correct but showed it understood the main 
point of the problem, although the execution was not 
perfect. We also deducted part credit when it got the 
correct answer without understanding what the main 
problem was. Table I below shows the results of the 
tests. 

TABLE I- Tests of BKG on "Better Backgammon" 

P o s i t i o n C lass Number Right Wrong % Right 

Pos i t i onaI 
Running B e a r o f f 
Fngaged B e a r o f f 
Back Game 
T i m i ng 
Advanced Defense 
De fense 

TOTAL 

28 
5 
11 
8 
13 
G 
3 

18.75 
5 
2 
3.25 
4 
0.5 
1 

9.25 
0 
9 
4.75 
9 
5.5 
2 

67 
100 
22 
41 
31 
6 
33 

74 34.5 39.5 47 

In evaluating these results, several things should be 
noted. The subject matter is relatively advanced, and 
would for the most part come up in only one of 20 or 
more games. There are usually on the order of three 
plausible answers to a problem. BKG is good enough in 
almost every case to know what these are; thus 
attaining a score of 337. or less could be regarded more 
or less as the result of chance. We can see that BKG is 
extremely good in running game play. Also it has a good 
understanding of the relative positional advantages. 
However, its performance in other intermediate level 
aspects of the game is at best mediocre. It has 
heuristics to help it do bearing off while still 
engaged, but these are for run-of-the-mill situations, 
not for the more sophisticated ones in the test set. It 
has no specific understanding of the back game. Since 
the objectives in the back game are rather different 
than anything else in backgammon, it will be 
necessary to implement a specific set of state-classes 
which recognize back-game potential and how to maintain 
and destroy it. The problem of timing is one that will be 
resolved soon. Essentially, this requires having a 
measure of how many men are presently bound to 
essential roles in the current evaluation, and how many 
pips are available to be played by the remaining men 
before the important men will have to be moved. BKG's 
main knowledge of defense consists of its blot hitting 
knowledge. It does not understand the concept of 
coverage, i.e. controlling points on which an opponent's 
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blot may land in the next roll or two. It does not 
u n d e r s t a n d that at times it may be beneficial to expose 
a b lo t in d i re circumstances or to make the " re tu rn " 
p lay . Thus this series of tests has pinpointed some 
speci f ic knowledge that BKG lacks and that is not 
subsumed in its present knowledge base. 

It is encourag ing to note that even though we have just 
b e g u n implement ing the expectat ion models, BKG now 
gets co r rec t 9 of the above set that it formerly got 
w r o n g . 
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