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A b s t r a c t * 

A model f o r l e a r n i n g sys tems i s p r e s e n t e d , 
and r e p r e s e n t a t i v e A I , p a t t e r n r e c o g n i t i o n , and 
c o n t r o l sys tems a r e d i s c u s s e d i n t e rms o f i t s 
f r a m e w o r k . The model d e t a i l s t h e f u n c t i o n a l 
components f e l t t o b e e s s e n t i a l f o r any l e a r n i n g 
s y s t e m , independent o f t h e t e c h n i q u e s used f o r i t s 
c o n s t r u c t i o n , and t h e s p e c i f i c env i r onmen t i n 
wh i ch i t o p e r a t e s . These components a re 

Pe r f o r m a n c e e l e m e n t , i n s t a n c e s e l e c t o r , c r i t i c , 
e a r n i n g e l e m e n t , b l a c k b o a r d , and w o r l d m o d e l . 

C o n s i d e r a t i o n o f l e a r n i n g system d e s i g n l e a d s 
n a t u r a l l y t o t h e concep t o f a l a y e r e d s y s t e m , each 
l a y e r o p e r a t i n g a t a d i f f e r e n t l e v e l o f 
a b s t r a c t i o n . 

D e s c r i p t i v e Terms: a d a p t a t i o n , l e a r n i n g , c o n c e p t -
f o r m a t I o n , i n d u c t i o n , pe r fo rmance e l e m e n t , 
i n s t a n c e s e l e c t o r , c r i t i c , l e a r n i n g e l e m e n t , 
b l a c k b o a r d , w o r l d m o d e l , m u l t i - l a y e r e d sys tems . 

1 I n t r o d u c t i o n 

L e a r n i n g sys tems have been t h e s u b j e c t o f 
w ide r e s e a r c h i n t e r e s t f o r a number o f y e a r s . The 
te rms a d a p t a t i o n , l e a r n i n g , c o n c e p t - f o r m a t i o n , 
i n d u c t i o n , s e l f - o r g a n i z a t i o n , and s e l f - r e p a i r have 
a l l been used i n t h e c o n t e x t o f t h i s s t u d y . 
L e a r n i n g system (LS) r e s e a r c h has been conduc ted 
w i t h i n many d i f f e r e n t s c i e n t i f i c c o m m u n i t i e s , 
however , and t h e s e t e rms have come to have a 
v a r i e t y o f mean ings* I t i s t h e r e f o r e o f t e n 
d i f f i c u l t f o r members o f t h e s e commun i t i es t o 
r e c o g n i z e t h a t p rob lems w h i c h appear u n r e l a t e d a s 
a r e s u l t o f v a r i a t i o n s i n t e r m i n o l o g y may i n f a c t 
be i d e n t i c a l . L e a r n i n g system models as w e l l a r e 
o f t e n t uned t o t h e r e q u i r e m e n t s o f a p a r t i c u l a r 
d i s c i p l i n e and a r e not s u i t a b l e f o r a p p l i c a t i o n i n 
r e l a t e d d i s c i p l i n e s . We have t h e r e f o r e s y n t h e s i z e d 
a new LS model w h i c h p r o v i d e s a common language 
f o r u n i f i e d c h a r a c t e r i z a t i o n o f sys tems 
c o n s t r u c t e d f rom a number o f d i f f e r e n t 
p e r s p e c t i v e s . T h i s model encourages e x a m i n a t i o n 
o f t h e s t r e n g t h s and weaknesses o f t h e i n d i v i d u a l 
f u n c t i o n a l components necessa ry f o r any l e a r n i n g 
s y s t e m . Because t h e model enab les a d e s i g n e r to 
i s o l a t e t h e s e f u n c t i o n a l components and s p e c i f y 
t h e i n f o r m a t i o n wh i ch must be a v a i l a b l e t o them", 
i t i s p a r t i c u l a r l y u s e f u l a s a parad igm f o r new 
l e a r n i n g s y s t e m s . 

I n t h e c o n t e x t o f t h i s p a p e r , a l e a r n i n g 
system i s c o n s i d e r e d to be any system wh ich uses 
i n f o r m a t i o n o b t a i n e d d u r i n g one i n t e r a c t i o n w i t h 
i t s e n v i r o n m e n t t o improve i t s pe r fo rmance d u r i n g 
f u t u r e i n t e r a c t i o n s . T h i s d e f i n i t i o n i s 
i n t e n t i o n a l l y b road and may i n c l u d e man/machine 
systems i n wh i ch humans t a k e on a c t i v e r o l e s as 
r e q u i r e d f u n c t i o n a l components• 
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I n t h e f o l l o w i n g s e c t i o n s w e w i l l summarize 
two d i f f e r e n t approaches t o t h e c o n s t r u c t i o n o f 
sys tems t h a t can b e s a i d t o l e a r n . The f i r s t 
app roach c e n t e r s on t h e concep t o f an a d a p t i v e 
system and i s p r i m a r i l y a s s o c i a t e d w i t h r e s e a r c h 
i n p a t t e r n r e c o g n i t i o n and c o n t r o l t h e o r y : t h e 
second i s t h a t o f a r t i f i c i a l i n t e l l i g e n c e ( A l ) . 

2 A d a p t i v e System Approach to L e a r n i n g 

I n t h e c o n t r o l l i t e r a t u r e , l e a r n i n g i s 
g e n e r a l l y assumed to be synonymous w i t h 
a d a p t a t i o n , and i s o f t e n v iewed a s e s t i m a t i o n o r 
s u c c e s s i v e approx imat i o n o f t h e unknown p a r a m e t e r s 
o f a m a t h e m a t i c a l s t r u c t u r e w h i c h i s chosen by t h e 
LS d e s i g n e r to represent - t h e system under s t u d y 
[ 6 ] [ 1 0 ] . Once t h i s has been done , c o n t r o l 
t e c h n i q u e s known t o b e s u i t a b l e f o r t h e p a r t i c u l a r 
chosen s t r u c t u r e can be a p p l i e d . Thus t h e emphasis 
has been on pa rame te r l e a r n i n g , and t h e 
ach ievement o f s t a b l e , r e l i a b l e pe r f o rmance [ 2 5 ] . 
Prob lems a r e commonly f o r m u l a t e d i n s t o c h a s t i c 
t e r m s , and t h e use o f s t a t i s t i c a l p r o c e d u r e s t o 
a c h i e v e o p t i m a l pe r fo rmance w i t h r e s p e c t t o some 
pe r f o rmance c r i t e r i o n such a s t h e p r o b a b i l i t y o f 
c o r r e c t p a t t e r n c l a s s i f i c a t i o n , o r mean square 
e r r o r , i s s t a n d a r d [ 3 3 ] . 

There a r e many o v e r l a p p i n g and somet imes 
c o n t r a d i c t o r y d e f i n i t i o n s o f t h e t e rms r e l a t e d t o 
a d a p t i v e s y s t e m s . The f o l l o w i n g s e t , f o r m u l a t e d b y 
G l o r i o s o 111 ] s e r v e s t o i l l u s t r a t e t h e main 
f e a t u r e s . An a d a p t i v e sys tem is d e f i n e d as a 
sys tem wh i ch responds a c c e p t a b l y w i t h r e s p e c t t o 
some pe r f o rmance c r i t e r i o n i n t h e f a c e o f changes 
i n t h e e n v i r o n m e n t o r i t s own i n t e r n a l s t r u c t u r e , 
A l e a r n i n g sys tem i s a n a d a p t i v e sys tem t h a t 
responds a c c e p t a b l y w i t h i n some t i m e i n t e r v a l 
f o l l o w i n g a change i n i t s e n v i r o n m e n t , and a s e l f -
r e p a i r i n g sys tem i s one t h a t responds a c c e p t a b l y 
w i t h i n some t i m e i n t e r v a l f o l l o w i n g a change i n 
i t s i n t e r n a l s t r u c t u r e . F i n a l l y , a s e l f -
o r g a n i z i n g sys tem i s a n a d a p t i v e o r l e a r n i n g 
s y s t e m i n w h i c h t h e i n i t i a l s t a t e i s unknown, 
random, o r u n i m p o r t a n t . 

Other t e rms o f t e n used t o d e s c r i b e l e a r n i n g 
sys tems i n t h e p a t t e r n r e c o g n i t i o n and c o n t r o l 
l i t e r a t u r e a re " s u p e r v i s e d " and " u n s u p e r v i s e d " 
l e a r n i n g [ 5 l [ 1 0 J . S u p e r v i s e d l e a r n i n g , o r 
" l e a r n i n g w i t h t e a c h e r " , assumes t h e e x i s t e n c e o f 
an e x t e r n a l e n t i t y ( u s u a l l y a human) w h i c h 
p r e s e n t s t h e sys tem w i t h a s e t o f t r a i n i n g 
i n s t a n c e s , e v a l u a t e s t h e pe r fo rmance o f t h e sys tem 
f o r t h o s e i n s t a n c e s , and p r o v i d e s t h e c o r r e c t 
r e s p o n s e s . U n s u p e r v i s e d l e a r n i n g , o r " l e a r n i n g 
w i t h o u t t e a c h e r " , assumes t h a t t h e e n v i r o n m e n t 
p r o v i d e s a l l i n s t a n c e s , bu t does n o t p r o v i d e t h e 
c o r r e c t r e s p o n s e s . Per fo rmance i s t o b e e v a l u a t e d 
b y t h e sys tem i t s e l f . T s y p k i n [ 2 8 ] has p o i n t e d 
o u t t h a t u n s u p e r v i s e d l e a r n i n g i s somewhat o f a n 
i l l u s i o n i n t h e sense t h a t a t e a c h e r / d e s i g n e r 
d e f i n e s t h e s t a n d a r d s wh i ch d e t e r m i n e t h e q u a l i t y 
o f o p e r a t i o n o f t h e L S a t t h e o u t s e t , w h e t h e r o r 
n o t h e i s p r e s e n t d u r i n g t h e a c t u a l o p e r a t i o n o f 
t h e s y s t e m . 

3 A r t i f i c i a l I n t e l l i g e n c e Approach t o L e a r n i n g 

A l t h o u g h e a r l y A I r e s e a r c h was c l o s e l y t i e d 
t o p a t t e r n r e c o g n i t i o n and t h e a d a p t i v e sys tems 
a p p r o a c h , ( s e e , f o r example [ 2 3 ] and [ 2 9 ] ; , t h e 
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two f i e l d s diverged in the 1960's, and are now 
qui te d i s t i n c t . Whereas the pat tern recogn i t ion 
and con t ro l research emphasizes adjustment of 
parameters, AI research emphasizes const ruc t ion of 
symbolic s t r u c t u r e s , based on conceptual 
r e l a t i o n s . For example, Feigenbaum's EPAM program 
[7 ] used a d i sc r im ina t i on net ( i . e . , a t ree of 
t es t s and branches) to s tore the r e l a t i o n s 
required to r e c a l l nonsense sy l l ab les in a ro te 
learn ing experiment (see [ 9 1 , 126], and [32] f o r 
f u r t he r examples). 

In A I , i t is commonly bel ieved that a 
learn ing system should have s u f f i c i e n t i n t e r n a l 
s t ruc tu re to develop a "s t rong theory" of i t s 
environment [ 8 ] [ 1 6 ] . Much emphasis has 
there fore been placed on bu i l d i ng "knowledge-
based" or "exper t " systems that not only have the 
capaci ty fo r high performance, but can also 
exp la in t h e i r performance in symbolic terms [ U ] , 

Winston [32] describes var ious leve ls of 
soph i s t i ca t i on in learn ing systems: learn ing by 
being programmed, learn ing by being t o l d , learn ing 
from a ser ies of examples, and f i n a l l y learn ing by 
d iscovery. We see in t h i s ca tegor iza t ion a gradual 
sh i f t in r e s p o n s i b i l i t y from the designer/ teacher 
to the learn ing system/student. At the highest 
l e v e l , the system is able to f i nd i t s own 
examples, and carry on autonomously. 

14 E f fec ts of the Environment 

The environment in which an LS operates may 
have a profound e f fec t upon i t s design, and 
there fore i t is of i n te res t to consider a few 
major environment c lasses. LS environments can be 
d iv ided i n t o two major ca tegor ies : those that 

?rovide the correct response fo r each t r a i n i n g 
nstance (supervised learn ing) and those that do 

not (unsupervised l e a r n i n g ) . Supervised learn ing 
systems operate w i t h i n a st imulus-response 
environment in which the desired LS output is 
suppl ied w i th^ each t r a i n i n g ins tance. Examples 
include Samuel's "book move" checkers program [21] 
[22], and grammatical inference programs [ 1 2 ] . 

Unsupervised LS's operate w i t h i n an 
environment of instances fo r which the correct 
response is not d i r e c t l y a v a i l a b l e . The vers ion of 
Samuel's program which learns by p lay ing checkers 
against an opponent f a l l s i n t o t h i s category [ 2 1 ] . 
Learning systems operat ing w i t h i n t h i s type of 
environment must themselves i n f e r the correct 
response to each t r a i n i n g instance by observat ion 
of system performance fo r a ser ies of instances. 
As a r e s u l t , assignment of c red i t or blame for 
o v e r a l l performance to i n d i v i d u a l responses can be 
a problem fo r these systems [ 1 8 ] . 

Environments can be fu r the r categorized as 
"no i se - f r ee " or " n o i s y " . Noise-free environments, 
such as that of Winston's s t r u c t u r a l desc r ip t ion 
learn ing program [32] provide instances paired 
wi th correct responses in which the data are 
assumed to be pe r f ec t l y r e l i a b l e . Noisy 
environments, on the other hand, do not provide 
such per fect i n fo rma t ion , as is usua l ly the case 
when rea l data are involved (pa t te rn recogn i t ion 
and con t ro l systems f requent ly operate w i th in 
noisy environments [1 ] [ 5 ] [ 6 ] ) . 

5 The Proposed LS Model 

We are concerned wi th the func t i ona l 
desc r ip t i on of LS's and t h e i r i n t e r a c t i o n w i th the 
environments in which they operate. Many of the 
func t i ona l components of an LS are essen t ia l to 
i n t e l l i g e n t systems in genera l , as noted also by 
Simon and Lea [2 *0 . 

5-1 The Model - Overview 

The proposed LS model is shown in Figure 1. 
The PERFORMANCE ELEMENT is responsib le fo r 
genera t i n g an output In* response to a t r a i n i n g 
instance. The INSTANCE SELECTOR se lects su i t ab le 
t r a i n i n g instances from the environment. The 
CRITIC analyzes the output of the performance 
element in terms of some standard of performance. 
The LEARNING ELEMENT makes spec i f i c changes to the 
system in response to the analys is of the c r i t i c . 
Communication among the func t i ona l components is 
shown v ia a BLACKBOARD to ensure tha t each 
func t iona l component has access to a l l required 
system in fo rmat ion , such as the emerging knowledge 
base. F i n a l l y , the LS operates w i t h i n the 
cons t ra in ts of a WORLD MODEL which contains the 
general, assumptions and methods that def ine the 
domain of a c t i v i t y of the system. 

The components of the model are conceptual 
e n t i t i e s which speci fy funct ions that must be 
performed to e f fec t l ea rn ing . They s imp l i f y the 
charac te r i za t ion of e x i s t i n g oys ters , and w i l l 
assist designers in the const ruc t ion of new 
systems. Although the func t i ona l decomposition 
suggested by *he model is not necessar i ly 
r e f l ec ted in the physical decomposition of many 
e x i s t i n g systems, we do advocate such a 
correspondence in fu tu re learn ing system designs. 

In the fo l l ow ing sec t ions , we present 
de ta i led discussions of the LS model components 
shown in Figure 1. In a d d i t i o n , Appendix I 
contains de ta i l ed charac te r i za t ions o f 
representat ive A I , pa t te rn recogn i t i on , and 
con t ro l systems in terms of the model. The reader 
may f i nd i t he lp fu l to re fe r occas ional ly to t h i s 
appendix whi le reading the fo l l ow ing sec t ions . 

5.2 Performance Element 

The performance element uses the learned 
in format ion to perform the stated task . I t has 
been included in the LS model because of the 
in t imate r e l a t i o n s h i p between what in fo rmat ion is 
to be learned and how t h i s learned in format ion is 
to be used. 

Performance elements are usua l ly t a i l o r e d 
more to the requirements of the task domain than 
to the a rch i t ec tu re of the LS. In genera l , the 
performance element can be run in a stand-alone 
mode without l ea rn i ng , independent of the res t of 
the LS ( e . g . , Samuel s checker p lay ing program 
[21] [22]). In any LS, however, the a b i l i t y to 
improve performance presupposes a method of 
communicating learned in format ion to the 
performance element. Since i t s a r ch i t ec tu re must 
a l low learned in format ion to a f f ec t i t s dec is ions , 
a d d i t i o n a l cons t ra in ts are placed on the 
performance element w i t h i n an LS. The performance 
element should be constructed so tha t in fo rmat ion 
about i t s i n t e r n a l machinations i s r e a d i l y 
ava i l ab le to the other system components. This 
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in format ion can be used to make possib le de ta i led 
c r i t i c i s m of performance, and i n t e l l i g e n t 
se lec t ion of f u r t h e r instances to be examined by 
the system. 

The performance elements of e x i s t i n g systems 
also vary In the ways in which they may be a l te red 
by l e a r n i n g . For example, systems whose operat ion 
is determined by a set of product ion ru les [30] 
[31] have the p o t e n t i a l to exh ib i t r i che r 
v a r i a t i o n s than systems whose operat ion is keyed 
only to the adjustment of parameter values [14 
[171 . 

5.3 Insta,nce Se lec to r 
The instance se lec tor se lec ts t r a i n i n g 

instances from the environment that are to be used 
by the LS. It is a func t i ona l component, not 
c l e a r l y i so la ted in e a r l i e r adaptive system 
models. 

In reviewing e x i s t i n g LS's we have found 
tha t methods fo r instance se lec t ion vary mainly 
along the dimensions of r e s p o n s i b i l i t y and 
s o p h i s t i c a t i o n . The r e s p o n s i b i l i t y fo r instance 
se lec t i on var ies between the extremes of 
completely ex te rna l ( "passive") s e l e c t i o n , and 
completely i n t e r n a l ( "ac t i ve " ) s e l e c t i o n . 
Instance se lec t i on in Samuel's book move checkers 
program [21] [22] is ex te rna l l y c o n t r o l l e d , 
whereas Popplestone s program [ 2 0 ] . which learns 
the features that character ize a winning pos i t i on 
in t i c - t a c - t o e , generates i t s own t r a i n i n g 
ins tances. It forms a l te rna te hypotheses, and then 
generates instances to choose among them ( r e l y i n g 
upon an externa l c r i t i c to evaluate these 
ins tances) . In the adaptive systems l i t e r a t u r e , 
Tse and Bar-Shalom [27] use a form of ac t i ve 
instance se lec t ion known as " d u a l - c o n t r o l " . They 
adjust the input to a system in such a way as to 
simultaneously con t ro l i t s output and obta in 
in format ion about i t s i n t e r n a l s t r u c t u r e . 

The degree of soph i s t i ca t i on used fo r LS 
instance se lec t ion is also an important 
cons idera t ion . In order to qua l i f y as 
soph i s t i ca ted , an instance se lec tor must be 
sens i t i ve to the current a b i l i t i e s and 
de f i c i enc ies of the performance element and must 
construct or se lect instances which are designed 
to improve performance. Winston [32] has shown the 
advantages to be accrued through present ing 
c a r e f u l l y constructed examples and "near-misses" 
of the concepts to be acquired by an LS. In 

Genera l . ca re fu l instance se lec t ion can improve 
he r e l i a b i l i t y and e f f i c i e n c y of an LS. We must 

note, however, that t h i s may not always be 
permit ted by the environment in which the LS 
operates, as is genera l ly the case fo r adaptive 
con t ro l systems [ 0 ] . 

54 Critic 
The c r i t i c analyses the current, a b i l i t i e s of 

the performance element. It may play three r o l e s ; 
EVALUATOR. DIAGNOSTICIAN, and THERAPIST. The 
c r i t i c always operates as an evaluator In that i t 
embodies a standard by which to assess the 
behaviour of the performance element. This is the 
ro le that has been emphasized in e a r l i e r adaptive 
system models [10] [11] [ 2 5 ] . 

The c r i t i c may also operate as a 
d iagnos t i c ian , and l o c a l i z e the reasons fo r poor 
performance. This type of behavior is essen t ia l 
fo r reso lu t i on of the c r e d i t assignment problem 
described by Minsky [ 1 8 ] . In I t s r o l e as 
d iagnos t i c ian , the c r i t i c is exempl i f ied by the 
bug c l a s s i f i e r and summarizer in Sussman's HACKER 
[ 2 6 ] . 

F i n a l l y the c r i t i c may operate as a 
t h e r a p i s t , and make s p e c i f i c recommendations fo r 
improvement or suggestions about fu tu re instances. 
In Waterman's poker player [ 3 0 ] , the c r i t i c as 
the rap is t suggests the bet tha t should have been 

made by the performance element fo r a p a r t i c u l a r 
t r a i n i n g ins tance. 

Not a l l systems exh ib i t s u f f i c i e n t l y complex 
behavior t o warrant c r i t i c s that f u l f i l l a l l three 
func t i ons . The c r i t i c as t he rap i s t in p a r t i c u l a r 
is not o f ten seen in simple systems. 

The d i v i d i n g l i n e between c r i t i c and 
learn ing element is d i f f i c u l t to d i s t i n g u i s h , and 
i t is c e r t a i n l y possib le to view therapy as a 
func t ion of the learn ing element, ra ther than one 
of the c r i t i c . However, in mapping e x i s t i n g LS's 
i n t o our model^ we have adopted the convention 
that the c r i t i c s recommendations to the learn ing 
element are at an abstract leve l removed from the 
implementation considerat ions such as data 
rep resen ta t ion . This c l e a r l y separates the two 
d i f f e r e n t func t ions of decid ing what kind of 
change is needed and decid ing how to implement 
that change. 

In some LS's the func t ions of the c r i t i c 
have been l e f t to the human who uses the system. 
For example. MYCIN/TEIRESIAS [H] uses a human 
c r i t i c , ac t ing as eva luator , d i agnos t i c i an , and 
therap is t to suggest a l t e r a t i o n s to i t s r u l e base. 

5.5 Learning Element 

The lea rn ing element is an i n te r f ace between 
the c r i t i c ana the performance element, 
responsible fo r t r a n s l a t i n g the abstract 
recommendations o f the c r i t i c i n t o spec i f i c 
changes in the ru les or parameters used by the 
performance element. 

Representations fo r learned in format ion 
e x h i b i t great v a r i e t y . They inc lude , fo r example 
product ion ru les [ 3 0 ] , parameterized polynomials 
T21] , executable procedures [ 2 6 ] , s ignature tab les 
[22], stored fac ts [ 7 ] , and graphs [ 3 2 ] . The 
method of i ncorpora t ing new learned in format ion is 
dependent upon t h i s rep resen ta t ion , and even among 
systems which use s i m i l a r representa t ions , 
competing methods are found ( con t ras t , fo r 
example, [3 ] and [ 3 0 ] ) . 

The extent to which the learned in format ion 
is a l t e red in response to each t r a i n i n g instance 
is an important LS design cons ide ra t ion . In some 
systems [ 3 2 ] . the learn ing element incorporates 
exact ly the In format ion suppl ied by the c r i t i c . 
Were the same t r a i n i n g instance to occur l a t e r , 
the response of the performance element would be 
exact ly as the c r i t i c advised fo r the f i r s t 
occurrence. This type of learn ing is wel l su i ted 
to environments which provide perfect data and to 
systems w i th r e l i a b l e c r i t i c s . Under these 
cond i t ions the LS w i l l converge rap id l y to the 
desired behavior. If such a system were provided 
w i th an incor rec t c l a s s i f i c a t i o n by the 
environment or less than r e l i a b l e advice by the 
c r i t i c , however, i t might commit i t s e l f to 
i nco r rec t assumptions from which i t i s d i f f i c u l t 
to recover. Systems which make less d ras t i c 
chances to the learned knowledge on the basis of a 
s ing le t r a i n i n g instance are less vulnerable to 
imperfect i n fo rma t i on , but consequently requ i re 
more t r a i n i n g instances to converge to the desired 
behavior. Many s t a t i s t i c a l LS's f a l l i n t o t h i s 
category [ 1 9 ] . Other systems consider several 
t r a i n i n g instances at a time in order to minimize 
the e f f ec t o f occasional noisy instances [ 3 ] . 

5.6 Blackboard 

The blackboard of our model is a g loba l data 
base which a lso funct ions as a system 
communications mechanism. I t is s i m i l a r to the 
concept introduced in the HEARSAY system [ 1 5 ] . The 
blackboard holds two types of i n fo rma t i on : the 
in fo rmat ion usua l ly associated w i th the "knowledge 
base" in AI programs, and the temporary 
In format ion used by the LS components. The 
knowledge base o f ten contains the set of r u l e s , 
parameter va lues, symbolic s t r u c t u r e s , and so on, 
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cu r ren t l y being used by the performance element. 
Such in format ion can be used as an aid to 
soph is t ica ted instance se lec t ion i f i t i s r ead i l y 
a v a i l a b l e . The temporary, system-oriented 
in format ion inc ludes , fo r example, the 
intermediate decis ions made by the performance 
element in se lec t i ng a p a r t i c u l a r response. 
Detai led c r i t i c i s m by the c r i t i c is dependent upon 
the a v a i l a b i l i t y o f t h i s i n fo rmat ion . 

In many e x i s t i n g systems t h i s in format ion is 
not so c l e a r l y separated or de f ined. The 
communication l i n k s between func t iona l components, 
espec ia l l y , are o f ten programmed d i r e c t l y . Because 
the same in format ion is required by many of the 
i n d i v i d u a l func t iona l components of any LS, 
however, a blackboard is a more appropr iate 
communications mechanism. 

5.7 Worses Model 

Whereas the blackboard contains in format ion 
that can be a l te red by the LS components, the 
world model contains the f i xed conceptual 
framework w i t h i n which the system operates. The 
contents of the world model inc lude d e f i n i t i o n s of 
ob jects and r e l a t i o n s in the task domain, the 
syntax and semantics of the in format ion LO be 
learned, and the methods to be used by the LS. 
Among task domain d e f i n i t i o n s are, fo r example, 
the ru les of a game and the representat ion or 
inputs and outputs for the performance element. 
This part of the worjd model simply def ines the 
task of the performance element, and the standard 
of performance (the eva luat ion func t ion) to be 
appl ied by the c r i t i c . Domain s p e c i f i c heu r i s t i c s 
are also commonly added to the world model of AI 
systems to guide inferences made by the xLS ( e . g . , 
the blocks world h e u r i s t i c s of Winston's program 
132]). D e f i n i t i o n s of the syntax and semantics of 
in format ion to be learned def ine the mode of 
communication between the learn ing and performance 
elements. 

The assumptions and cons t ra in ts from which 
the world model is composed are of c r i t i c a l 
importance in the design and charac te r i za t ion of 
LS 's . Although many of these assumptions are of ten 
hidden in the var ious func t i ona l components, the 
LS designer and user must both be aware of each of 
them. We bel ieve t h a t , where poss ib le , world model 
cons t ra in ts should be made e x p l i c i t in order to 
a l low fo r t h e i r mod i f i ca t ion dur ing the design 
process. 

6 Mul t i -Layer Learning Systems 

Although the world model cannot be a l te red 
by the LS that uses i t . the designer can a l t e r i t s 
contents in order to improve LS performance. He 
o f ten changes parameters and procedures of the 
basic LS a f t e r observing and c r i t i c i z i n g i t s 
behavior fo r some c a r e f u l l y chosen t r a i n i n g se t . 
These a l t e r a t i o n s resu l t in a new version of the 
LS, which is then tested on some t r a i n i n g se t , and 
so on. The designer views the whole LS as a system 
whose performance needs improvement, and he 
se lec ts instances, c r i t i c i z e s performance, and 
makes changes accord ing ly . In other words, the 
des igner 's a c t i v i t i e s can be modeled by a system 
whose components are j us t those of Figure e\. This 
leads us to the concept of layered LS's, each 
higher layer able to change the world model 
(vocabulary, assumptions, e t c . ) of the next lower 
layer on the basis of c r i t i c i z i n g i t s performance 
on a chosen set of ins tances. Thus, adjustments 
can be made to the world modeJ of some learn ing 
system LS1 by another lea rn ing system, LS2, which 
has i t s own func t i ona l components ( c r i t i c , world 
model, e t c . ) . In t u r n , i t i s conceivable that a 
t h i r d system, LS3, could adjust the world model of 
LS2, and so on. The designer cons t i t u tes the 
f i n a l c r i t i c , o f course, operat ing above of the 
" t o p - l e v e l " LS. Each lower layer cons t i t u tes the 
performance element of the next higher l aye r , and 
i n t e r - l a y e r communication is e f fec ted through the 

blackboards of the var ious l aye rs . The use of a 
blackboard in the s ing le layer LS model was p a r t l y 
motivated by i t s a t t rac t i veness in the m u l t i - l a y e r 
context . 

This m u l t i - l a y e r a rch i t ec tu re can be 
d i f f e r e n t i a t e d from a h i e r a r c h i c a l a r c h i t e c t u r e . 
The l a t t e r involves only bot tom-to- top propagation 
of in fo rmat ion , whereas the former involves 
b i d i r e c t i o n a l in format ion passing; tha t i s , the 
e f f ec t s of adjustments made in a layer may 
propagate both to lower and higher l eve l l aye rs . 

One e x i s t i n g LS which may be viewed as a 
layered system is the vers ion of Samuel 's program 
[22] which learns a polynomial eva luat ion func t ion 
for se lec t ing checkers moves (see Appendix 1 
fo r d e t a i l s ) . The lower layer (LS1) in t h i s 
system adjusts the c o e f f i c i e n t s of a given set of 
game board features in order to improve 
performance of the move se lec t ion program. The 
second layer system (LS2) ad justs the set of board 
features used in the eva luat ion func t ion in order 
to improve the performance of LS1. Since LS1 is 
contained in LS2 as the performance element, a l l 
the assumptions necessary for i t s operat ion also 
belong to the LS2 world model. In a d d i t i o n , the 
LS2 world model contains assumptions about the set 
of al lowable game board features and the standard 
fo r eva luat ing LS1 performance. 

A s ing le layer LS, then, can never move 
outside i t s world model to make rad ica l rev is ions 
to i t s way of viewing the task to achieve a 
"paradigm s h i f t " , as discussed by Kuhn [ 1 3 ] . 
However, a s h i f t in the conceptual framework of 
LS1 could be made by a proper ly programmed LS2 
[ 2 ] , We bel ieve thai a layered approach such as 
that described above provides a usefu l system 
organizat ion for learn ing at var ious leve ls of 
abs t rac t ion in complex domains. Although there 
are examples of t h i s kind of l aye r ing in the 
l i t e r a t u r e [21] [ 2 9 ] , no one has car r ied it as fa r 
as our model suggests, and it appears tha t we are 
j us t now reaching the point of understanding 
s ing le layer learn ing systems we l l enough to 
consider developing more soph is t i ca ted systems. 

7 Summary 

The proposed LS model provides a common 
language for charac te r i za t ion and comparison of 
d i f f e r e n t types of learn ing systems which operate 
in a va r i e t y of task domains. We bel ieve the 
model is a usefu l conceptual guide for LS design, 
because i t i so l a tes the essent ia l f unc t i ona l 
components, and the in format ion that must be 
ava i lab le to these components. 

We have al luded to a number of des i rab le 
features for fu tu re learn ing system designs. 
F i r s t , the design should be modular and i n d i v i d u a l 
modules should correspond to the func t i ona l 
components shown in the model. The knowledge used 
by the system should be made e x p l i c i t and 
c o l l e c t e d , as much as e f f i c i e n c y considerat ions 
permi t , in a world model component. The par ts of 
the LS that are to be ad justab le espec ia l l y must 
be e x p l i c i t l y exposed. We have emphasized the 
importance of i n t e l l i g e n t c r i t i c i s m , and suggested 
that ac t i ve instance se lec t ion be fu r t he r 
examined. F i n a l l y , we have suggested a m u l t i - l a y e r 
a rch i t ec tu re fo r learn ing a t d i f f e r e n t l eve ls o f 
a b s t r a c t i o n . 

Appendix i 

Character iza t ion of Ex i s t i ng Systems 

In t h i s appendix several e x i s t i n g LS's are 
character ized using the framework provided by the 
model described in Section 5. The systems selected 
are representat ive of several approaches to 
machine l ea rn ing . Because the blackboard contains 
in format ion in a s ta te o f f l u x , i t s contents are 
not spec i f i ed e x p l i c i t l y fo r the systems 
character ized below. 
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Learning S t r u c t u r a l Descr ipt ions from Examples. 
Winston {32} 

Purpose: Learn to i d e n t i f y blocks world s t ruc tu res 
(such as arches and towers) . 

Environment: Set of possib le l i n e 
d r a w i n g / s t r u c t u r e - c l a s s i f i c a t i o n p a i r s . 

Performance Element: Decides c lass of s t ruc tu res 
t o w h i c h the input s t ruc tu re belongs. Uses a 
model of the s t ruc tu re class suppl ied by the 
lea rn ing element. 

Instance Se lec tor : Accepts t r a i n i n g instances 
suppl ied i n d i v i d u a l l y by the user. 

C r i t i c : Evaluat ion - compares the c l a s s i f i c a t i o n 
made by the Performance Element against the 
cor rec t c l a s s i f i c a t i o n as suppl ied w i th each 
t r a i n i n g ins tance. Diagnosis - generates a 
comparison desc r i p t i on po in t i ng out d i f fe rences 
between the model and the s t ruc tu re d e s c r i p t i o n . 

Learning Element: Constructs a model of the c lass 
of s t ruc tu res under cons ide ra t ion . Examines the 
comparison desc r i p t i on suppl ied by the c r i t i c , 
and modi f ies the model to strengthen or weaken 
the correspondence between the model and the 
t r a i n i n g ins tance. 

World Model: Representation of scenes as l i n e 
drawings, method of t r a n s l a t i n g l i n e drawings to 
graph ica l d e s c r i p t i o n s , grammar fo r represent ing 
the learned i n fo rma t ion , domain-speci f ic 
h e u r i s t i c s fo r reso lv ing among possib le changes 
to each s t ruc tu re c lass model. 

Poker Plaver. Waterman [30] 

Purpose: Learn a good s t ra tegy fo r making bets in 
draw poker. 

Environment: Set of a l l lega l poker game s t a t e s . 
Performance Element: Appl ies the learned 

product ion ru les to generate ac t ions in a poker 
game, e . g . . be ts . 

Instance Se lec tor : Selects each game s ta te der ived 
by play against an opponent as a t r a i n i n g 
ins tance. 

C r i t i c : Two vers ions of the program use two 
d i f f e r e n t c r i t i c s . In both cases the c r i t i c 
performs the f o l l ow ing f unc t i ons : Evaluat ion -
decides whether the poker bet made by the 
Performance Element was acceptable. Diagnosis -
gives important s ta te var iab les fo r dec id ing the 
cor rec t be t . Therapy - provides the bet which the 
Performance Element should have made. In 
" e x p l i c i t " learn ing the c r i t i c is an expert poker 
player , e i t h e r human or programmed. In 
" i m p l i c i t " l e a r n i n g , the eva luat ion and therapy 
are deduced from the next ac t ion of the opponent 
and a set of predef ined axioms, whi le diagnosis 
is read from a predefined "dec is ion m a t r i x " . 

Learning Element: Modi f ies and adds product ion 
ru les to the system. Mistakes are corrected by 
adding a new r u l e in f r on t of the ru le 
responsib le fo r the i nco r rec t response. 

World Model: Rules of poker, features used to 
describe the game s t a t e , the language of 
product ion r u l e s , h e u r i s t i c s fo r updating the 
r u l e base, the model of an opponent. 

Model Reference Adaptive Con t ro l . Landau [14] 

Purpose: Construct a " c o n t r o l l e r " which 
preprocesses inputs to an e x i s t i n g system (ca l l ed 
the " p l a n t " ) . The behavior of the combined 
c o n t r o l l e r - p l a n t system is to mimic the behavior 
of a t h i r d system (ca l led the " reference model") 
on the t r a i n i n g data. 

Environment: The p lant to be c o n t r o l l e d , and the 
set of possib le inputs ( i nc lud ing d is tu rbances) . 

Performance Element: The c o n t r o l l e r - a system 
whose output is used as input to the p l an t . I t s 
behavior is a func t ion of the input s i g n a l , past 
I/O behavior of the p l a n t , and a set of 
ad jus tab le parameters. 

Instance Se lec to r : Accepts data sequence (as input 
to the c o n t r o l l e r ) from the environment. 

C r i t i c : Evaluat ion - app l ies a measure of 
performance which is some func t i on of the 
a r i t hme t i c d i f f e rence between the p lant and 
reference model ou tpu ts . In some cases the 
reference model is mathematical ly de f ined , and 
can there fo re be considered part of the c r i t i c . 
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Checker Plaver. Samuel [21] [22] 

Purpose: Learn to play good game of checkers (here 
we discuss only the vers ion of the program which 
learns a l i n e a r polynomial eva luat ion func t ion by 
examination of moves suggested by experts ("book 
moves"). 

Environment: Set of a l l lega l game boards. 

LS1 (lowest l a y e r ) : 

Purpose: Learn a good set of c o e f f i c i e n t s fo r 
combining board features in a l i n e a r polynomial 
eva luat ion f u n c t i o n . 

Performance Element: Uses the learned eva luat ion 
func t ion to rank p laus ib le moves fo r a given 
board p o s i t i o n . 

Instance Se lec tor : Reads instances from a l i s t of 
pre-def ined game-board/recommended-move p a i r s . 

C r i t i c : Evaluat ion - examines the ranking given to 
the book move by the performance element. 
Diagnosis - suggests tha t the book move should be 
ranked above a l l other moves. 

Learning Element: Adjusts weights of l i n e a r 
polynomial to make move se lec t i on correspond to 
the c r i t i c ' s recommendation. 

World Model: Syntax of game board, form and 
features o f l i n e a r polynomial eva luat ion 
f u n c t i o n , method fo r ad jus t i ng eva luat ion 
f u n c t i o n , and ru les of checkers. 

LS2: 

Purpose: Improve the performance of LS1 by 
se lec t i on of a good set of board fea tu res . 

Performance Element: LS1. 
Instance Se lec tor : The e n t i r e set of poss ib le 
t r a i n i n g instances is simply passed to LS1 (v ia 
the b lackboard) . 

C r i t i c : Evaluat ion - analyses the lea rn ing a b i l i t y 
of LS1 ( i . e . , the LS2 performance element) w i th 
the cur rent set of eva luat ion func t ion fea tu res . 
Diagnosis - s ing les out features which are not 
u s e f u l . Therapy - se lec ts new features from a 
predef ined l i s t to replace useless fea tu res . 

Learning Element: Redefines the current set of 
features as recommended by the c r i t i c . 

World Model: The LS1 world model plus the set of 
f e a t u r e s w h i c h may be considered, and the 
performance standard employed by the LS2 c r i t i c . 



In other cases the reference model is an actual 
system, and is considered part of the 

environment. 
Learning Element: Modi f ies the parameters of the 

per fo rmancee lement ( c o n t r o l l e r ) , depending on 
the performance measure suppl ied by the c r i t i c . 

World Model: Contro l theory assumptions (t ime 
invar iance, l i n e a r i t y , e t c . ) and techniques, and 
the standard of performance embodied in the 
c r i t i c . 
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