
ANNOTATED PRODUCTION SYSTEMS
A MODEL FOR SKILL ACQUISITION

I r a P. Goldstein and Er ic Crimson
A r t i f i c i a l Intell igence Laboratory

Massachusetts Ins t i tu te of Technology
Cambridge, Massachusetts 02139

February 1977

Abstract

Annotated Product ion Systems provide a procedural model for
sk i l l acquis i t ion by augmenting a production model of the sk i l l w i t h
fo rmal commentary describing plans, hugs, and interrelat ionships
among v a r i o u s p roduc t i ons . T h i s commentary suppor ts e f f i c i e n t
in te rp re ta t ion , sel f -debugging and self- improvement. The theory of
annotated product ions is developed by analyzing the sk i l l of a t t i t ude
ins t rument f l y ing . An annotated production in terpreter has been
w r i t t e n tha t executes sk i l l models which control a f l i gh t s imulator .
Pre l iminary evidence indicates that annotated productions ef fect ive ly
model cer ta in bugs and certain learning behaviors character ist ic of
student.

Th i s research was supported in part by the Advanced Research
Projects Agency of the Department of Defense under Off ice of Naval
Research c o n t r a c t N00014-75-C-0643, and in p a r t by the N a v a l
T r a i n i n g Equipment Center under contract N61339-76-C-0046.

1. In t roduct ion

Product ions systems have many strengths as a model of human
problem solving — modular i ty , simple control , general i ty; bu t they
are not suf f ic ient . We argue for th is position by analyzing the sk i l l
of f l y i ng an airplane under instruments. A production model w i l l bo
defined and i ts l imi tat ions considered. These l imitat ions wi l l involve
ine f f i c ienc ies in dea l ing w i t h con tex t , a lack of d i r e c t i o n f o r
debugg ing, and the absence of self-knowledge useful for learning by
general izat ion and analogy. Our next step is to define an annotat ion
vocabulary consisting of formal comments regarding the plans, bugs,
and interrelat ionships of the basic productions. We show how these
annotat ions support more eff icent execution of the sk i l l , debugging
of d i f f i cu l t i es and self- improvement.

A n n o t a t e d p r o d u c t i o n systems represent a mar r i age of t he
comment-based approach to debugging developed by Sussman [73]
and Goldstein [74] w i t h the procedural archi tecture of product ion
systems [N e w e l l & Simon 72]. Goldste in and Sussman were not
concerned w i t h the psychological val id i ty of their debugging models.
Product ion systems have typical ly not been concerned wi th modell ing
learning. The marr iage of productions and annotations holds ou t the
possibi l i ty of an improved modelling capabil i ty. Davis [76] develops a
related theory of mcla-knowlcdge for production systems to guide
the know ledge acqu i s i t i on process fo r la rge knowledge-based
programs which we discuss in section 9.

Our work on annotated production systems is based on a series of
expe r imen ts w i t h a f l i g h t s imu la to r implemented in L isp by the
authors . The product ion systems and annotated product ion systems
d i scussed h e r e r u n i n c o n j u n c t i o n w i t h t h i s s i m u l a t o r . T h e
debugging and learning modules have been hand-simulated, b u t not
implemented.

U n l i k e the t r a d i t i o n a l Carnegie Mel lon exper iment i n wh i ch
pa r t i cu la r individuals are modelled, our experiments arc concerned
w i t h generic model l ing; tha t is, they are concerned w i th model l ing
t y p i c a l s k i l l s ta tes of s tuden t p i lo ts , as judged by the ex tens ive
l i t e r a t u r e on f l i g h t inst ruct ion (Langewiesche [44] remains the classic
t e x t) and the exper ience of the f i r s t a u t h o r and his spouse in
learn ing to f l y .

In the next section, we characterize instrument f l y ing to indicate
why we have chosen it as our experimental sk i l l . Section 3 describes
the s t rengths of a product ion system model for this sk i l l . Section 4
a n a l y z e ! i t s weaknesses. Sections 5 and 6 def ine an anno ta ted
p r o d u c t i o n model and ind ica te i t s u t i l i t y f o r more e f f i c i e n t s k i l l

Knowledge A c q . - l :

execution and fo r sel f -debugging. Section 7 describes the design of a
heur is t i c learning program for Annotated Product ion Systems.

2. A t t i t ude Inst rument F ly ing

Our experimental focus has been on a t t i tude inst rument f l y i n g
wherein the goal is to maintain steady climbs, turns, descents or level
f l i g h t . I t is the basic consti tuent sk i l l of instrument f l y ing .

F l y i n g , as a whole, is an appeal ing domain f o r s t u d y i n g s k i l l
a cqu i s i t i on because: (1) there is extensive l i t e r a t u r e on f l i g h t
i ns t ruc t ion ; (2) it is an important sk i l l whose improper employment
r i sks l i ves ; (3) i t is an adu l t (as opposed to i n f a n t) l e a r n i n g
experience and hence instrospcclive evidence is available; (4) a usefu l
appl icat ion of an improved analysis of the learning process for th is
sk i l l is the design of a computer inst ructor for f l i gh t s imulators ; (5)
i t is representative of an important class of rea l - t ime contro l sk i l ls
such as sai l ing, d r iv ing .

I n s t r u m e n t f l y i n g , i n p a r t i c u l a r , has a c o n s t r a i n e d set o f
pe rcep tua l i npu t s — the i ns t rumen ts -- and a r e s t r i c t e d set of
actions — the controls. A t t i t ude instrument f l y ing , while a sub -sk i l l
of ins t rument f l y ing , is s t i l l suf f ic ient ly r ich to be an in terest ing
model l ing problem.

Let us consider a few of the problems associated w i t h f l y i n g a
plane, in order to define the characteristics of a generic model fo r
f l i g h t sk i l l . The f i r s t observation is that f l y ing involves responses to
the external forces of the environment — grav i ty , a i r movement, and
other factors. Th is requires instruments to monitor the plane'* state
and con t ro l s f o r chang ing t h a t s ta te. Hence, f o r each g o a l , a
mapping f rom measurement to control is required.

However, such a mapping cannot be f rom one ins t rument to one
cont ro l , since the higher order effects would be neglected. T h u s ,
using only the value of the vert ical velocity indicator to manipulate
the e leva tors wh i le t r y i n g to achieve level f l i g h t w i l l not a lways
succeed . A b e t t e r mode l w o u l d t ake i n t o a c c o u n t v e r t i c a l
acceleration. W i t hou t a sense of the second der ivat ive, the p i lo t w i l l
over or under control the a i rcraf t .

The mapp ing mus t be context sensi t ive. A con t ro l response
appropr iate in normal situations may fai l in special contexts. For
example, under normal circumstances, the goal of s t ra igh t and level
f l i g h t can be achieved by sequentially at tempt ing these goals, i.e. the
pi lot can concentrate on establishing the proper heading, and only
when i t is w i th in tolerance, direct his at tent ion at the a l t i tude. T h e
rat ionale fo r this is tha t in normal circumstances the two processes
are v i r t ua l l y independent. However, if the a i rc ra f t is in a s ta l l (i.e.
the wing has lost l i f t) , then the assumption of independence of the
two subgoa ls is not va l id and special measures mus t be t a k e n in
order to recover f rom this state. The wings must be leveled before
the p i tch of the plane is corrected. A representative set of f l i g h t
contexts are:

N O R M A L F L I G H T
T A K E O F F

V ISUAL F L I G H T TAKEOFF
SHORT F I E L D T A K E O F F
SOFT F I E L D T A K E O F F

L A N D I N G
V ISUAL F L I G H T L A N D I N G
I N S T R U M E N T L A N D I N G

CRUISE
S T R A I C H T A N D L E V E L
C L I M B
D E S C E N T
T U R N

A B N O R M A L F L I G H T RECOVERY
E N C I N E F A I L U R E
I N S T R U M E N T FA ILURE
S T R U C T U R A L F A I L U R E
N A V I G A T I O N FA ILURE
N O N - N O R M A L F L I C H T C O N D I T I O N

COLLISION COURSE
S T A L L
SP IN
S T A B L E F L I G H T OUTSIDE TOLERANCES

Context sensitivity raises the issue of exceptions. A particular
method may apply in all but a few situations. These exceptions
should be explicit ly accounted for if the skilled practioncr is to
successfully anticipate them. Note that this is not the case of two
competing heuristics, each equally applicable and each applying to
roughly the same number of situations. Rather, we have the
situation of one heuristic working almost everywhere and only a few
exceptions need to be noted. For example, it is almost always the
case that the ailerons are used to bank the airplane. In rare
circumstances such as a spin, the rudder is used to level the wings.
Such rare circumstances arc explicitly known as exceptions by pilots
— indeed, much of flight training concentrates on the exceptions.

The fl ight world cannot be decomposed into orthogonal control
dimensions. Instead, actions in one dimension effect other aspects of
the f l ight of the aircraft. Thus, changing the bank of the aircraft
by manipulating the ailerons will also cause a change in the pitch of
the aircraft. There is no one-to-one mapping of the variables of the
situation onto the set of controls. These interrelationships are in
part the cause of the context sensitivity noted above. Some of the
interrelated control effects are:

Rate of turn it controlled by both ailcront and rudder.
Kate of climb it controlled by both throttle and clovatort.
In landing t, rate of climb it affected by flaps and landing gear.
In tteep turns, rate of climb it affected by ailcront.

Finally, because this is a dynamic situation, time plays an
important role. Hence, not only is the action which is chosen and
applied important, but so is the rate at which that action is applied,
and the timo period over which the corrections are applied. This
introduces problems such as overcontrolling, a direct result of these
dynamics.

3. A Production System Model for Attitude Instrument Flying

PONTIUS-0 is a production system for achieving straight and
level f l ight that embodies a mapping from goals and measurements to
controls. Below are a few representative productions without their
annotation commentary. The patterns describe the goals of the
productions; the actions observe instruments and manipulate
controls.

(DEFINITION SftLl ;S«st ra1ght . L - l « v t l .
; ;To achieve s t r a i g h t and leve l f l i g h t , f i r s t achieve
; ; l e v e l f l i g h t , and then s t r a i g h t f l i g h t .
(GOAL: (AND (S FLIGHT) (L FLIGHT)))
(ACTION: (DO (ACHIEVE (L FLIGHT))

(ACHIEVE (S FLIGHT)))))

(DEFINITION L-FLIGHT-1
; ;To achieve l eve l f l i g h t , keep the p i t c h of the plane at z e r o ,
; ;where the p i t c h 1s the angle of the nose w i t h the h o r i z o n .
(GOAL: (L FLIGHT))
(ACTION: (DO (ACHIEVE (NOTICE DELTA PITCH))

(ACHIEVE (MAKE PITCH 0)))))

(DEFINITION NOTICE-DELTA-PITCM-VIA-ARTIFICIAL-HORIZON-1
; ; I f the nose 1s down according to the a r t l f l c a l h o r i z o n ,
; ; t h e n asser t t h i s f a c t m memory. This 1s one among 4
; ; m t t h o d i f o r n o t i c i n g the p i t c h o f the p lane.
(60AL: (NOTICE OELTA PITCH))
;;QUAl-VALUE Returns the s ign of I t s i npu t . Thus,
; ; t hese product ions are sens i t i ve to the q u a l i t a t i v e
; ;va1ue of the Inst ruments.
(ACTION: (COND (IF ? (- (QUAL-VALUE ARTIFICIAL-HORIZON-PITCH) ♦)

. (■ (QUAL-VALUE (DELTA PITCH)) +))
(IF ? (• (QUAL-VALUE ARTIFICIAL-HORIZON-PITCH) -)

. (■ (QUAL-VALUE (OELTA PITCH)) -)))))

(DEFINITION NOTICE-DELTA-PITCH-VIA-VERTICAL-VELOCITY-INDICATOR-1
; ; I f the plane 1s descending, the nose 1s down.

(GOAL: (NOTICE DELTA PITCH))
(ACTION: (COND (IF ? (• (QUAL-VALUE W I) -) "THEN"

. (• (QUAL-VALUE (DELTA PITCH)) -))
(IF ?(■ (QUAL-VALUE W I) ♦) "THEN"

. (• (QUAL-VALUE (DELTA PITCH)) ♦)))))

(DEFINITION CONTROL-PITCH-VIA-ELEVATORS-1
; ; I f the nose 1s down, p u l l up on the e l eva to r s . Another
; ; c o n t r o 1 f o r p i t c h manipulates the t h r o t t l e .
(GOAL: (MAKE PITCH 0))

;;DELTA-ELEVATORS 1s a p r i m i t i v e con t ro l a c t i o n s .
(ACTION: (DELTA-ELEVATORS (MINUS ?(DELTA PITCH)))))

The "?" preceding a form indicates that the form is a
predicate whose t ru th value of T or NIL is computed by
pattern-matching against the database. The "." indicates that
the following form is to be asserted in the database, rather
than being executed.

PONTIUS-0 has approximately SO rules for attitude instrument
flying. A representative list for straight and level flight arc is given
below where each title refers to one production by its goal.

PRODUCTIONS FOR ACHIEVING STRAIGHT AND LEVEL FL IGHT :

SEQUENTIAL PLAN FOR STRAIGHT-FLIGHT AND LEVEL-FLIGHT

COROUTINE PLAN FOR STRAIGHT-FLIGHT AND LEVEL-FLIGHT

PRODUCTIONS FOR ACHIEVING LEVEL-FLIGHT:

ACHIEVE L-FLIGHT

NOTICE DELTA PITCH V I A ART IF IC IAL HORIZON

NOTICE DELTA PITCH V IA WI

NOTICE DELTA PITCH V IA ALTIMETER

NOTICE DELTA PITCH V I A AIRSPEEO

ELIMINATE DELTA PITCH WITH ELEVATORS

ELIMINATE DELTA PITCH WITH THROTTLE

PRODUCTIONS FOR ACHIEVING STRAIGHT-FLIGHT

ACHIEVE S-FLIGHT

NOTICE DELTA BANK V I A ART IF IC IAL HORIZON

NOTICE DELTA BANK VIA TURN COORDINATOR

NOTICE DELTA BANK V IA DIRECTIONAL GYRO

NOTICE OELTA BANK V IA MAGNETIC COMPASSS

ELIMINATE DELTA BANK WITH AILERONS

ELIMINATE DELTA BANK WITH RUDDER

These rules have a standard pattern/action form. The rules arc
invoked in a depth-first method. That is, given a goal to achieve,
the actions corresponding to that goal arc achieved in a depth-first
manner by matching ACHIEVE patterns against COAL descriptions.
If more than one production matches in a situation then the default
order of calling is used. For example, there are several methods of
noticing a change in pitch.

Production systems arc an appealing representation for the f l ight
world for several reasons. First, the knowledge of how to f ly an
aircraft can be represented to a first approximation as a sequence of
independent "recognize-act" pairs. That is, it can be represented as a
sequence of rules of the form: given some goal and some context, do
this action to bring the state of the aircraft "closer" to the desired
state. Product ion systems offer a convenient formal ism for
s t ructur ing and expressing that knowledge. Fig. 1 shows the
performance of PONTIUS-0 in maintaining a shallow bank.

Second, it is important in a dynamic system to detect and deal
with a large number of independent states. One must be able to
react quickly to small changes. Production systems faciliate such a
detection and reaction process. This is since any rule could possibly
be the next to be selected, depending only on the state of the data
base at the end of the current cycle. Thus, each rule can be viewed
•a a demon awaiting the occurrence of a specific state.

Knowledge A c q . - l : G o l d s t e i n
3 1 2 .

4. L imi ta t ions of Production Systems

The assumption tha t al l rules are independent carries w i th i t the
addi t ional assumption that al l rules arc equally l ikely to bo used at
any stage of operation. In this case, since the rules are sensitive to
context , such an assumption is not valid. Specifically, some contexts
are much more common and l ikely than others. T i tus the rules are
weighted in a cer ta in sense and a formalism which accounts f o r th is
we igh t ing would improve the performance of the model. S imi la r ly ,
the fac t t ha t exceptions to si tuat ions exist should also be accounted
for . Once again, a weight ing factor is involved as the exceptions arc
much rarer than the normal situations. Since we arc dealing w i t h a
dynamic real t ime system, performance is crucial ly l inked to react ion
t i m e . A s a r e s u l t , i t i s i m p o r t a n t f o r a l l poss ib le e f f i c i e n c y
considerations to be used. Th is is why the weight ing factors must be
taken into account.

There are interact ions in the f l i gh t world. Thus , there should be
some c a p a b i l i t y f o r commun ica t ion between ru les . In p r o d u c t i o n
systems, there i6 only a l imited communication between actions since
such communicat ion must take place via the short term memory data
base. In a f l i g h t s i t u a t i o n , th is is i nappropr ia te . For example ,
changing the bank via the ailerons can cause a change in the p i tch .
One way to commun ica te th i s fac t is to ac tua l l y man ipu la te t he
ailerons and let the system notice the change in p i tch. Bu t there
should be an easier and more certain method of communicat ion, fo r
example, to a ler t the system that the manipulat ion of the ailerons
may have effects on the state of the pi tch.

T h e assumption of the independence of actions is not always val id
c i ther . In normal si tuat ions, this is the case. However, there arc
s i t u a t i o n s where para l le l processes, or o ther complex procedures
should be used. Product ion systems, however, arc at the i r best when
ac t ions are independent , and are not we l l - su i t ed to coo rd ina te
processes. Fig. 2 i l lustrates an unsuccessful steep t u r n — the nose
down pi tch caused by the steep t u r n has not been corrected rap id ly
enough by P O N T I U S , wh ich is execu t ing a sequent ia l p lan f o r
s t r a i gh t and level f l i gh t .

The b u g of paying undivided attent ion to the cur ren t goal and
ignor ing other subgoaU is a standard error of the student p i lo t .
Much of ins t rument f l y ing is devoted to establishing the proper
"scanning pat te rn" . The result of erroneous scan in the case of
the steep t u r n shown in f i g . 2 — entering a dive — is a common
behav io r o f i n s t r u m e n t s tudents . P O N T I U S e x h i b i t s many
instances of such standard errors, and it is in this sense a generic
model. F ig . 3 w i l l show PONTIUS correct ing this under ly ing bug
by establ ishing a proper scanning pattern or "corout ine plan".

Product ion systems have a restricted syntax which means tha t
the act ion side of the rules is restr icted to a conceptually simple
ope ra t i on on the data base. T h i s makes i t d i f f i c u l t to i nc lude
complex actions l ike coroutines or t ime sharing processes.

Another common problem associated wi th product ion systems is
the " imp l i c i t context problem". Th is is the fact that the ru le base
has a to ta l order ing associated wi th it and the position of the ru le in
t h i s o r d e r i n g becomes an i m p o r t a n t fac to r . T h u s , since a r u l e
o rd inar i l y won' t be called unless tho rules preceding it in the to ta l
o rde r have f a i l e d , the re arc in essence e x t r a cond i t ions on t he
a p p l i c a t i o n o f the r u l e . T h i s may a f fec t the per fo rmance o f t he
system.

These are some of the problems associated w i th using product ion
systems as a representation fo r the performance component of these
models of c o n t r o l sk i l l s . As a consequence of these p rob lems ,
modi f icat ions were made to the production system formal ism in order
to i m p r o v e the per fo rmance o f the system. T h i s resu l ted in t he
fo rmat ion of annotated product ion systems.

S. Annotated Product ion Systems

A n n o t a t e d p r o d u c t i o n systems extend o rd i na ry p r o d u c t i o n
systems by adding commentary to the productions. Th is allows one
to represent second order knowledge expl ic i t ly and therefore to use
t h i s know ledge to handle some of the problems ment ioned in t h e
previous section. These annotations include caveats, rationales, plans
and con t ro l in format ion.

Knowledge Acq
3

The annotated version of the production for straight and level
f l ight shown earlier is:

We have noted that in the current domain, the rules do not all
have equal weight in terms of range of applicability, or likelihood of
applicability. Thus, rather than creating a rule for each combination
of goal and context, we employ caveats to account for mult iple
contexts affecting a goal. Hence, the normal context wil l have a
production associated with i t . These caveats describe the
relationship of the goal of the production to various "non-normal"
contexts. They may simply point out when assumptions implicit in
the form of the production are invalid, as is the case in the second
caveat; or they may provide explicit information about the planning
necessary to achieve the goal in the non-normal context, as is the
case in the third caveat. Many of the interrelationships between
actions can also be represented by the caveats. These can serve as
warnings about possible effects of the action part of the production,
such as the first caveat which warns of subgoal fixation.

The "implicit context problem" is handled by adding second order
knowledge to the system. Thus, the CONTROL comment of a
production contains information regarding the use of a production in
cases where more than one such production matches the current goal.
For example, there are four productions to notice a change in pitch.
These involve using the art i f icial horizon, the vertical velocity
indicator, the altimeter and the airspeed. Information can be added
to the productions to state that one of these methods is the primary
method, that others should be used to verify the validity of the
primary production, and still others should be used as backup in case
the primary method is known to be inoperative. This is exemplified
by the production for level flight.

One of the advantages of a production system is that the
structuring of information as a collection of rules allows the system
to generate explanations of its actions fairly easily. By making
explicit more of the knowledge embedded in the system, we can
enhance the explanation facilities. This is exemplified by the
rationale comments, which describe the overall plan justifying the
nature of the action. As well, rationales for the use of particular
productions are attached to the productions themselves, to that
explanations are further aided. For example, if the system was
questioned about why it was attempting to achieve straight f l ight, it
could respond that it was attempting to achieve the higher level goal
of straight and level flight. If it was further questioned about why
it was doing this in the particular method chosen, in this case a
sequential plan, the system could use the rationale to explain that in

- 1 : C iO lHs te in
13

a normal s i tua t ion , the two subgoals are essentially independent.
Such a fac i l i t y fo r explanation, and in par t icu lar the rat ionales,

also aids the system in debugging i ts performance, by p inpoint ing the
l i ke ly source of er ror . To f u r t he r this debugging process, models of
plans and genera l b u g types are stored w i t h the sys tem. These
models can then serve to provide a context for debugging and repair .
T h e p l a n a s s o c i a t e d w i t h each p r o d u c t i o n i s a t t a c h e d t o t h e
p roduc t ion . The caveats may also contain pointers to new plan types
which may be used in case of fa i lure.

S p e c i f i c a l l y , w e have t he f o l l o w i n g p lan t a x o n o m y , w i t h
indenta t ion indicat ing successive specialization.

P L A N S
C O N J U N C T I V E

I N D E P E N D E N T
P A R A L L E L
SEQUENTIAL

DEPENDENT
ORDERED
COROUTINE
GLOBAL

CAUSAL
CONTROL

OPEN
FEEDBACK

MEASUREMENT
DIRECT
INDIRECT

Associated w i th this taxonomy of plans is a taxonomy of bugs.
For example, a sequential plan in a real- t ime s i tuat ion is susceptible
to the bug that while one goal is being pursued, the other gets o u t
of hand. We view debugging as a t ransformat ion process between
plans. Hence, debugging a sequential plan might mean to employ the
a l te rnat ive of a corout ine plan in which processing t ime is shared
between subgoals. To i l lust rate this, consider the fo l lowing s i tua t ion .
We are a t tempt ing to t u r n the a i rc ra f t while maintain ing level f l i g h t .
In the rate of t u r n desired is small, the two goals can be considered
independent and a sequential plan is appropriate. Th i s was the plan
cmployod in the successful maneuver of f ig . 1. However, i f the rate
of t u r n desired is large, then the two goals arc no longer independent
and there is an unexpected dependency. So we have a l inear plan
bug . Th i s was i l lust rated in f ig . 2. I t is repaired by changing the
plan to a corout ine plan, in which attent ion is tirncshared between
the subgoals. F ig. 3 i l lustrates PONTIUS successfully f l y i ng a steep
t u r n w h e n t o l d t o e m p l o y a c o r o u t i n e p l a n . C u r r e n t l y ,
t ransformat ions between plans can be requested of PONTIUS and the
appropr iate modif icat ions made by accessing annotations. Au tomat i c
debugg ing is not yet implemented.

B y a t t a c h i n g these a n n o t a t i o n s t o t h e p r o d u c t i o n s , t h e
performance of the system is great ly enhanced. Among the ef fects
are: an explanation capabi l i ty, automation of debugging, e f f i c ien t
s t r u c t u r i n g of the procedural knowledge, and the use of complex
processes such as para l le l processes or t i m e s h a r i n g processes.
Because we are dea l ing w i t h a real t ime s i t u a t i o n , p e r f o r m a n c e
ef f ic iency becomes an important factor and annotated product ion
systems show a large improvement in th is dimension over o rd inary
product ion systems.

6. In terpretat ion of Annotated Productions

Using annotations, there are 3 ways in which the product ions can
be in terpreted.

(1) Standard In terpre ta t ion: The simplest possible operat ion of
the performance component of this system uses only the basic por t ion
of the product ion rules in a standard pat tern directed mode. In th is
mode the annotations are used only du r ing debugging and serve to
help explain the d i f f i cu l t y and possibly correct i t .

(2) Directed In terpretat ion: An improvement over th is mode of
operat ion is to allow a more sophisticated capabi l i ty fo r handl ing
s i t u a t i o n s i n wh ich m u l t i p l e p roduc t ions match the c u r r e n t g o a l .
T h i s mode i s g o v e r n e d by t he search adv i ce c o n t a i n e d i n t h e
C O N T R O L anno ta t i on , as was i l l u s t r a t e d by L - F L I C H T - 1 . T h i s
con t ro l in fo rmat ion specifies whether the search should be d e p t h -

f i r s t , b read th - f i r s t or some intermediate var iety a l lowing fo r the
possib i l i ty of suspended nodes. Such specification is accomplished, in
par t , by s ta t ing whether a method is "pr imary" , fo r "check ing" or fo r
"backup" . The selection cr i ter ia can ci ther be expl ic i t predicates or
can be deduced f rom other commentary.

(3) Care fu l In terpre ta t ion : A fu r the r improvement is to access
the commen ta ry in each p roduc t i on , before the p r o d u c t i o n is
executed. The commentary is used to ver i fy the appropriateness of
the product ion, i ts success, and the appropriate actions to take upon
fa i l u re . Thus , i f a annotated production states that i t is appl icable
in the normal context bu t not in all contexts, th is mode checks the
context as a whole, and not just the state variables being accessed
d i rec t l y by the product ion, to check whether the normal state is in
e f f e c t . S i m i l a r l y , i f the system notes t h a t several s t r a t e g i c s are
a v a i l a b l e f o r t he same g o a l , a l l a rc t r i e d and c o m p a r e d . I f
inconsistencies exist, then the rationales and caveats arc checked fo r
an explanation.

7. Learning

Annotat ions can provide the data for a heur ist ic compiler capable
o f m o d i f y i n g t h e p r o d u c t i o n sys tem t o ach ieve p r o g r e s s i v e l y
improved levels of performance. We have not implemented such a
compi ler, bu t our plans for i ts design arc based on the fo l low ing six
techniques: (1) the creation of specialists, (2) the use of caveats, (3)
the use of plans, (4) learn ing by genera l i za t ion of the p lan , (5)
learn ing by analogy, and (6) efficiency considerations.

(1) Specialist Creat ion: the organization of product ions w i th a
common cal l ing pat tern into a specialist is one power fu l technique.
For example, standard execution consists of simple pat tern di rected
calls. A l te rnat ive ly , a specialist may be constructed to dynamical ly
decide which productions f rom a set w i th a common goal should be
appl ied, the order of application, whether conf i rmat ion is necessary,
wh i ch shou ld serve as backup upon f a i l u r e , whe the r a c o r o u t i n e
search is required, etc. In directed interpretat ion, such decisions are
made on the basis of expl ici t CONTROL advice, e.g. statements t ha t
some methods are pr imary, while others are intended for backup or
ver i f i ca t ion . Specialist creation compiles this advice by creat ing a
separate "special ist" product ion which then cal ls-by-name, in the
desi red o rder , the va r ious product ions ment ioned in the c o n t r o l
annotat ion. The or ig inal set of productions wi th a common ca l l ing
pa t te rn are erased f rom the global context and asserted only in the
local context of the specialist. Only the specialist is asserted in the
g lobal context. Hence, th is aspect of heurist ic compi lat ion represents
the unde rs tand ing of the in te r re la t i onsh ips between pieces of
procedural knowledge that have a common goal.

No te t h a t such a choice is s t rong ly mo t i va ted by e f f i c i e n c y
considerations, due in part to the real t ime nature of the domain.
One p rob lem wh ich cou ld ar ise, however, is i f the r u l e base is
incremented. Then the specialist would not take note of th is new
ru l e and would have to be updated, a possibly costly and d i f f i c u l t
job.

(2) Caveat Checking: another aspect of the heur is t ic compi ler is
decid ing where to check for caveats. Careful in terpre ta t ion checked
at the local level of entry into the productions. An a l ternat ive is to
move a caveat f r o m a pos i t ion inside a p r o d u c t i o n , where i t is
accessed on ly when the system is cons ider ing execu t i on of t h e
p roduc t ion , to an ent ry check associated wi th goals h igher up in the
h ierarchy (thereby t r iggered preventing i ts or ig inal product ion f r o m
even being considered).

T h e h e u r i s t i c compi le r may also not ice t h a t a l l (or many)
product ions w i th a common goal have the same caveat and decide to
in t roduce a specialist for these productions which checks the caveat
before considering any of them.

T h e caveat may bo serviced in two ways. It can be examined
upon en t ry to the method. Al ternat ively, the caveat can be compiled
in to a demon which remains active for as long as the method is on
the goal stack. In th is la t ter case, the caveat is constantly moni tored
d u r i n g the period du r ing which the action of the method is being
executed.

T h e system can be informed specifically of the k ind of serv ic ing
des i red f o r t he caveat : f o r example, e n t r y caveat , e x i t cavea t ,
cont inuous caveat; or th is can be deduced f rom the na ture of the
caveat 's test.

Knowledge A c q . - 1
314

Golden

8. Research Plans

(3) Plans: heur is t ic compilation can also involve a consideration of
the consequences of d i f ferent planning approaches — contro l plans,
l inear plans, ordered plans, coroutine plans, i terat ive plans. Th i s is
used to provide more determinism and direct ion in the organizat ion
of the system. For example, the use of plan characterist ics to debug
er ro rs was i l lus t ra ted in moving PONTIUS f rom a sequential to a
p a r a l l e l p l a n f o r a s teep leve l t u r n . H o w e v e r , t h i s was done
m a n u a l l y . P O N T I U S docs not yet diagnose these d i f f i c u l t i e s by
itself.

(4) General izat ion: another funct ion of the heurist ic compiler is
general izat ion. An example of this is where a student has learned a
packet of product ions fo r level f l ight and is then told that to achieve
c l imb ing f l i g h t , i t is only necessary to generalize these product ions in
such a way tha t the desired pitch is transformed f rom a constant
(zero) to a var iable. For example, L - F L I C H T - 1 can be t ransformed
t o C L I M B - F U C H T - 1 :

(DEFINITION L-FLI6HT-1
(GOAL:(L FLIGHT))
(ACTION: (DO (ACHIEVE (NOTICE DELTA PITCH))

(ACHIEVE (MAKE PITCH 0)))))

(DEFINITION CLIMB-FLIGHT-1
(GOAL:(CLIMBING FLIGHT TO 7ALTITUDE))
(ACTION: (DO (ACHIEVE (NOTICE DELTA PITCH))

(ACHIEVE (MAKE PITCH 7VARIABLE)))))

Al te rna t ive ly , one could teach the system cl imbing f l i g h t as a
separate p r im i t i ve packet and let the heurist ic compiler notice tha t
the two packets have a common generalization. Then the two packets
could be replaced w i th the common generalized version.

(5) Analogy: another process used to create new methods f r o m
old ones is "analogous reasoning". For example, the ent i re packet for
s t r a i g h t f l i g h t m igh t be constructed f rom the previously learned
packet f o r level f l i g h t using the analogy:

PITCH - -> BANK;
ALTITUDE - -> DIRECTION;
ELEVATORS - -> AILERONS;
FEET - -> DEGREES;
VERTICAL VELOCITY INDICATOR --> TURN COORDINATOR;
ALTIMETER - -> DIRECTIONAL 6YR0;
ALTIMETER --> COMPASS.

T h i s would have to be debugged, but i t provides strong guidance in
the i n i t i a l program construct ion process. Using this mapping, S-
F L I C H T - 1 can be created f rom L - F L I C H T - 1 .

(DEFINITION S-FLIGHT-1
(60AL: (S FLIGHT))
(ACTION: (DO (ACHIEVE (NOTICE DELTA BANK))

(ACHIEVE (MAKE BANK 0))))
(CONTROL:

. (■ (PRIMARY-METHODS (NOTICE DELTA BANK))
(FIND M -SUCH-THAT" (• :M :METHOD (VIA AH))))

. (■ (CHECK-METHODS (NOTICE DELTA BANK))
(- (METHODS (NOTICE DELTA BANK))

(PRIMARY-METHODS (NOTICE DELTA BANK))))
. (■ (BACKUP-METHODS (NOTICE OELTA BANK))

(CHECK-METHODS (NOTICE DELTA BANK))))
(CAVEAT:

(BUG METHOD-FIXATION
(GOAL: (NOTICE DELTA BANK))
(METHOD: PRIMARY))))

(6) E f f i c i e n c y : h e u r i s t i c compi la t ion techniques re la ted to
ef f ic iency include f ind ing tubgoals which can be accomplished by a
• ing le act ion. For example, d i f ferent goals may require the same
in fo rma t ion . The naive approach would be for each of these subgoals
to not ice the required state variable independently. The heur is t ic
compi ler would instead use memory to record the resul t . Then the
second goal could aave t ime by accessing memory.

Knnwl fHt f * Acq
3

(1) Our cur ren t goal is to continue the experimental invest igat ion
of annotated productions as a model of generic f l i gh t sk i l l . We plan
to imp lement a heu r i s t i c learn ing p rog ram t h a t can success ive ly
modi fy an in i ta l APS model in response to f l i gh t experience obtained
f r o m the behav ior o f the model in c o n t r o l l i n g the s i m u l a t o r and
coaching based on the standard instruct ional sequence found in f l i g h t
textbooks. Success wi l l be judged by the extent to which the APS
evolves i n to a competent p i l o t , e x h i b i t i n g and c o r r e c t i n g t y p i c a l
p i lo t ing bugs.

(2) T h e next goal w i l l be to model i nd i v i dua l p i lo ts . We p lan
several experiments along this line directed towards protocol analysis
of s tudent pi lots f l y ing our Lisp simulator and the Or ly s imu la tor
developed by Feurzcig and Lukas [1975]. Our hypotheses is t ha t it
w i l l be possible to evolve an APS model for indiv idual students t h a t
predicts common errors.

(3) The th i rd step wi l l be to automate this protocol analysis, using
the techniques of overlay modelling developed in [Car r and Goldstein
77] . T h e s e t e c h n i q u e s c o n s t i t u t e a g e n e r a l m e t h o d o l o g y f o r
g e n e r a t i n g i n f o r m a t i o n p rocess ing mode ls , i f a m o d u l a r and
c o m p r e h e n s i b l e e x p e r t p r o g r a m f o r t he d o m a i n i s p r o v i d e d .
PONTIUS wi l l provide this required expertise.

(4) O u r u l t i m a t e goal is the design of a C o m p u t e r Coach f o r
f l i g h t s imulators that analyzes a student's f ly ing and coaches h im on
the under ly ing control skil ls. The theory of computer coaches is
developed in [Goldstein 77]. If APS provide the necessary model of
exper t i se , then we bel ieve t h a t the ru le-based t u t o r i n g t h e o r y
developed in [Goldstein 77] wi l l lead to computer coaches tha t can
s ign i f icant ly improve the effectiveness of f l i gh t s imulator t r a i n i ng
f o r students and professional pilots.

9. Meta-Knowlcdge for Large Knowledge-Based Systems

Annotat ions are a kind of mota-knowlcdgc. Davis [76] develops
m c t a - r u l c s and o the r types of mc ta - l c vc l knowledge f o r use in
association w i th the M Y C I N system [Shor t l i f fc 74]. In par t i cu la r ,
th is meta-knowlcdgc is used to aid the explanation by the program
of i ts actions, to automate the addit ion of new knowledge, and to
d i rec t the use of the object level knowledge. The rneta-rulcs which
accomplish the la t ter arc similar to our specialists.

However , we bel ieve tha t f u r t h e r aspects of the anno ta ted
product ion system would be appropriate for the medical domain of
M Y C I N which are not included in Davis* TEIRKSIAS program. For
example , the use of rat ionales could improve the e x p l a n a t i o n
fac i l i t ies. Cur ren t l y , M Y C I N / T E I R E S I A S uses the action of each
r u l e as a basic u n i t of exp lanat ion. Wh i le th is does exp la in t h e
a c t i o n s o f t h e p r o g r a m , i t docs no t cons ide r t h e u n d e r l y i n g
jus t i f i ca t i on fo r those actions. Rationale slots could be used to carry
such just i f icat ions, for example, the reason that medical researchers
believe the ru le to be val id. Th is would be cr i t ica l i f M Y C I N is ever
to be par t of a computer coach for medical students.

A second p o s s i b i l i t y is in t he use of p lans . D o c t o r s , in
approaching some problems, create and use plans. For example, d r u g
therapy, the domain of M Y C I N , is usually only a step in the overal l
t r e a t m e n t o f the pa t ien t . M Y C I N c u r r e n t l y does not have a
rep resen ta t i on f o r exp l i c i t plans: annotat ions p rov ide a n a t u r a l
extension to product ion systems to make expl ic i t planning knowledge.

A t h i r d possibi l i ty is to group less f requent ly used product ions
fo r a given goal into caveats associated wi th the i r more f requent ly
employed brethren. The caveat would be t r iggered by some warn ing
in the g loba l database. For example, i t m i g h t be a p p r o p r i a t e to
separate diagnostic rules appropriate for an emergency f rom standard
diagnost ic procedures by means of caveats. Greater ef f ic iency and
modu la r i t y is obtained by thereby reducing the size of the c u r r e n t l y
applicable knowledge base.

10. Conclusions

In the seminal work on production systems by Nowcl l and Simon,
the task if expl ic i t ly l imited to modell ing an indiv idual engaged in a
n o n - l e a r n i n g s i t u a t i o n . Hence, me ta -know lcdgc i n the f o r m o f
commentary was not a par t of the product ion model. However, as we
have demonstrated fo r the f l i gh t domain, meta-knowlcdgc is c r i t i ca l

- 1 : f t o H s t e l n
5

when the problem of an individual improving his skill is addressed.
This paper has introduced a formal vocabulary for some of this
knowledge. We believe these annotations constitute a small stop
towards a theory of self-knowledge which may well be the essential
ingredient to the design of large knowledge-based systems capable of
self-improvement, explanation, and sufficient efficiency for real-time
processing.

11. References

Carr, B. and I. P. Coldstcin. 1977. Overlays; A Theory of Modelling
for Computor Aided Instruction. M1T-AI Memo 406.

Davis, R. 1976. Applications of Mcta Level Knowledge to the
Construction, Maintenance and Use of Large Knowledge Bases.
SAIL Memo 283.

Feurxeig, W. and C. Lukas. 1975. Higher Order Adaptive Training
Systems, Bolt, Bcranck and Newman Proposal P76-1SD-14.

Coldstein, I. P. 1974. Understanding Simple Picture Programs. M I T -
AI TR-294.

Coldstein, I. P. 1977. The Computer as Coach. MIT-AI Memo 389.

Langiewisch, W. 1944. Stick and Rudder. McCraw Hill, New York,
republished 1972.

Newell, A. and H. Simon. 1972. Human Problem Solving. Prentice
Hall, Englewood Cliffs, N. J.

Shortliffc, T. 1974. MYCIN — A Rule-based computer program for
advising physicians regarding anitmicrobial therapy selection.
SAIL Memo 251.

Sussman, C.J. 1973. A Computational Model of Skill Acquisition.
M IT -A I TR 297.

Knowledge A c q . - l : Go lds te in
316

FIGURE 1

SUCCESSFUL SEQUENTIAL SHALLOW
BANK

The instruments are being sampled
every 5 seconds. F i r s t the pro
duct ions f o r leve l f l i g h t are ex
ecuted u n t i l the a l t i t u d e is w i t h i n
the desired tolerance and then the
productions f o r t u r n i n g , again un
t i l the ra te o f turn i s w i t h i n t o l
erance.

FIGURE 2

UNSUCCESSFUL SEQUENTIAL STEEP BANK

The instruments are being sampled
every 5 seconds. F i r s t the pro
ductions f o r level f l i g h t are ex
ecuted u n t i l the a l t i t u d e is w i t h i n
the desired tolerance and then the
productions fo r t u r n i n g , again un
t i l the ra te o f turn i s w i t h i n t o l
erance. Unfor tunate ly , the plane
crashes before PONTIUS has estab
l i shed the desired ra te of t u r n .

FIGURE 3

SUCCESSFUL PARALLEL STEEP BANK

The instruments are being sampled
every 5 seconds. A t ten t ion is d i
vided between the productions f o r
leve l f l i g h t and productions f o r
t u r n i n g .

Knowledge A c q . - l : H o l H s t e l n
317

