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A b s t r a c t 

LAWALY is a LISP program wh ich so l ves r o b o t p l a n n i n g 
p r o b l e m s . G i v e n a n a x i o m a t i c d e s c r i p t i o n o f i t s capa­
b i l i t i e s in sorne w o r l d , she genera tes her own p r o c e ­
dures to embody these c a p a b i l i t i e s . She executes 
these p rocedures t o so lve s p e c i f i c tasks i n the w o r l d . 
H i e r a r c h i e s o f subtasks gu ide the search f o r a s o l u ­
t i o n . I n s u f f i c i e n t l y l a r g e w o r l d s , LAWALY has r o u ­
t i n e l y so l ved t asks r e q u i r i n g s e v e r a l hundred s teps 
w i t h o u t need ing t o l e a r n f rom p r e v i o u s t a s k s . The 
t imes t o s o l u t i o n grow u s u a l l y about l i n e a r l y w i t h the 
number o f s teps in t he s o l u t i o n . 

LAWALY is e x t e n s i v e l y compared to ano ther r o b o t p l a n ­
ner based on a theorem p r o v e r . 
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1 . I n t r o d u c t i o n : Approaches t o Robot P l a n n i n g . 

A r o b o t p l a n n i n g p rogram, o r r o b o t p l a n n e r , a t t emp ts 
t o f i n d a p a t h f rom an i n i t i a l r o b o t w o r l d t o a f i n a l 
r o b o t w o r l d . The pa th c o n s i s t s o f a sequence o f e l e ­
mentary o p e r a t i o n s t h a t are cons ide red p r i m i t i v e t o 
t he sys tem. A s o l u t i o n to a t a s k c o u l d be the b a s i s 
o f a c o r r e s p o n d i n g sequence o f p h y s i c a l a c t i o n s i n the 
p h y s i c a l w o r l d . 

In l a t e 1971 and e a r l y 1972, two main approaches to 
r o b o t p l a n n i n g were i n u s e . One app roach , t y p i f i e d by 
t he STRIPS f a m i l y o f p r o g r a m s * " ' 2 ' 3 a t the S t a n f o r d Re­
search I n s t i t u t e , i s t o have a f a i r l y gene ra l r o b o t 
p l a n n e r w h i c h can so lve t asks i n a g rea t v a r i e t y o f 
w o r l d s . The second approach is to s e l e c t a s p e c i f i c 
r o b o t w o r l d , and f o r t h a t w o r l d t o w r i t e a s p e c i f i c 
program to s o l v e t a s k s 4 , 5 The p r o g r a m - w r i t i n g can be 
made e a s i e r by the use of programming languages spec­
i f i c a l l y des igned f o r programming r o b o t - l i k e t a s k s , a s , 
f o r example , PLANNER, MICROPLANNER, or Q A 4 7 , 8 An ex­
ample o f a s p e c i a l i z e d r o b o t i s W i n o g r a d ' s , o p e r a t i n g 
i n a w o r l d o f b l o c k s . 

The f i r s t approach has lacked power , i n the sense t h a t 
some prob lems r e q u i r i n g o n l y s i x s teps to be so l ved 
push the p r o b l e m - s o l v e r t o i t s p r a c t i c a l l i m i t a t i o n s . 
The second approach l acks g e n e r a l i t y , in t h a t a new 
s e t o f programs must be w r i t t e n f o r each w o r l d . On the 
o the r hand , f o r a g i v e n w o r l d , the second approach r e ­
s u l t s i n r o b o t p l a n n e r s w h i c h can so l ve t asks w e l l be ­
yond the c a p a b i l i t i e s o f t he g e n e r a l r o b o t p l a n n e r s o f 
t he f i r s t k i n d , w h i l e , o n t he se t o f commonly so l ved 
p r o b l e m s , the s p e c i a l i z e d systems are s e v e r a l hundred 
t imes f a s t e r 1 . 

To o b t a i n a system t h a t m a i n t a i n s g e n e r a l i t y , w h i l e 
h a v i n g power and good p e r f o r m a n c e , we have des igned a 
r o b o t p l a n n e r wh ich b u i l d s a s p e c i a l i z e d set o f p r o ­
grams f o r each w o r l d i t i s g i v e n . T h e r e f o r e , our s y s -
tem--named LAWALY- -dup l i ca tes ( t o some e x t e n t ) what a 
human b e i n g does when programming a s p e c i a l i z e d r o b o t 
p l a n n e r . LAWALY b u i l d s a p rocedu re f o r each o p e r a t o r 
i n the w o r l d , and she l i n k s these procedures w i t h an 
o v e r a l l m o n i t o r . She r e o r d e r s sub tasks so t h a t she 
can most e f f i c i e n t l y so l ve them, a v o i d i n g dead e n d s - -
w h l c h w o u l d n e c e s s i t a t e b a c k t r a c k l n g - - a s much as pos­
s i b l e . 

The r e s u l t s have been up to our e x p e c t a t i o n s . LAWALY 
is g e n e r a l : she has been a p p l i e d to more than twen ty 
w o r l d s . She e x h i b i t s good pe r f o rmance : programmed In 
LISP on the CDC 6600 and r u n l n t e r p r e t l v e l y , she a v e r ­
ages f rom 0 . 4 to about 2 seconds pe r node in her s o l u -

*Work p a r t i a l l y suppor ted by g r a n t GJ-34736 f rom the 
N a t i o n a l Science Foundation. 

t i o n space, depending on the amount o f b a c k t r a c k i n g 
and the s i z e o f the chang ing w o r l d . F i n a l l y , she has 
power : she r o u t i n e l y so l ves t asks t h a t r e q u i r e s e v e r a l 
hundred s t e p s . Moreover , t he t ime taken to s o l v e a 
t ask i s about l i n e a r w i t h the number o f s teps i n t he 
s o l u t i o n . 

The s e l f - g e n e r a t i o n of p rocedures by LAWALY, her use of 
a h i e r a r c h y o f s u b t a s k s , and the r e s u l t s o f her p e r f o r ­
mance form the main p a r t s o f t h i s a r t i c l e . For the im­
p a t i e n t r e a d e r , Tab les 1, 2 and 3 compare the p e r f o r ­
mance of STRIPS w i t h LAWALY f o r the t asks d e s c r i b e d 
g r a p h i c a l l y in F igu res 1 , 2 and 3 r e s p e c t i v e l y . 

2 . Procedure G e n e r a t i o n f o r an O p e r a t o r . 

As i n [ l ] , we cons ide r w o r l d s c o n s i s t i n g o f se ts o f 
p r e d i c a t e s such as AT(B0X1 A l ) . The w o r l d can be 
changed by a p p l y i n g to i t an o p e r a t o r . An o p e r a t o r 
can be a p p l i e d t o a w o r l d o n l y i f the w o r l d s a t i s f i e s 
the p r e c o n d i t i o n s o f the o p e r a t o r . The changes o f the 
w o r l d as a r e s u l t o f the a p p l i c a t i o n o f t he o p e r a t o r 
r e s u l t f rom d e l e t i n g f rom the w o r l d the d e l e t e se t o f 
the o p e r a t o r , then add ing t o the r e s u l t a n t w o r l d the 
add se t o f the o p e r a t o r . Two t y p i c a l examples of oper ­
a t o r s , wh ich w i l l b e used be low, a r e : 

p u s h ( o b j e c t l o b j e c t 2 ) , mean ing: r o b o t pushes o b j e c t l 
next t o o b j e c t 2 . 
P r e c o n d i t i o n s : PUSHABLE(object l ) 0NFL00R NEXTTO(ROBOT 
o b j e c t l ) INROOM(object2 rm) ARMSEMPTY. 
D e l e t e s e t : AT(R0B0T $ $) NEXTT0(R0B0T $) A T ( o b J e c t l 
$ $) NEXTT0(ob jec t l $) NEXTTO($ ROBOT) NEXTT0($ o b j e c t l ) . 
Add s e t : NEXTT0(ob jec t l o b j e c t 2 ) NEXTT0(R0B0T o b j e c t l ) 
NEXTT0(object2 o b j e c t l ) . 
g o n e x t o b j ( o b j e c t ) . mean ing: r o b o t goes nex t t o o b j e c t . 
P r e c o n d i t i o n s : INR00M(R0B0T rm) INROOM(object rm) 
ONFLOOR. 
D e l e t e s e t : AT(ROBOT $ $) NEXTT0(R0B0T $) NEXTTO($ ROBOT). 
Add s e t : NEXTT0(R0B0T o b j e c t ) NEXTT0(object ROBOT). 
N o t e : T h i s i s on l y one o f s e v e r a l p o s s i b l e a x i o m a t i z a -
t i o n s f o r these o p e r a t o r s . S ince our emphasis he re i s 
on the s o l u t i o n of t a s k s , and no t on how they shou ld 
bes t be a x i o m a t i z e d , we make no c l a i m s as to t he " c o r ­
r e c t n e s s " o f any o f t he o p e r a t o r a x i o m a t i z a t i o n s chosen'. 

We s h a l l now a t tempt to d e s c r i b e the p rocedure genera­
t i o n used by LAWALY. The types of p rocedures t h a t are 
ob ta ined resemble those t h a t have been hand-coded by 
v a r i o u s i n d i v i d u a l s . I f i t i s sometimes d i f f i c u l t t o 
e x p l a i n programs t h a t m a n i p u l a t e some w o r l d , i t i s even 
more d i f f i c u l t t o e x p l a i n (and t o program'.) programs 
t h a t genera te programs t h a t m a n i p u l a t e some w o r l d . To 
avo id be ing submerged i n cod ing d e t a i l s , our d e s c r i p ­
t i o n must remain s k e t c h y . 

LAWALY is coded in L ISP , and f o r each o p e r a t o r a LISP 
EXPR is g e n e r a t e d . Tak ing gonex tob l as an example , 
the LISP f u n c t i o n w i l l be : 
(G0NEXT0BJ (LAMBDA (ALIS OBJECT) (PROG (RM) . . . ) ) ) . 
The body of the PROG i n c l u d e s p a r t s t h a t p e r f o r m the 
s e l e c t i o n o f b i n d i n g s and the i n t e r a c t i o n w i t h t he mon­
i t o r . 

2 . 1 S e l e c t i o n o f B i n d i n g s . 

B i n d i n g s must be found f o r a l l t he LAMBDA-variableB 
( e x c e p t i n g AL IS) end PROG-var iab les . V a r i a b l e s may be 
bound f rom the c a l l o f the f u n c t i o n , f o r example i f we 
happen to want to execu te gonex tob j (BOXl ) then OBJECT 
i s bound t o B0X1; o r i f t he ALIS i s no t NIL I t c o n t a i n s 
a l t e r n a t e b i n d i n g s ( t h i s i s used i n b a c k t r a c k i n g . ) A l l 
unbound v a r i a b l e s are passed , t o g e t h e r w i t h t he p r e c o n ­
d i t i o n s o f the f u n c t i o n , t o a b i n d i n g p r o c e d u r e . ThiB 
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procedure attempts to bind these var iab les for the 
smallest cost of sa t i s f y i ng the precondi t ions. The 
coat of a choice of bindings is inversely p ropor t iona l 
to the number of predicates of the precondi t ion of the 
operator that are s a t i s f i e d in the wor ld . I f , fo r ex­
ample, RM is bound to the room ROOMC which s a t i s f i e s 
(INROOM B0X1 ROOMC), then the precondi t ion (INROOM 
OBJECT RM) w i l l be s a t i s f i e d immediately. The various 
a l te rna t i ves for bindings are computed, and they w i l l 
eventual ly a l l be t r i e d . A l te rna te bindings are kept 
on the ALIS. 

2.2 Interaction with the Moni tor . 

The precondit ions that the operator must sa t i s f y are 
reordered according to the hierarchy of subtasks (see 
sect ion 3 below), and sent to the monitor. For each 
condi t ion in t u r n , the monitor checks whether the con­
d i t i o n holds in the wo r l d . I f i t does, the monitor 
passes to the next cond i t i on . I f i t does not ho ld , the 
monitor selects one (of possibly several) operator(s) 
which might change the world i n t o one in which the de-
Bired condi t ion ho lds . Before th i s operator is eva l ­
uated, using the LISP funct ion EVAL, a node is created 
in the search space of operators. An example w i l l 
c l a r i f y the process. 

Assume an i n i t i a l world Wl of three boxes and the robot 
in one room ROOM. An axiomatic descr ip t ion would be: 
(AT ROBOT A) (AT B0X1 A l ) (AT B0X2 A2) (AT BOX3 A3) . 
The BOXes are assumed PUSHABLE, the robot ' s arms are 
empty and she is on the f l o o r . The desired f i n a l state 
is (NEXTTO B0X1 BOX2) (NEXTTO B0X2 B0X3). Monitor 
s t a r t s working to s a t i s f y (NEXTTO B0X1 B0X2), since the 
other Bubtask of the goal has the same rank (see sec­
t i o n 3.) To achieve th i s subtask, e i ther (PUSH BOXl 
B0X2) or (PUSH B0X2 B0X1) can be t r i e d . The f i r s t 
choice is attempted, and the second saved for back­
t rack ing . A node G1 is created for the move (PUSH 
B0X1 B0X2) in the operator t r ee , and the choice kept 
there . (See Figure 4 . ) 

We now EVALuate (PUSH BOX1 BOX2). Precondi t ion (NEXTTO 
ROBOT B0X1) is found not to h o l d , cont ro l returns to 
the monitor which f inds that (GONEXTOBJ B0X1) might 
lead to a world sa t i s f y i ng (NEXTTO ROBOT BOX1). Node 
G2 is created, LAWALY EVALuates (NEXTTO ROBOT BOXl), 
and we obta in a new world W2, (NEXTTO ROBOT BOXl) (AT 
BOXi A i ) , i=1 ,2 ,3 . At that po in t , EVALuation of (PUSH 
BOXl BOX2) can be completed, to give a new wor ld : 
W3: (NEXTTO ROBOT BOXl) (NEXTTO BOXl B0X2) (NEXTTO 
B0X2 BOXl) (AT BOXi A i ) , i " 2 , 3 . Monitor turns a t t en ­
t i o n to the second subtask of the f i n a l goa l , (NEXTTO 
B0X2 B0X3). To rea l i ze t h i s subtask, e i ther (PUSH 
B0X2 B0X3) or (PUSH B0X3 BOX2) can be t r i e d . S t a r t i n g 
wi th the f i r s t (node G3), the subgoal (NEXTTO ROBOT 
B0X2) is generated, w i th operator (GONEXTOBJ B0X2) as 
the way to obta in the goal (node G4). Operator G4 
applied to world W3 gives world WA: (NEXTTO BOXl B0X2) 
(NEXTTO ROBOT B0X2) (AT BOXi A i ) , 1=2,3. At that point 
operator G3 has a l l i t s precondit ions s a t i s f i e d , so i t 
could be app l ied . But communication between monitor 
and G3 ind icates that a prev ious ly s a t i s f i e d subgoal, 
(NEXTTO BOXl B0X2) would be deleted if G3 were app l ied . 
Backtracking descends to node GA, where no a l te rnate 
operator is found. Backtracking then ascends to G3, 
where the a l te rnate operator (PUSH B0X3 B0X2)--node 
G 3 ' - - i s se lec ted. To apply t h i s operator, i t s precon­
d i t i o n (NEXTTO ROBOT B0X3) must be s a t i s f i e d . Hence, 
node G5 w i th operator (GONEXTOBJ B0X3) is created. G5 
can be, and i s , appl ied to world W3, to y i e l d world W5. 
G3' is appl ied to W5 to y i e l d W6, our f i n a l s o l u t i o n . 

I t ie seen that the operator t ree is created in pre-
order, whi le the successive states of the world cor­
respond to the app l ica t ions of the operators as the 
operator t ree is traversed in endorder. Backtracking 
occurs in the operator t ree in reverse preorder, but 
no easy re la t i onsh ip ex is ts between reverse preorder 

and endorder; hence operator nodes in the operator t ree 
po in t to the state of the world which is current when 
the node is created. 

During backtrack ing, a l te rnate paths are taken most 
f requent ly on the choice of operators that might r e a l ­
ize a subtask, as has j u s t been exempl i f ied . The sec-
ond most frequent mode of a l ternate paths makes use of 
the a l te rnate bindings in the ALIS var iab le of the op­
erator-procedure, as discussed in sect ion 2 . 1 . The 
least frequent backtracking mode cons is ts of permuting 
the subtasks in a h i e ra rch i ca l group, as w i l l be d i s ­
cussed in sect ion 3. (Another order ing of the three 
backtracking modes might have been chosen.) 

3. Hierarchies of Subtasks. 
In [ l ] , the robot can turn on a l i gh t sw i t ch i f i t i s 
on some box, BOXl, which is close to the l i g h t s w i t c h . 
So two of the precondit ions of the operator tu rnon l igh t 
would be: (ON ROBOT BOXl) (NEXTTO BOXl LIGHTSWITCH). 
It is obvious that the second precondition should be 
s a t i s f i e d f i r s t , then the other one. In t h i s way, we 
a r r i ve at the concept of h ierarch ies of subtasks: i f 
several subtasks must be accomplished, it is safe to do 
some before others. By safe we mean that if subtasks 
are solved in the order of t h e i r h ierarchy, then the 
task can be solved. There may also be so lu t ions which 
v i o l a t e the h ierarchy, and some of these may be "be t t e r " 
- - f o r example, requ i r ing fewer steps — but our aim here 
is to obta in a so lu t ion in a reasonable t ime. An o p t i ­
mizing post-processor which t r i e s to improve on an a l ­
ready e x i s t i n g so lu t ion is nearing complet ion. 

The hierarchy of subtasks is also connected w i th the 
i n t u i t i v e idea of freedom; i f the robot f i r s t pushes 
a box to some place, it can be presumed that she sub­
sequently can, i . e . , s t i l l has the freedom t o , cl imb 
on whatever (or whomever) she wants. On the other hand, 
if she f i r s t climbs on the box, she usual ly has no f ree­
dom l e f t to move the box. S i m i l a r l y , since tu rn ing on 
the l i g h t requires moving a box, the subtask (STATUS 
l i gh t sw i t ch ON) w i l l have a higher rank in the hierarchy 
than (NEXTTO box something). If we assume that boxes 
remain boxes, i . e . , cannot be burn t , then unchangeable 
subtasks, Buch as (TYPE BOXl BOX), have the highest 
rank. T y p i c a l l y , the robo t ' s pos i t i on has the lowest 
rank. 

In a l l the worlds that we considered, a s t a t i c h i e ra r ­
chy could be found; i . e . subtasks had a h i e ra r ch i ca l 
rank independent of the current and desired state of 
the wo r l d . In s u f f i c i e n t l y complex wor lds , I t might 
not be feas ib le to f i nd a s t a t i c hierarchy for the pos­
s ib le subtasks. 

As an example, the hierarchy of subtasks for the world 
of [ l ] (see Table 1 and Figure 1 for the resu l t s ) would 
be: 
Rank 0: (ON x y) (ONFLOOR) . 
Rank 1: (ATROBOT x) (NEXTTO ROBOT x ) . 
Rank 2: (INROOM ROBOT x ) . 
Rank 3: (NEXTTO x y) (AT x y ) . 
Rank 4: (STATUS x ON) (STATUS x OFF). 
Rank 5: a l l the unchangeable subtasks. 

Present ly , we are per fec t ing a h e u r i s t i c program which 
w i l l der ive the hierarchy of subtasks from the opera­
tors of the robot . The same algor i thm also discovers 
which operators are re levant to achieve some subtasks: 
fo r instance (PUSH OBJl 0BJ2) and (PUSH OBJ2 0BJ1) 
to achieve (NEXTTO OBJl 0BJ2) in the example of sect ion 
2 .2 . However, to al low add i t i ona l experimentat ion 
(see sect ion 7) the Informat ion on h ierarch ies and on 
re levant operators were Input to the system. I f the 
above mentioned heu r i s t i c program holds up to i t s pro­
mises, the only input to LAWALY beyond the desc r ip t i on 
of the wo r l d , operators and tasks is a mate-running 
a lgor i thm. This a lgor i thm is a b i - d i r e c t i o n a l search 
procedure which f inds a (shor tes t ) path between two 
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points In a maze (of rooms, doors, e levators , e t c . ) . 
Without her maze-running c a p a b i l i t y , LAWALY has no 
sense of d i r e c t i o n ; w i th i t , she has at least some i n ­
d ica t ions on which way to go. 

4. The Use of Hierarchies. 

When a task is given to LAWALY, the subtasks which 
specify the goal are par t i t i oned in sets of tasks hav­
ing the same h ie ra rch i ca l rank. These sets are named 
h ie ra rch i ca l groups. For example, in task f, Table 
and Figure 1, three of these sets are obtained, which 
are in decreasing rank: 
highest rank: (STATUS LIGHTSW1TCH1 ON), 
next rank: (NEXTTO BOXI DO0R1) (NEXTTO B0X2 DOOR1) 
(NEXTTO B0X3 LIGHTSWITCH1). 
lowest rank: (ATROBOT G). 
LAWALY w i l l f i r s t t r y to solve the tasks in the h igh­
est ranked h ie ra rch i ca l group, then in the next h igh­
e s t , e t c . Once the subtasks in a h ie ra rch ica l group 
are solved, the operator t ree and the l i s t of worlds 
are erased, thereby recla iming memory. No backtrack­
ing occurs from one h ie ra rch i ca l group in to one ranked 
h igher , s ince, by d e f i n i t i o n , it is assumed that a 
lower ranked task can be accomplished (at least in 
some way) without d i s tu rb ing a higher ranked task. 
Wi th in a h i e ra rch i ca l group, we do not know in which 
order to t r y the subtasks, and i f necessary a l l per­
mutations of the subtasks are t r i e d . We sha l l see an 
example in section 4 . 1 . 

4.1 Backtracking w i th in a Hierarch ica l Group. 

In the world of [ l ] , as we l l as in the condensed ver­
sion given in section 2 .2 , the goal s ta te ; 
(NEXTTO BOX1 BOX2) (NEXTTO B0X2 B0X3) (NEXTTO B0X3 
BOXI), which is a more symmetric descr ip t ion of the 
state " the three boxes are next to each o ther " , is 
not achievable. A disproof of t h i s goal , i . e . a proof 
that there is no possible sequence of operators which 
leads from the i n i t i a l to the goal s ta te , necessitates 
much add i t i ona l machinery9 and is beyond the scope of 
t h i s paper. LAWALY does determine, in 47.8 seconds 
(see task d, Table 1) that she cannot f ind a so lu t i on . 
Her f a i l u r e does not mean that the goal is indeed un­
achievable, although i t h in ts t h i s . (See section 8 
for a solvable task which LAWALY f a i l s to solve.) 

To i l l u s t r a t e the use of permutations of subtasks in 
a h i e ra rch i ca l group, we turn to LAWALY's attempt at 
so lv ing the goal of the boxes symmetrically next to 
each o ther . We abbreviate (NEXTTO BOXi BOXj) as NEXTij 
LAWALY f i r s t t r i e s to solve the task in the order 
NEXT12 NEXT23 NEXT31. She does obtain NEXT12 NEXT23 as 
before (sect ion 2 . 2 ) . To obtain NEXT31, she can do 
(PUSH B0X3 BOX1) or (PUSH BOX1 B0X3), but e i ther opera­
t i o n would delete one of the already achieved subtasks. 
Hence backtracking occurs: there is none possible wi th 
the ALIS, and backtracking on the choice of operators 
eventual ly f a i l s too. Backtracking is non-destruct ive, 
and when it reaches the i n i t i a l state of the wor ld , the 
next a l te rnate permutation of the h ie ra rch ica l group is 
se lected: NEXT12 NEXT31 NEXT23. (Successive permuta­
t ions are selected so that the r ight-most parts of the 
permutation change most o f ten . ) Instead of t r y i ng the 
whole new permutation from the i n i t i a l state of the 
wor ld , LAWALY not ices that she has backed from an un­
successful so lu t ion which does however achieve the 
f i r s t subtask of the new permutat ion; NEXT12. So pro­
cessing hops to the state in which NEXT12 is s a t i s f i e d , 
thereby saving some computation. As the so lu t ion is 
cont inued, the old paths are destroyed. In e f f e c t , 
LAWALY learns from her f a i l u r e s . More than jus t know­
ing that she f a i l s , she keeps the information contained 
in the f a i l u r e , and, as t h i s example shows, can reuse 
large par ts o f i t i n fur ther problem-solving. 

4.2 Observations on Solut ion Times. 
With no backtrack ing, the time needed by LAWALY for a 

so lu t ion w i l l grow about l i nea r l y wi th the number of 
steps in the so lu t ion . The exact time per step w i l l 
depend on the size of the dynamic world (see sect ion 
6 .3 ) , the size of the set of precondi t ions, e tc . When 
backtracking occurs (as in problems b, d, e, m), the 
overhead per node increases. Since backtracking is 
l im i ted by the use of h ierarchies (see sect ion 4 ) , 
t o t a l so lu t ion time often grows only about l i nea r l y 
wi th the length in steps of the so lu t i on . 

5. Storage Structure of the World. 

The processes described so far are independent of the 
storage structures used for the wor lds. The resu l t s 
in the next two sections were obtained wi th the fo l low­
ing storage s t ruc tu re : 
- the s ta t i c world ( i . e . the parts of the world which 
are unchangeable) is stored using property l i s t s . As 
a r e s u l t , s i g n i f i c a n t l y larger s ta t i c worlds barely 
a f fec t LAWALY's .performance, as shown in section 6 .3 . 
- the dynamic world is stored in a list. During the 
processing of a h ie ra rch ica l group, each dynamic world 
is kept separately. I t is seen that th i s storage s t ruc­
ture is not very e f f i c i e n t , and that much processing 
(add i t ions , de le t ions , membership t es t s , e t c . ) w i l l be 
slow. Average processing time by node does indeed i n ­
crease wi th the size of the dynamic wor ld . Our main 
object ive has been to work on the more serious prob­
lems of procedure generation and search. Various a l t e r ­
nat ive storage structures are presently invest igated to 
improve the e f f i c iency of the system in space and t ime. 

6. Comparison wi th the STRIPS Programs. 

LAWALY was asked to solve a l l the tasks that STRIPS 
solved (as avai lable from a l l the documents to which 
we had access) and we threw in some others in the same 
worlds. The same version of LAWALY was used for a l l 
the runs (and for those of the next section too ) , whi le 
at least two versions of STRIPS were used; one of these 
uses MACROPs, and the other one does not . A MACROP 
(macro-operator) is the general izat ion of a task, so 
that a single new macro-operator replaces several 
o r i g i n a l elementary operators. To use MACROPs, a se­
quence of re lated consecutive tasks must be given to 
STRIPS. 

The times given for the STRIPS solut ions are in par­
t i a l l y compiled LISP on the PDP-10, excluding garbage 
c o l l e c t i o n . LAWALY's times are in in terpreted LISP 
on the CDC-6600 and include garbage c o l l e c t i o n . The 
6600 is estimated to be about 8 times faster than the 
PDP-1010 however the gain in speed due to compilat ion 
and the exclusion of garbage c o l l e c t i o n times make the 
two sets of times about d i r e c t l y comparable as given. 

6.1 Comparison wi th STRIPS of [ l ] . 
Figure 1 shows the tasks; the performances are summa­
r ized in Table 1. Of the 24 predicates in the i n i t i a l 
wor ld , 16 are s t a t i c . Seven operators are used. The 
add i t iona l node in the search tree of LAWALY corre­
sponds to a c a l l to the maze solv ing rou t i ne . (The 
same comment holds for some of the other examples.) 
Task b involves some backtracking, hence the longer 
average time per node in the search t r ee . 

Tasks d, e and f were add i t iona l tasks given to LAWALY, 
Task d is the impossible task ( i n the axiomatizat ion) 
of the three boxes being symmetrically next to each 
other . Task e a t ta ins a phys ica l ly impossible goal 
- - the robot being in two d i f f e r e n t places at the same 
time--which can be reached in the axiomatizat ion of 
[ l ] , STRIPS would not be able to solve th i s problem 
due to some b u i l t - i n heur i s t i c (R. Fikes, personal 
communication). Task f requires 15 steps: no task 
requires a longer so lu t ion in th i s wor ld . 

6.2 Comparison wi th STRIPS of [ 2 ] , 
Figure 2 shows the tasks; the performances are summa-
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r i zed in Table 2. Of the 66 predicates in Che i n i t i a l 
wor ld , 47 are s t a t i c . Seven operators are used. Task 
1 Is another phys ica l l y impossible task which has a 
so lu t ion in the axlomat izat ion o f [ 2 ] . 

6.3 Comparison w i th STRIPS of [ 3 ] , 

Figure 3 shows the tasks; the performances are summa­
r ized In Table 3. Of the 100 predicates in the i n i t i a l 
wor ld , 75 are s t a t i c . Nine operators are used. Re­
su l t s fo r both versions of STRIPS, w i t h or wi thout 
MACROPs, are g iven. STRIPS alone cannot solve task n. 
Tasks requ i r i ng s ix steps (k and m) appear to be in the 
upper range of i t s c a p a b i l i t i e s . 

The world in [3] included an add i t i ona l 67 s ta t i c pred­
i ca tes , none of which were needed by LAWALY. With the 
en t i r e 167 pred ica tes , LAWALY'S so lu t i on time increases 
by an i n s i g n i f i c a n t 0.26%. Further augmenting the size 
of the world to a t o t a l of 528 pred icates, increases 
LAWALY' s o r i g i n a l time by 7.27.; however, at least 50% 
of t h i s increase can be a t t r i bu ted to one add i t i ona l 
garbage c o l l e c t i o n . Hence we can conclude that LAWALY's 
performance is only marginal ly af fected by the size of 
the s t a t i c wor ld . 

We note that in a l l the solvable tasks in Tables 1, 2 
and 3, LAWALY always found a shortest s o l u t i o n . In 
general , LAWALY does not always f i nd a shortest so lu ­
t i o n . 

7. Some Harder Problems Solved by LAWALY. 

The tasks described in section 6 and i t s subsections 
are no challenge to LAWALY. Since the world pf [ l ] 
had no tasks requ i r i ng more than 15 steps, and since 
the other two worlds were not much l a rge r , we have 
b u i l t up larger worlds in which f a i r l y hard tasks can 
be g iven. LAWALY was made to operate as a robot-
j a n i t o r ; she dr ies t e r r a r i a w i t h hot winds, or waters 
them w i t h a p a l l that she must f i l l at a faucet ; she 
empties t rash baskets, sweeps f l oo rs w i t h brooms and 
uses a dustb in in the process; she can carry ob jec ts , 
but must put them down to close doors. Moreover, she 
turns l i g h t s on (and also o f f ) , blocks doors w i t h box­
es and climbs onto boxes. There are 120 predicates in 
the I n i t i a l wor ld , of which 75 are s t a t i c , and 26 opera­
t o r s . SubtaskB are d iv ided i n to nine p r i o r i t y ranks, 
and the ranks have been changed to study the e f f ec t of 
changes in the hierarchy of subtasks. 

Figure 5a shows the i n i t i a l "superwor ld" . Figure 5b 
shows the f i r s t f i n a l state considered. The task was 
run w i t h two d i f f e r e n t h ie ra rch ies . When the rank of 
a door being blocked is smaller than something being 
in a room, the task is solved in 198 steps. When the 
ranks are reversed for these two subtasks, a l l else 
unchanged, the task is solved in 209 stepB. The tasks 
required 346 and 372 seconds, respec t i ve ly , inc lud ing 
24 and 25 garbage c o l l e c t i o n s . The time to generate 
the procedures was about 20 seconds, and is not included 
in the above t imes,since procedure generation is per­
formed only once for the given set of operators. 

With the same i n i t i a l wor ld , but Figure 5c as the f i n a l 
wo r l d , and the f i r s t of the h ierarch ies mentioned above, 
the so lu t i on found had 275 steps, and took 433 seconds. 
Upper l i m i t s on LAWALY's c a p a b i l i t i e s would be caused 
by memory l i m i t s , s ince , as mentioned, the i n t e rna l rep­
resenta t ion of the wor ld is i n e f f i c i e n t , and . . . econom­
ic cons iderat ions! 

8. Example of a Fai lure by LAWALY. 

We sha l l i l l u s t r a t e a case of a problem which is solva­
b l e , yet fo r which LAWALY docs not f i nd a s o l u t i o n . 
The task is i l l u s t r a t e d in f i gu re 6. The i n i t i a l s ta te 
could be axiomaticed as INR00M(R0BOT A) CLOSED(DOOR) 
1NR00M(B0X B) , whi le the f i n a l s ta te I s : CLOSED(DOOR) 
NEXTTO(ROBOT BOX). LAWALY may decide to work f i r s t on 

the CLOSED(DOOR) cond i t i on , or f i r s t on the NEXTT0(ROBOT 
BOX) cond i t i on . 
Consider the f i r s t case. LAWALY f inds the door already 
closed in the i n i t i a l s t a te ; hence she wants to obta in 
the NEXTTO BOX cond i t i on . To do t h a t , she must enter 
Room B, thereby going through the DOOR. But that would 
mean opening the DOOR, and hence undoing what she has 
already achieved --CLOSED(DOOR)-- and so she decides to 
t r y to permute the goal subtasks. To be NEXTT0<ROB0T 
BOX), she goes to DOOR, opens i t , goes through i t , and 
then goes NEXTTO BOX, At that po in t , she rea l i zes that 
she must s t i l l CLOSE the DOOR. However, that would 
make her undo something she wanted and had already 
achieved, namely NEXTTO(ROBOT BOX), so she q u i t s , having 
f a i l e d . 

The reason for LAWALY's f a i l u r e is apparent: once she 
has focused a t t en t i on on one Bubtask, she does not 
switch to another one u n t i l she e i ther succeeds or f a i l s 
to achieve the subtask. Her stubbornness is the cause 
of her downfa l l . 
Perhaps LAWALY Bhould not be blamed too much'. She 
solves the task without d i f f i c u l t i e s i f the spec i f i ca ­
t i o n of the f i n a l state includes INR0OK(R0B0T B) , or i f 
t h i s fu r ther spec i f i ca t i on is added by some ( ra ther 
t r i v i a l ) " t r a n s i t i v i t y o f loca t ion" program. 

9. The Advantages of Procedure Generation. 
fi 7 R 

The goal -or iented programming languages ' ' were de­
signed, in p a r t , to f a c i l i t a t e the w r i t i n g o f robot 
p lanners. We can expect t h a t , for a long t ime, programs 
such as LAWALY that w r i t e procedures w i l l o f ten be less 
v e r s a t i l e than human beings. On the other hand, when 
ava i l ab le , programs such as LAWALY o f fe r a measure of 
consistency and a lack of errors which is missing from 
programs produced by humans. Human programmers w i l l 
o f ten be tempted to take shor tcu ts , and may introduce 
bugs in t h e i r i n te rp re ta t i ons of the wor ld . 

A t y p i c a l example of what happenB--selected because it 
is the only documented case at our d isposal — is a set 
of programs in QA47,8 to solve the robot problems in 
[ l ] . A shortcut is taken by t r ea t i ng the parameterless 
predicate (ONFLOOR) as a boolean f l a g . As a r e s u l t , 
un in ten t iona l consequences creep in to the QA4 programs: 
the robot cannot push two boxes next to each other if 
i t s ta r t s on a box, since i t never " t h i nks " of c l imbing 
"off the box. The in t roduc t ion of bugs is i l l u s t r a t e d 
by the tu rnon l igh t operator : In [ l ] , the robot must 
cl imb on B0X1 next to the l i gh tsw i t ch to tu rn the l i g h t 
on; in [7 ,8 ] the robot must have a box next to the 
l i g h t s w i t c h (not necessar i ly BOX1) and then cl imb onto 
B0X1, independently of the locat ion of that box. 

10. Learning. 

As in [ 3 ] , our robot system might improve her speed by 
bu i l d ing macro operators that combine a f ixed sequence 
of operators. Such macros must be selected w i t h care, 
since an ind iscr im ina te generation of new operators 
could only lead to a c l u t t e r i n g of memory, add i t i ona l 
choices to achieve a subgoal, and probably to cos t l y 
reorganizat ions of the code generated for the operators. 

Our approach to robot planning can be viewed as a form 
of l ea rn ing ; the robot studies her own environment and 
c a p a b i l i t i e s , and learns to In te rac t e f f i c i e n t l y w i th 
i t . We can c a l l t h i s type of lea rn ing : procedural 
l ea rn ing , and contrast i t w i th s t a t i s t i c a l learn ing 
—where improvement in performance resu l t s from changes 
in parameters—and s t r u c t u r a l learning—where improve­
ment in performance resu l t s from the bu i l d i ng and modi­
f i c a t i o n of s t ruc tu res—. Many works in pa t te rn recog­
n i t i o n and the checker-playing program of Samuel are 
examples of s t a t i s t i c a l l ea rn ing . The generation of 
MACROPs may be considered a form of s t r u c t u r a l l ea rn ­
i n g ; other examples are 111] and [ 1 2 ] . 
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