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Abstract

This paper presents a semantic and deductive for-
mal system for automatic theorem-proving. The system
has, as its deductive component, a form of natural de-
duction. Its semantic component relies on an under-
lying representation of a model. This model is invoked
to prune subgoals generated by the deductive component,
whenever such subgoals test false in the model. In
addition, the model is used to suggest inferences to
be made at the deductive level. Conversely, the
current state of the proof suggests changes to be made
to the model, e.g. when a construction is required as
in geometry.

The system is seen to possess a very smooth and
transparent interface between its semantics and ded-
uctive syntax. These semantic and syntactic subsys-
tems interact continuously during the search for a
proof, each suggesting to the other how next to pro-
ceed. Particularly appealing is the naturalness of
the system from a human point of view.

1. Introduction

The past dozen years or so have witnessed a great
deal of programming energy devoted to mechanizing first
order logic. Several proof procedures have been pro-
posed and implemented with varying degrees of success.
Among these are systems of natural deduction'®, Her-
brand search procedures*, and resolution'’.

It quickly became apparent that these proof pro-
cedures alone were impractical on any interesting
mathematical theory. One approach toward alleviating
these difficulties was to develop completeness pre-
serving refinements of the rules of inference. Essen-
tially, these are suitably restricted rules, often
depending upon the syntactic structure of the formulae,
which generate a narrower (hut usually deeper) search
tree. Virtually all of the results obtained along
these lines are for resolution systems. Examples are
resolution with merging1, linear resolution', A-order-
ing1 etc. plus a whole host of combined strategies.
Experimental evidence'™ indicates that this approach
alone fails on even mildly serious theorems.

Virtually everyone is now agreed that knowledge
about the problem domain must be used in the logic.
The question is how. There seem to be two approaches.

1.1

In this approach semantic Information is embedded,
in the logic, as suitable domain dependent heuristics
which depend, for their effect, upon the syntactic
form of the current formulae and which therefore act
like new rules of inference. No representation of the
problem domain itself is present. Semantics is con-
veyed through some fixed set of heuristic procedures
representing that knowledge of the problem domain
which is believed to be significant in guiding the
search for proofs. This semantic Information is in-
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corporated into the system by augmenting its purely
syntactic rules - the theorem-prover continues to be
syntax-driven.

Examples of this approach may be found for
analysis , set theory2, and equality9. It is reason-
ably clear that such domain dependent heuristics will
be essential components of any theorem-prover capable
of doing real mathematics. For example, a number
theorist will require procedures for solving equations
and formula manipulation. We shall argue that much
more than this Is required.

One difficulty with this approach is the need to
anticipate, at the coding stage, all. of that knowledge
about the problem domain which could be of assistance
in discovering proofs. This knowledge is then embedded
in the logic in the form of suitable heuristics which
govern the generation of successor nodes in the proof

tree. Unfortunately, such heuristics are rarely in-
dependent, but interact in highly complex ways. If,
later, some new heuristic is discovered, this can lead

to a major overhaul of the program. There is, under
this approach, a very real danger of an overprolifer-
ation of special, mutually interacting heuristics with
an attendant loss of system extensibility.

It can also be argued that domain dependent
heuristics capture a weak notion of semantics in the
sense that they affect the proof tree only under cert-
ain prespecified conditions. Insofar as a formula
enters into such a condition it may he said to have
meaning so that the. corresponding heuristic decision
has a semantic basis. But there is no concept of the
meaning of an arbitrary formula, and hence no provision
for decisions based upon general semantic considera-
tions. In particular then, if a node of the proof tree
has no associated heuristic, no semantic decision can
be made about its most plausible successors.

Worse still is the lack of any kind of reasonable
control over dead-end searches. If the application of
an heuristic or rule of inference leads the proof
astray, there is no provision for using knowledge about
the problem domain to detect this. Those techniques
which are currently used, such as setting parameters
for maximal clause length or depth of function-nesting
are clearly ad hoc, and independent of the domain.
This difficulty with blind alleys is compounded in the
presence of a large number of axioms and theorems
which might be irrelevent to the proof being sought.
Such formulae are guaranteed to lead to dead-end
searches. There is no way that a serious theorem-
proving system can avoid having to deal with this
situation. To our knowledge, no current theorem-
prover, all of which are based on refinements and/or
domain dependent heuristics, Is capable of coping with
this problem.



1.2 Semantics as the Representation of Models I‘H]I {al,...,an) - 1 If ['I\’flI (nl....,an) =0

The main thrust of this paper is the following:
Instead of relying exclusively upon domain dependent
heuristics which represent fixed, a. priori knowledge
about the problem domain, represent the problem domain
itself, i.e. present to the theorem-prover a model of
the axiomatic system involved. In addition, what is
needed is a set of procedures for extracting informa-
tion about the model when required by the theorem-

=0 if [I\']I (81,...,8n) -1
(W A w']l (al""'an) = 1 if [H]I (ﬂl....,an) = 1 and
(W'ly (agseenra) =1

= 0 otherwise

prover, together with a flexible, general interface ete.
between such a semantic subsystem and the purely syn- Our aim is to define the notion "WEf W i true in
tactic logical system. I", Before doing so, it must be declded whether the

variablas of W are to be interpreted as existentially
quantified, or univeraally gquantified. Later, both
notions will be required., Therefore, define

The distinction, therefore, between this approach
and that based on domain dependent heuristics is that
the latter explicitly represents that semantic inform-

ation which is believed a priori to be relevant, where- 1 |==E W {ff there exist 815ve028 eD such that
as the former implicitly represents all of the inform- n
ation available in the model which is capable of being [WJI(al,...,an) = 1, Otherwise I th W.

extracted by the available procedures.

The idea of using models for theorem-proving is b F'-";_U' W 1ff for 8ll a1"""511“:D’ uI(al'”"an} = 1.

by no means new. In the late 1950's Gelernter and his
co-workers5,6 developed a system for plane geometry
whose success was due primarily to its use of geometric
diagrams. Despite this early success the use of
models has not been widely adopted in theorem-proving
circles, with the sole exception of work by Slagle12 in
the context of resolution.

Otherwise I H\u W
I is & moedel for W 1£f T |==U W, I is a model for a

get of wifs 1ff I is a model for each wif in the set,

Reference 10 contains a more thorough discussion of

models, in particular, the problem of representing
The present paper represents a generalization of infinite medels.

the work of Gelernter. The resulting system has, as a

deductive component, a form of natural deduction as 2.3 Wffs in Skolem Form

opposed to resolution. Its underlying semantic sub- Mpst axiomatic theories in mathematice are
system relies upon some representation of a model, and formulated in a first order theory with quantifiers,
is invoked to prune dead-end searches, and to make rather than in a quantifier-free form. The usual
inferences at the deductive level. The deductive level procedure in automatic theorem-proving is to first

in turn, is used to dynamically modify the underlying eliminate all quantifiers by introducing Skolem
model, as the proof unfolds. In addition to its funcrions!l, and we propose to do the same. However,
naturalness, the system provides considerable control because the deductive syestem of this paper deals with
over the search for a proof. natural deduction, the system establishes wvalidity

instead of unsatisfiability, Hence, a dual process

of Skolemization is used, I.e. universally quentified
2. Models and the Interpretatiocn of Formulae variables are veplaced by Skolem functions, rather
than existentially guantified variables, as 1is the
cage with unsatisfiabilityll. for example, the wff

Assume glven gome quantifier-free first order
theory with variables x7, X3,..., Predicate symbols
P, G, Kyuev,y and function symbols £, g, h,e.ey & (x3{(u)T Pu,x & Fy{(z)Qy,z,u>Rx,¥)) = Jwsx,w
The notiong of term, well formed formula waf), atom,

and literal have their usual deffnicicus 7 has Skolem form

an interpretation I for this theory is specified Pu,a A (Qf(uw),g(u),u > Ra,f(u)} 2 Ba,v
by a non empty set D (the domain) together with where a, f and g are Skolem functions.
1, For each n-ary predicate symbol P, an assccilated

function Py : DB -+ {0,1}. Hotice that in an interpretation I Skolem functions

are trested as function symbole, i.e. if f is an o=

2, For each n=ary function symbol £, an assccilated place Skelem functionm, then I assigns to { & functien
function £y 3 e + b, fl : D" + D. For many purposes such an interpratation
The interpretation I is finlte provided D is finite, of Bkolem fumctions i1 not ap general as one would like.
For 814100, 8 eD, define ixi‘iI (al,,,,,gn) -a For example, considar the theorem "In & group, if
o

< %2 = & for all group elements x, then the group is
(1) etz commutative™, Formally, 4in Skolem form, the theorem is
If t ,..,,:(m) ate terma, f an m=ary functiop symbol,

Growp axioma A xz =g > gb = ba
and X, ,,..,%x_ ars all of the variables occurring in P

thesge terms,rthen for 1 ¢ r < n, define where 4 and b are Skolem constants. An appropriate
(1) (m) - (1} model M would be a finite group with dowain D for
[£(t™"7, ...t )]I (al.....an) EI([t ]I(al.-...an) which d2 = e for each element deD. In addition, &
(m} and b would each be bound to fixzed elements d, and dy
R - ]I (8,400,800
1 n of D, Then to test the troth value in M of a wEf
If P is an mary predicate symbol, define W{a,b), one determines the truth value of H(d..db).
P e e™) (ayeena) = 20e) (a0 8)  Evidently there s a loas in generslity here, aincs
( intuitively W(a,b) is true in M 1iff for all
TN m)}I (81s00008)) dy,dzeD, W(dy,d5) 15 true, i.e, a and b should indep-

endently range over the domain D rather than being
The extension of thase ideas to non-atomic wffe is made bound to fixed elements of D, Unfortunately, there
in the ugual way, Thus appear to be technical problems associated with this
more general point of view, so for the purposes of
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this paper, we shall hold to the definition of model
given above. For a more complete discussion of these
problems, see reference 10. Notice, however, that the
formal system L of Section 3 is not dependent on any
particular definition of a model, although of course a
more general notion of semantics will yield a corres-
pondingly more powerful system.

3. The Semantic and Peductive System L

The eyatem L has twelve rules of inference.
are applied, in order, to any current subgoal,
rule fails, the next rule ias attempted,
a current Subgoal, NIL is returned., The top-level sub-
goal has the form Hy,Ha,.v., 0y |~ W where the wffs
Hy,H3,.4.4H, are the axioms, previously proved theorems,
definitions, and specilal hypotheses of the current

theorem W, These wffs, a5 well as 4, E and C are all
Skolemized. & and t are terms. ¢, ¢; and ¢y are

(possibly null) sequences of wffg, In an expression of
the form ¢ j— A the get of wffe in the szequence v is
called the antacedent, lnless otherwise stated, M is

a medel of the anteradent of the surrent subgoal in the
rules of inference below. The aquare hrackets enclosing
a wif in Rules € and 8 indicate that the free variszbles
of the wif are given an existential interpretationB

i.e. a model M of the antecendent in 4,[A], ¥; B

has the property M k= A rather then M = A.

Thess

If any
1f mll fail en

Although for elarity we have pot explicitly pro-
vided for it in the rules, it is understeod that any wff
ot pubwif of the form ~{A ¥ B) _shall be replaced by
EArB, v {(AABYby AVE, and & by A.

Current Subgoal Next Subgoal/

Value Returned
1, ¥ k-4
If ¢ i a substitution
guch that M |=E A5, and
if +-Au returns a, .Lo
2, ¥, AAB }C Y, A, B €
3. s A, ¥y =3
{i) 1f A and B have most
general unifier 9 oy
If o, 18 a substitution

whidl\ pairwise unifies
all terms of A and B
with the exception of
correaponding terms
tl....,tr and al....,l

{11)

2*
T

A (g, =800,
i=1 | 1771

r
and Uir A, ¢2 [ iﬂl(ti-si)ol

and if M *—:E

returns d, 9192

4 ¥ A LB

if I—A returna L) ] P?Bcrl,

and ¥ I“—Bol returns S, 4,0,
5., Y b= AVE
If M e, A v e
If M iy B B, v b2
Otherwise v F—Acry¢ -3
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6, t, A>3 ¢

1f A= B, v, [B] |-G returns
agr M I=E Ao, and

A> B, ¥ }—-Aol returng o, 9,9,

7. v B=c¢ v,B |-t

8. ¥, AVE ¢
If AV 3B, v, [A) }—C returns Gya
M |=E Bo,, #ud AV B, w,[BaI]I—C o

1%
returns ¢
2
g, ¢ % ¥, A NIL
T 1 t
10, 4yy 99, ¥y A ¥, ¥, A

where wl'.wz'.
A' are obtained from
Yye *2' A respectively
by substituting t fovr s.

1, ¢ 5=t
If 9y is a most general
unifier of a and ¢ 09

12, ¢y A b~B A, ¥ -8
3.1 Remarks

1. The purely syntactic rules of the system L have
been patterned after a similar deductive system due to
Bledsoe, Boyer, and Henneman3 and represent a slight
reformulation and generalization of their rules. Ess-
entially what is new here is the integration of seman-
tics into their purely deductive syntax. In fact, it
can be shown10 that the system L is a generalization of
the syntactic and semantic formal system underlying the
work of Gelernter and his co-workers on the. Geometry
Machineb,6.

The deductive syntax of the system L stands in
contrast to the usual resolution based theorem-proving
techniques11, and ismuch closer to various systems of
natural deduction, for example those used by Wangl3.
L's deductive component also bears a resemblance to
the system of Nevins8. In particular, Rules 4 and 8
correspond to his case analysis rules. We are en-
couraged by this since Nevins' theorem-prover appears
to be the most successful by far of any current general
purpose system.

L is incomplete. For example, the tautology
{{p>q) A(p =0q)) >q is not provahle.

2, The substitution ¢ of Rule 1 allows for "good
guesses” to be made by the theorem-prover, based upon
cbaervations made in the model, &8s to what the occurr-
ing free variables actually represent., Thus, if
M E H(xl.....xn) and, moreover, if there exist

unique ohjects a ,...,a_ io the domain of M such that
W(al,...,an) ik %rue in™ and if these 8yp.44,8  CaD be
interpreted in the syntax as terma tl.....t involving
only function symbole and Skolem functions, then it
would be an excellent gusss to attempt, as the current
syntactic goal, —w(t.,...,t ) rather than
F—-H(xl.....x“). Clea%ly, thé firet goal will, in

general, be much easier to prove than the second.

when the &, are not unigue, there may be additional
semantic ﬁfomltion available with which to weke a
plausible gueas, or asveral guesses vhich are pursued
in parallel. This facility for "o~guessing" seems to

Even



us to he central to human proof dimcovery, and repres—
ents 3 powerful use for models in automatic theorem-
proving.

3, Suppose Rule 4 applies, and succeeds on its
first AND-aubgoal by returning Oye 1If an appropriate

model M can be found such that M | Bcl, or if

v 1—&:1. retyrns NIL, then we must &ack up to the firat

AND~aubgoal, attempt to have it suvecceed by returning &
different substitotion . ', then try te establish the
second AND-subgomel with & ', Without the use of M,
thiz corresponds to the back—up procedure used by
Bledaoe et al, A similar technique is uged with Rulee
6 and B, Thie need for back-yp 1s & serious computat-
ional limitation of Bledsoce's rules of inference; it
also occurs in Nevins' system and, in dispuised form,
in resolution based systems of deductiom,

In effect therefore, the system L provides for
the uge of counterexamples to pruna the search tree,
If the test M }-==E Bo, fails, M is a counterexample to

the subgoal v I——Bul so there is no sense In pursulng
the gecond AND-eubgoal. The model is being used as a
"semantic seive"™ for trapping our incorrect substitut-
icus oy, WMoreover, am incorrect ¢) 1s recognized

before embarking on the second AND-subgoal ¢ |- 3oy,
rather then as a consefuence of syntactic failure on
that subgoal,

The statement of Rule 4 as well as the pre-
vicus discussion sugpgest that no use is wmade of the
wff K, in pursuing the subgoal ¢ }——A. In fact, B can
(and ghould) be used to monltor the proof of A, as
follows. Assume, for the sake of discussion, that A
and B have one free variable, x, in common, Suppose
that, during an artempted proof of A, x 13 Iinstantlated
by the term t. At this point, make the semantic test
M #aE B(t). If successful, proceed with the proof of
A. Otherwise, A's proof has cbviously gone astray and
muat be redirected, Thus, rather than patiently
walting for A to deliver a (possibly wrong} o., the
wif B should be continucusly semancically mon}toring
the proof of A, thereby minimizing the risk of receiv-
ing an Incorrect o,. Moreover, 1f ¥ A Teturne o,
end if Ao, 19 not %ully instaptiated, then Az, can ba
used, in the same way, to semantically monitor the
proof of }h-Bcl. Similar remarke apply to Rules 6
and B, We believe that this kind of parallel process-
ing of dependent aubgoals will considerably alleviate
the problem of back-up encountered by purely syntaccico
theorem=-provers.

it. 1t Is not intended that the model M necessar-
ily remain fixed during the course of a proof. Thus,
each application of one of the rules may invoke a
different model, where appropriate. For example, in
geometry,constructions may be suggested by the proof
so far, in which case the current model will be the
initial model augmented by suitable new points and
line segments. Since substitution Instances can often
be interpreted as constructively asserting the exist-
ence of new objects, every such substitution encounter-
ed during the course of the proof thus far can be used
to augment the initial model by these new objects, in
order to yield the current model. Example 4 below
illustrates how the system L suggests, in a very
natural way, the necessary changes to be made to an
initial model, and how the model evolves during the
course of the proof.

Similarly, a case analysis might invoke a
different model for each case. Thus an application of
Rule 8 will typically call on two models, one for the
"A case" and one for the B.

44

5. We feel that the system L possesses a very
smooth and natural Interface between its semantics and
deductive syntax. In particular, as suggested in
remarks 3, and 4. above, these semantic and syntactic
subsystems interact continuously during the search for
a proof, each suggesting to the other how next to pro-
ceed. There is a naturalness with which systems of
natural deduction admit a semantic component with the
result that a great deal of control is gained over the
search for a proof, It is precisely for this reason
that we argue in favour of their use in automatic
theorem-proving, in opposition to the usual resolution-
based systems, which appear to lack any kind of reason-
able control over dead-end searches.

4, Examples

We pive s pumber of examples of the use of the
system L, For economy, explicit references to § will
often be omitted, in which case only those wifs rele=-
vant to the proof, or none at all, will be indicated
to the left of the symbol k.
Exsmple 1.

We first glve an example of a proof in proposit-

ional logic. The top level goal is
(A=By=(C=B8) A(A>B)A(D>BYAC=DV3

One application of Rule 7 followed by three of Rule 2
leads to

(4 2 B) > (C>B}, A>B, DB, C D VB

Rule 5 applies; with M = {4,B,C,D} one of its OR-gub-
goals 1% semantically eliminated leaving

1, D, A=>3)>(C=>8), AoB, D>EB, C %
Bule 12 applies,
1. ¢ D, (A>R = (C>8), 4>B,D>B -1

Rule 6 applies, but with M = {A,B,C,D} its second AND-
subgoal fails, Rule 12 applies.

111. D>B, C, 0, (A>B)>(C>B), 4B —B

but with M = {A,B,C,D} its second AND=-
Rule 12 applies.

~B, €, 0, (A>B) > (C>E) |~B

Bule & applies,
subgoal fails.

1111. 4 > B, D
Rule & mpplies,

11111, (A=B)>(C=B), 4>B, DB, C, B, C> BB
and
11112, (A>B) » (C>B), A>B, D=8, C, D ja=H

Both succeed, the first by Rules & and 3, the gecond
by Rule 3,

Notice that the semantic proof uses two models,
and that these are dynamiczlly determined, as the proof
unfolds,

Example 2

This example 1lIustrates how & diagram in geometry
rejects an application of Rule 6, The theotrem is "If
triangle ABC hacs equal base angles, then AB = AG".
Assume that onme of the axioms present is

ot Square XyIw ° Ky = yz
The thecrem 1is
BABC, ZABC = AACB, y |-AB = AC

where ¢ is a sequence of all of the axioms. Several
applications of Rule 12 will eventually yleld the aub-
goal

a |— AB = AC
Rule 6 applies yielding the mecond AND-gsubgoal



}— Square ABCw

which is clearly false in any right angle free diagram
of an isosceles triangle, so that this application of
Rule 6 is rejected. Notice that if we had been unfort-
unate enough to have chosen, as a diagram of an isos-
celes triangle, one in which BAC was a right angle,
there would have been no justification in rejecting
the application of Rule 6 - a satisfying point w would
exist.

Example 3

This is a geometry example which illustrates the
use of semantics in rejecting a subgoal generated by
Rule 4. The theorem states "For every triangle there
is a point equidistant from its three vertices".
Assume that, among the axioms present is

a ¢t midpt{u,v)u = midpt{u,v)v

(Each line segment uv has & midpoint midpt(u,%))
The theorem is

GABC, % b—xB = xC A xA = xC

where | is a sequence of al] of the axioms.
Rule & yields the first AND-subgoal

1. AABC, ¢ b—xB = xC

Since o Is embedded in ¥, Rule 3 applies yielding the
substitution midpt(B,C)|x, This backs up to the
application of Rule 4, vielding the second AND-subgoal

AABC, ¢ |—midpi(B,C)A = midpt(R,C)C

which is false ip any "randon™ diagram of s triangle
ABC, Hence, a different proof of 1, is attempted,

Example 4

This example is drawn from Gelernter et al
is of interest because its proof requires a subtle
construction. We sketch a portion of the proof, using
the system L, which illustrates how L forces the nec-
essary construction, as the proof unfolds.

It

The theorem states "If ABCD is a trapezoid with
BC||AD, and if the line joining the midpoint E of AC
to the midpoint F of BD meets AB in M, then MA-MB,"
The Initial model (without the point K and dotted line
segment CFK)

is:

The crux of the proof is to prove EF|JAD since
then, in triangle BAD, FB-FD and MF||AD whence MB-MA.
To prove EF |AD, the line segment CF must be drawn,
and extended to meet AD in K. (The Geometry Machine
was unable to discover this construction, and had to
be given this hint before it found a proof). Then it
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must be established that FC=FK whence, since in triangle
ACK EC=FA and FC=FK, EF||AK. We shall show how the
subgoal EF| |AD leeds to the subgoal FCwFK, in the pro-
cess forcing the comstruction of the line sepment CF
and its extension to K,

Assume the presence {(among others} of the two
axioms
a s xy|luv A Coll wve o x| |uw
B : Axyz A Coll xuy A Coll xwz A wxwuy f wwmwz 2 wwliye

Assuming that FF||AD ie to be proved, the current sub=
goal is

e, « b eF|{a

Rule 6 applies,

1. 8, xy||uw |=EF||ap

Rule 3 vields o, = {E|x,F|y, Alu, Djw}. Since

Wi EF[[Av & $ol1 AvD (any v on AD w11l do), proceed
with

2, B -EF||Av A Coll AvD

Rule 4 applies, The first AND-subgosal is

21. B8 |—EF|lav

Rule 6 applies.

211, uw]|yz }—EF}|Av

Rule 3 yields a, = {E|u, Flw, aly, vz},

Now M P?:ﬁxAv A CollxEA A CollxFv A ExwEA A Fx=Fv

Indeed, in the diagram there are unique satisfying
points x and v, namely x«C and v=K, (Notice that K
will be determined from the model, as the term inter-
section (A,0,C,F}.) Hence, take as the ¢ of Rule 1

o = {C|x,KTv]. This yields a new model M' containing
the new polnt K and new line segment CFK, Moreover,
backing vp the aubstitution X|v to the second AND-gub-
goa] derived from 2., we see that M' | Coll AKD,
Thus, we coafidently proceed with the second AND-sub-
goal of Rule 6.

212, | ACAF A Coll CEA A Coll CFK A EC=EA 0 FC=FK

The first four literals in this conjumct are easily
esteblished, leaving the subgoal —FC = FK which is
ag far ag we wanted to carry the proef, There still
remaine to be established the second AND-subgoal of

Rule 4 at 2. This yields, backing up the substitution
Kfv
22, —Coll A¥D

which is eastly proved,

Notice the uwse, at 211, of the subgticutien o,
This is a good example of the use of & model in making
*hremature” instances of varisblesa, and illustrates why
Rule 1 makes provision via o for such "good guesses",
Notice mlso how, at 211,, a higher level parallel sub-
goal (namely the second AND-gubgoal derived from 2.)
was uped to semantically monfror the subatitution
Klv via the test M' je=_ Coll AKD. Finally the example
illustratee how the sysEem L encourages a model to
change during the courae of & proof.

Example 3

The theorem stateg "If § is & non-empry subset
of a group such that xy~leS whenever x and vyeS, then

x~1leS whenever xe5".

exmy, xemy, xI{x)=a, I({x)wume,Sb, Sx A Sy p xI{y) =
z 2 5z —51(b)

Rule & applies and yielde as ite second AND=-subgoal



1, +Sx b Sy A xI(y) = 1(b)
which is semantically true.
Rule 4 applies, yielding as 1ts first AND-subgcal

11, }—sx

which succeeds with b|x.
AND=gubgoal of Rule 4

12,  |=58y & blf{y) = I(b)

Thie subgoal mey or may not ba semantically true,
depending upon the model baing used. Let us assume
this failure is not detected and proceed, 1t is clear
that a pecond application of Rule 4 will yield bly
from 41ts first AND-sukgoal, leaving as its second AND-
Bubgoal

b bI(b) = I{b)

which is false in any model in which b is not assigned
the group identity. This failure backs up to 1. This
time, take as the first AND-aubgoal of Rule &

11. | xI(y) = I(b)

which succeeds with ez, bly.
im

12, [—Se & Sb
which i semanticelly true and easily proved.

Thim backs up to the second

The second AND=subgoal

Notice that a clever theorem—prover would have
observed that, in M, {e|x, b|y} and {I(b)|x, e|¥} are
the caly two obvious "solutions” to 1. Hence, it
would have returned the twe Yguesses™ o = {e|x, b|y)
and o' = {I(b)|x, ely} in its treatment of 1. o' leads
to the subgoal

[—SI(b) A Se A I{bIT(e) = I(b)

which 18 rejected because it is subgumed by the top
level goal., o leads to the subgoal

1. |—5se & 5b A el(b) = I(H)
which hae a simple, back-up-free ptoof.
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