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Abstract 

Problem-solving systems using two-valued 
logic suffer from one drawback, they cannot 
handle fuzzy, or uncertain, information. In this 
paper, the author recommends the use of fuzzy 
logic, which is based on the concept of fuzzy 
sets and f i r s t order predicate calculus. It is 
proved that , in fuzzy logic, a set of clauses is 
unsatisfiable i f f i t is unsatisfiable in two-
valued logic. It is also shown that if the most 
unreliable clause of a set of clauses has a 
truth-value a>0.5, then a l l the logical con
sequences obtained by repeatedly applying the 
resolution principle has truth-value never 
smaller than a. Implications of these results 
for applying fuzzy logic to problem-solving are 
discussed. 

Descriptive terms 

fuzzy logic, fuzzy sets, f i r s t order 
predicate calculus, problem-solving systems, 
question-answering systems, resolution pr inc ip le, 
uncertainty, completeness theorems. 

1. Introduction 

In recent years, we have witnessed great 
progress in techniques of designing problem-
solving and question-answering systems (9, 23, 
25, 19). The new approach may be called an 
axiomatic approach, where facts and information 
are stored as axioms and the original problem 
to be solved, or the original question to be 
answered, is stated as a theorem to be proved. 

This axiomatic approach suffers from one 
drawback. That i s , since we store information 
as axioms, we are assuming that the information 
is absolutely correct and no uncertainty is 
involved. But, everyone knows that the real 
world is f u l l of uncertainty and any machine 
that is going to work in this real world, such 
as a robot designed for exploring the surface 
of the moon, should be able to make in te l l igent 
decisions in a "fuzzy" environment. 

Obviously, it would be nice if one could 
combine probabil i ty theory with symbolic logic. 
But we do not seem to know how to do th is . 
(This was pointed out in (17)). In this paper, 
we propose that instead of two-valued logic, 
one may use fuzzy logic (26, 27) which is a 
special kind of many-valued logic. The proposal 
to use many-valued logic in problem-solving 
systems is nothing new, Green proposed this in 
1969 (9). It should be emphasized that the 
author by no means claims that the problem of 

uncertainty is well taken care of if fuzzy logic 
is used. In fac t , the main contribution of this 
paper is to show many interesting properties of 
fuzzy logic which make it suitable for incor
poration into problem-solving systems. 

Despite the author's e f for t to make this 
paper self-contained, it may s t i l l be too 
d i f f i c u l t for many naive readers. The reader 
at least has to have some background in 
elementary symbolic logic and is encouraged to 
read (20), (23), and (19) for an introduction 
to mechanical theorem-proving and i ts applica
tions to problem-solving systems. 

2. Fuzzy Logic 

Fuzzy logic is based on the concepts of 
fuzzy sets (3, 5, 6, 15, 26, 27) and symbolic 
logic. In (15) and (13), the discussion of 
fuzzy logic was l imited to propositional 
calculus. 

We may view fuzzy logic as a special kind 
of many-valued logic (21, 1, 2). In fuzzy logic, 
the truth-value of a formula, instead of 
assuming two values, (0 and 1), can assume any 
value in the interval [0,1] and is used to 
indicate the degree of truth represented by the 
formula. 

For example, let P(x) represent "x is a 
large number." Then the truth-value of P(106 ) 
and P(10" ) are certainly 1 and 0 respectively. 
As for P(125), the truth-value of it may be 
some value between 0 and 1, say 0.25. 

We shall assume that well formed formulas 
(formulas for short) are defined to be exactly 
the same as those in two-valued logic. Letting 
T(S) denote the truth-value of a formula S, the 
evaluation procedure for a formula in fuzzy 
logic can be described as fol lows: 

(1) T(S)=T(A) if S=A and A is a ground atomic 
formula. 

(2) T(S)=1-T(R) if S=-R. 

(3) T(S)=min[T(S1),T(S2)] i f S=S1&S2. 

(4) T(S)=max[T(S1),T(S2)] if S=S1vS2 

(5) T(S)=inf [T(B(x)) |xD] 
if S=(x)B and D is the domain of x. (6) T ( S ) = S U P [ T ( B ( X ) ) | X E D ] 
i f S=( (Ex)B and D is the domain of 
x. 

Note that if D is a f i n i t e set, then (5) and (6) 
become 
(5) ' T(S)=T(B(a1)& . . . &B(an)) 

if S=(x)B and x assumes values 
a 1 , . . . ,an . 
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The reader should note that two-valued 
logic is a special case of fuzzy logic; a l l the 
rules stated above are applicable in two-valued 
logic. 

Example 1 

Consider S=(PvQ)&-R. 
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If two-valued logic is used in a problen.-
solving system, one stores a statement if and 
only if the truth-value of it is 1. ( I f the 
truth-value of a statement A is 0, one simply 
stores -A). In fuzzy logic, obviously we 
should store a statement A, instead of -A, i f f 
the truth-value of A is greater than or equal 
to that of -A. That i s , we store A i f f 

T(A)>l -T(A). 

In this case, T(A)>0.5. 

We can use this concept to define "sat is
f i a b i l i t y " in fuzzy logic. An interpretation 
I is said to satisy a formula S if T(S)> 0.5 
under I. An interpretation I is said to 
fa ls i f y S if T(5)<0.5 under I. (According to 
this de f in i t ion , Tf T(S)=0.5 under I, then I 
both sat isf ies and fa ls i f ies S.) A formula is 
said to be unsatisfiable if it is fa ls i f ied by 
every interpretation of i t . Again, it should 
be easy to note that these definit ions are com
patible with those in two-valued logic. However, 
in fuzzy logic, "not sat isfying" is di f ferent 
from " fa ls i fy ing" and "not fa ls i fy ing" is 
di f ferent from "sat is fy ing." 

In applying logic to problem-solving 
systems, we often have to prove the unsatis-
f i a b i l i t y of a formula (19). We shall devote 
the next section to this subject. 

3. Sa t i s f i ab i l i t y in Fuzzy Logic 

In (13), the following theorem was proved. 

Theorem l 

A ground formula S is unsatisfiable in 
fuzzy logic if and only if it is unsatifiable 
in two-valued logic. 

Regretfully, the above theorem has only 
been proved for the ground case. In this section, 
we shall prove a theorem similar to the above 
one except that the formula does not have to be 
a ground formula. 

We shall assume that formulas contain no 
existential quanti f iers. Variables that are 
existent ia l ly quantified are a l l replaced by 
Skolem functions (7). Due to the existence of 
d ist r ibut ive and De Morgan's laws, we can also 
assume that the formula is in the form of a 
conjunction of clauses where every variable is 
universally quantif ied. 

Since an interpretation can be defined over 
any domain, it seems that we would have to con
sider an i n f i n i t e number of domains. For
tunately, so far as unsat is f iab i l i ty is con
cerned, we only have to consider one part icular 
domain, namely, the Herbrand universe (10, 17). 
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It is assumed here that the reader is famil iar 
with the def in i t ion of Herbrand universe. 

Given an interpretation I of a set S of 
clauses over an arbitrary domain D, we can 
always construct an interpretat ion I' of S over 
the Herbrand universe of S that preserves some 
interesting properties of I. We shall cal l 
this interpretation I' the H-interpretation of 
S with respect to I (over domain D). 

Before giving the def in i t ion of the H-
interpretat ion, note that the interpretation 
I maps every constant occurring in S to some 
element in D. In case no constant occurs in S, 
then the basic element a which in i t ia tes the 
construction of the Herbrand universe is assumed 
to be mapped to any element in D. Thus, every 
element in the Herbrand universe of S is assumed 
to be mapped by I to some element in the domain 
D. 

Let I be an interpretat ion of a set S of 
clauses over a domain D. Let H denote the 
Herbrand universe of S. The H-interpretation 
I' of S (over the Herbrand universe of S) with 
respect to I is defined as follows: 

(1) I' maps a l l constants occurring in S to 
themselves. 

(2) Let h1' h2'...hn be elements of H. Let 
f be an n-place function symbol (n>0) occurring 
in S. In I 1 , f is assigned to be a function 
which maps {h 1 ,h 2 , . . . . ,h n } (an element in 
Hn) to f (h 1 , . h 2 . . . . . h n ) (an element in H). 

(3) Let h , , . . . , h be elements of H. Let P 
be an n-place (n>0) predicate symbol occurring 
in S. Let every element h. be mapped to some 
di in D. If P (d 1 , . . . , d n ) is assigned a t ru th-
value t by I, then P(h, , . . . , h ) is also assigned 
the truth-value t. 

Example 4 

Consider the following clause: 

P(a, f (x ) ) . 

The interpretation I is defined as follows: 

Assignment of predicates: 

D = {1,2}. 

Assignment of constants: 

Assignment of functions: 

T(P(1,1))=0.57 

T(P(2,1))=0.47 

T(P(l ,2))-0.7 

T(P(2,2))=0.36 

The Herbrand universe of S is H={a,f(a), 
f 2 ( a ) , . . . } 

The H-interpretation I' of S is constructed 
as follows: 

Assignment of constants: a -> a 

Assignment of functions: f(a) -> f(a) 

f2 (a) -> f2(a) 

Assignment of predicates: 

T(P(a,f(a)))=T(P(l , f ( l ) ) )=T(P(l ,2))=0.7 

T(P(a, f2 (a)) )=T(P( l , f2 ( l ) ) )=T(P( l , l ) )=0.57 

T(P(a, f3 (a)))=T(P( l , f3 ( l ) ) )=T(P( l ,2))=0.7 

In this example, it is easy to see that I 
sat isf ies S. It is interesting to note that the 
H-interpretation I' (over the Herbrand universe 
of S) with respect to I also sat isf ies S. In 
fact , we can prove the following lemma. 

Lemma 1 

In fuzzy logic, if an interpretation I of 
a set S of clauses over a domain D does not 
fa l s i f y S, then the H-interpretation I' oT S 
(over the Herbrand universe of S) does not 
fa l s i f y S either. 

Proof: Assume I' does fa ls i f y S. Then there 
must exist at least one clause C in S such that 
T(C)< 0.5 under I ' . Let x, , . . . , x be the 

variables occurring in C. Then there exist 
h 1 , . . .h in the Herbrand universe of S such that 1 n 
T(C')<0.5 where C is the ground clause obtained 
from C by replacing every x. with h.. Let every 

h. be mapped to some di in D by the interpre
tat ion I. According to the def in i t ion of the 
H-interpretation of S, if C'' is the ground 
clause obtained from C by replacing every x. with 
d. then T(C'')<0.5 also. This means that I f a l s i 
f ies S which is impossible. Q.E.D. 
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Using the above lemma, we can prove the 
following important theorem. 

Theorem 2 

A set of clauses is unsatisfiable in fuzzy 
logic if and only if it is f a l s i f i ed by every 
interpretat ion I over the Herbrand universe of S. 

Proof; 

(a) (→) 

This part of the proof is t r i v i a l . By 
de f in i t i on , S is unsatisfiable if and only if 
S is f a l s i f i ed by a l l interpretations over any 
domain, including the Herbrand universe of S. 

(b) (←) 

Assume S is not f a l s i f i ed by an interpre
tat ion I over some domain D. According to 
Lemma 1, there exists an interpretat ion I' over 
the Herbrand universe of S such that I' does not 
fa l s i f y S ei ther. This contradicts the assump
t ion . Q.E.D. 

It can be easily seen that so far as sat
i s f i a b i l i t y is concerned, the only relevant 
information is whether a ground atom is assigned 
a truth-value greater than, equal to or smaller 
than 0.5. For example, a ground clause is 
sat is f ied by an interpretat ion if the t ru th -
value of at least one l i t e r a l of the clause is 
greater than or equal to 0.5. Therefore, in the 
sequel, instead of giving the exact truth-value 
of a ground atom in an in terpretat ion, we shall 
merely compare it with 0.5. 

Furthermore, since the domain is fixed to 
be the Herbrand universe, we only have to con
sider the truth-value of those ground atoms whose 
arguments are elements of the Herbrand universe. 
Let A be the set of ground atomic formulas of 
the form P(h 1 , . . . ,h n) for a l l n-place predicate 

tree shown in Fig. 1. Since the path from the 
root of the tree T to every node N of the tree 

symbols occurring in S, where every h. is an 
element of the Herbrand universe of S. The set 
A is called the atom set of S. 

We s t i l l have not discussed how to determine 
whether a set S of clauses is unsatisf iable or 
not. Obviously, we can exhaustively construct 
a l l possible interpretat ions. If a par t ia l 
interpretat ion is found to f a l s i f y a clause, we 
may stop constructing that part icular interpre
ta t ion . Let us enumerate atomic formulas in the 
atom set of S by 

A A A 

Note that each d i f ferent assignment of t ru th -
value (with respect to 0.5) to each A. corres
ponds to a d is t inc t branch of the i n f i n i t e binary 

represents a part ia l interpretat ion I of S, we 
can terminate the tree at node N if I f a l s i f i es 
a clause. In such a case, N is called a fa i lure 
node. If S is unsat isf iable, then every branch 
of the semantic tree in Fig. 1 is terminated by 
a fa i lu re node and vice versa. We shall cal l 
the semantic tree T in Fig. 1 a closed semantic 
tree if every branch of T is terminated by a 
fa i lu re node. 

Although corresponding to every ordering of 
the elements in the atom set of S, there is a 
closed semantic tree for S if and only if S is 
unsat isf iable, we s t i l l cannot use this approach 
un t i l we know that the closed semantic tree is 
also a f i n i t e one. The following theorem 
essential ly shows us that it is indeed the case. 

Theorem 3 

A set S of clauses is unsatisfiable in fuzzy 
logic if and only if corresponding to every 
ordering of the elements~of the atom set of S, 
the semantic tree of S is a f i n i t e closed 
semantic tree. 

Proof: 

(a) (→) 

Suppose S is unsatisf iable. Then no inter
pretation over the Herbrand universe of S 
sat isf ies S. Therefore every possible assignment 
of trutn-values to A 1 A 2 , . . . , w i l l f a l s i f y at 
least one clause of S. Hence every branch of 
the semantic tree is terminated by a fa i lu re 
node. Assume there are i n f i n i t e l y many nodes 
in the t ree, then the i n i t i a l node would be a 
node with i n f i n i t e l y many descendants. Moreover, 
if any node has i n f i n i t e l y many descendants, then 
at least one of i t s descendants has i n f i n i t e l y 
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many descendants. Therefore there is a non-
terminating branch in the semantic tree which is 
impossible. Thus the closed semantic tree must 
be f i n i t e . 

(b) (←) 

This part of the proof is t r i v i a l and w i l l 
be omitted. 

From Theorem 3, we can easily obtain 
Theorem 4 as fol lows: 

Theorem 4 

A set S of clauses in fuzzy logic is 
unsatisfiable if and only if there is a f i n i t e 
unsatisf iable ( in fuzzy logic) set S' of ground 
instances of S over the Herbrand universe of S. 

Since two-valued logic is a special case of 
fuzzy logic, the above theorem is true for two-
valued logic. A proof of the foregoing theorem 
in two-valued logic can be found in (4). 

Using Theorems 1 and 4, we can now prove 
the following theorem which is the main cont r i 
bution of this section. 

Tneorem 5 

A set $ of clauses is unsatisf iable in 
fuzzy logic if and only if i t is unsatisfiable 
in two-valued logic. 

Proof: 

(a) (→) 

Since S is unsatisf iable in fuzzy log ic , S 
must be f a l s i f i ed by every interpretat ion of S. 
In par t icu lar , S must be fa l s i f i ed by a l l the 
interpretations in which the truth-value is 
either 1 or 0. Thus S must be unsatisf iable in 
two-valued logic. 

(b) (<-) 

Since S is unsatisf iable in two-valued log ic , 
there must exist a f i n i t e unsatisf iable ( in two-
valued logic) set S' of ground instances in S 
over the Herbrand universe of S. According to 
Theorem l, S' must be also unsatisf iable in fuzzy 
logic. From Theorem 4, we conclude that S is 
unsatisf iable in fuzzy logic. 

4. The Concept of Logical Consequence in 
Fuzzy Logic 

Given a formula F, we shall define a formula 
G to be a logical consequence of F if and only if 
F&-G is unsatisf iable. If F&-G is unsat isf iable, 
then T(F&-G)^0.5 under a l l interpretat ions. If 
we further require that T(F)>0.5, then T(-G) must 
not be larger than 0.5. But T(-G)=1-T(G). 

Therefore T(G)>0.5 in a l l interpretations in 
which T(F)>0.5. This means that if the degree 
of t ruth of F exceeds 0.5, the degree of t ruth 
of a l l logical consequences of F is never smaller 
than 0.5. Note that our def in i t ion of logical 
consequence in fuzzy logic is compatible with 
that in two-valued logic. In two-valued log ic , 
T(G)=1 whenever T(F)=1. 

Using the above def in i t ion and Theorem 5, 
we can establish the following lemma. 

Lemma 2 

A formula G is a logical consequence of a 
formula F in fuzzy logic if and only if G is a 
logical consequence of G in two-valued logic. 

equenc 

The proof of this lemma is omitted. In two-valued log ic , there is a very good 
inference ru le , called the resolution principle 
(20), which has been proved complete for deducing 
logical consequences (12,24,22). In the fol lowing, 
we shall show that the resolution pr inciple is 
also complete in fuzzy logic. It is assumed here 
that the reader is fami l iar with the resolution 
pr inc ip le. 

Let S be a set of clauses. The resolution 
of S, denoted R(S), is the set consisting of 
members of S together with a l l the resolvents of 
the pairs of members of S. The n-th resolution 
of S, denoted by Rn(S), is defined for n^0 as 
fol lows: n , 

RU(S)=S and Rn '(S)=R(Rn(S)). 

The completeness theorem in (12) can now be 
stated as fol lows: 

Theorem 6 

Given a set S of clauses, le t us define a 
logical consequence C (C is assumed to be a 
clause) to be a prime logical consequence of S 
if there exists no other logical consequence C 
of S (C is also a clause) such that C is also 
a logical consequence of C'. Theorem 6 can now 
be stated as Theorem 7. 

Theorem 7 

In two-valued log ic , if a clause C is a 
prime logical consequence of a set S of clauses, 
then for some n>0, CeRn(ST7 

A similar theorem in the context of fuzzy 
logic w i l l now be proved. This is accomplished 
by f i r s t proving the following lemma. 
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Lemma 3 

Given a set S of clauses, a clause C is a 
prime logical consequence of S in fuzzy logic if 
and only if C is a prime logical consequence of 
S in two-valued logic. 

Proof: 

(a) (→) 

Since C is a logical consequence of S in 
fuzzy logic, by Lemma 2, C is a logical conse
quence of S in two-valued logic. Assume C is 
not a "prime" logical consequence of S. Then 
there is a logical consequence C of S such that 
C is a logical consequence of C in two-valued 
logic. Applying Lemma 2 again, we w i l l be able 
to conclude that the relationship governing C, 
C and S also holds in fuzzy logic. Thus C is 
not a "prime" logical consequence of S in fuzzy 
logic, which contradicts the assumption. Hence 
C must be a prime logical consequence of S in 
two-valued logic. 

(b) (-) 

This part of the proof is similar to the 
proof of part (a) above. 

Using Theorem 7 and Lemma 3, we can deduce 
the completeness theorem of the resolution 
principle in fuzzy logic. 

Theorem 8 

In fuzzy logic, if a clause C is a prime 
logical consequence of a set S of clauses, then 
for some n>0t CcRn(S). 

A fundamental property of probabi l i ty theory 
is that " i f G is a consequence of F, then 
P(G)>P(F)." Beautiful discussions on this 
property can be found in (8) and (14). We have 
a similar relationship in two-valued logic. That 
i s , in two-valued log ic , if G is a logical con
sequence of F, then T(G)>T(F). However, we 
cannot establish this in fuzzy logic. Consider 
the following example. 

Example 5 

Consider 

Q is a resolvent (thereby a logical consequence) 
of C, and C2> 

Let T(P)=0.3 and T(Q)=0.2. 

We have T(C]&C2)=T((-PvQ)&P) 

= nnn[max[T(-P),T(Q)],T(P)] 

= min[max[0.7,0.2],0.3] 

= min[0.7,0.3] 

= 0.3. 

Thus T(Q)^T(C1&C2). 

The above example shows that the truth-value 
of C1&C2 is not necessarily smaller than or equal 
to that of a logical consequence of C1 and C2. 
But, if T(C1&C2)>0.5, we have a di f ferent 
s i tuat ion. 

Lemma 4 

Let C1 and C2 be two clauses. Let R(C1 ,C2) 
denote any resolvent of C1 and C2. If 
T(C]&C2)>0.5, then T(R(C],C2))>T(C]&C2). 

Proof: 

Without losing general i ty, we can represent 
C, and C2 as follows: 

where L1 and L2 are two disjunctions of l i t e ra l s 

R(C1,C2)=L1vL2. 

Let T(C1&C2)=min[T(C1),T(C2)]=a. 

Again, without losing generali ty, we can 
assume that 

T(C1)=max[T(P),T(L1)]=a 

and T(C2)=max[T(-P) ,T(L2 )>a. 

From (1) , we conclude that T(L-j) 
equal to or smaller than a. 

( i ) 

(2) 

can be either 
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Consequently, from (2) , T(L2)> 
T(R(C1C2)) 

= T(L1vL2) 

= max[T(L1),T(L2)]>a. 

Therefore T(R(C1,C2))>T(C1&C2). 

Using the def in i t ion of Rn(S), we can 
extend the result of Lemma 4 to the following 
theorem. 

Theorem 9 

Let S be a set of clauses and T(S)>0.5. 

Q.E.D 

n n Let C denote any clause in the set R (S). Then 
for a l l n→0, T(Cn)>T(S). 

Theorem 9 is an interesting theorem. It 
shows that if every clause in S is something 
more than a "ha l f - t ru th " and the most un
rel iable clause has truth-value a, then we are 
guaranteed that a l l the logical consequences 
obtained by repeatedly applying the resolution 
principle w i l l have truth-value at least equal 
to a. We shall discuss the significance of this 
theorem in the next section. 

5. Conclusions 

Many readers may f ind the "min-max" 
pr inciple in fuzzy logic disturbing. That i s , 
they may f ind it hard to accept 

T(A&B)=min[T(A),T(B)] 

and T(AvB)=max[T(A),T(B)]. 

To answer this c r i t i c i sm, we would l i ke to 
point out that two-valued logic uses exactly 
the same evaluation procedure. By rejecting 
the evaluation procedure of fuzzy log ic , one 
would simultaneously reject that of two-valued 
logic. We do not believe that fuzzy logic is 
adequate to describe the complex world we are 
l i v ing in ( i t would be simply too naive to think 
that the world can be described by a set of 
mathematical ru les) . However, it would not be 
d i f f i c u l t to see that it is an improvement of 
two-valued log ic ; at least it gives us a way to 
handle fuzzy information. 

The estimation of the truth-value of a 
statement might be a serious problem to many 
readers. It was pointed out by Zadeh (26,27) 
that this has to be subjective. In fac t , many 
readers w i l l f ind i t d i f f i c u l t to believe that 
"no objective def in i t ion of probabi l i t ies in 
terms of actual or possible observations, or 
possible properties of this world, is admissible' 
(a famous quote from Sir Harold Jeffreys in 
(11)). Thus if the information is supplied by 

a human being, he might as well supply the 
truth-value of i t also. I f the information is 
supplied by another machine, say a pattern 
recognizer, then a measure of uncertainty is 
often associated with i t . For example, a 
pattern recognizer may decide that an incoming 
object is a meteor, not an airplane, with pro
bab i l i ty 0.9. Then this information may be 
assigned a truth-value of 0.9 since probabi l i ty 
often ref lects the degree of t ru th . 

Perhaps the most useful theorem proved in 
this paper is Theorem 9. Suppose we have two 
sets of clauses, S1 and S2, representing two 
sets of information. From S1, we can deduce a 
logical consequence which suggests us to use 
Highway 70S. From S?, we can deduce a logical 
consequence which suggests to use Highway 495. 
We might not know the exact degrees of correct
ness of these suggestions. But we s t i l l can 
make in te l l igent decisions based on Theorem 9. 
For example, le t T(S1)=0.6 and T(S2)=0.9. 
According to Theorem 9, we know that the 
correctness of the second suggestion is at least 
0.9 while that of the f i r s t one is only guaran
teed to be not less than 0.6. This further 
te l l s us that the risk of taking the f i r s t action 
may be as high as 0.4 while the other r isk cannot 
be higher than 0 .1 . To minimize the maximum pos
sible r i sk , we should take the second suggestion, 
i . e . , use Highway 495. 

In fac t , no one in this world uses two-
valued logic to solve problems such as baking a 
cake, buying a used car or h i r ing an employee. 
After a l l , every competent housewife knows what 
it means to "generously grease the pan" or 
"vigorously beat the mixture." If we real ly 
want to build a machine with common sense (16), 
is it not a must that some kind of many-valued 
logic be used? 
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