
Session No. 11 Theoretical Foundations 481

AN ALGEBRAIC DEFINITION OF SIMULATION
BETWEEN PROGRAMS*

Robin Milner
Computer Science Department

Stanford University
Stanford, California

A simulation relat ion between programs is
defined which is a quasi-ordering. Mutual simula
t ion is then an equivalence re lat ion, and by d iv id
ing out by it we abstract from a program such
details as how the sequencing is controlled and
how data is represented. The equivalence classes
are approximations to the algorithms which are
real ized, or expressed, by their member programs.

A technique is given and i l lus t ra ted for
proving simulation and equivalence of programs;
there is an analogy with Floyd's technique for
proving correctness oi programs. Final ly, necess
ary and suff ic ient conditions for simulation are
given.

DESCRIPTIVE TERMS: Simulation, weak
homomorphism, algorithm, program correctness,
program equivalence.

1. INTRODUCTION

One aim of this paper is to make precise a
sense in which two programs may be said to be
realizations of the same algorithm. We can say
loosely that for this to he true it is suff ic ient
though perhaps not necessary that the programs do
the same 'important' computations in the same
sequence, even though they d i f fer in other ways:
for example 1) we may disregard other computations
perhaps dif ferent in the two programs, which arc
'unimportant' in the sense that they are only con
cerned with control l ing the 'important' ones, (2)
the data may ilow d i i terent ly through the variables
or registers, (3) the data may be d i f ferent ly
represented in the two programs. The program pairs
in Figures 1 and 2, studied in detail in Section
4, i l l us t ra te points (1) and (5) respectively; a
t r i v i a l i l l us t ra t i on of (2) is the following pair
of programs:

Although the above prescription is vague, we give
a re lat ion of simulation between programs which may
fa i r l y be said to match i t . The relat ion turns out
to be t ransi t ive and reflexive but not always
symmetric; however mutual simulation is an equiva
lence re la t ion , and it is the equivalence classes
under this relat ion which may be regarded as
algorithms - at least this is an approximation to
a def in i t ion of algorithm.

We show also that there is a practical
technique for proving simulation in interesting
cases - though unfortunately simulation between
programs handling the integers, for example, is
not a decidable (or even par t ia l ly decidable)
re la t ion. Under a simple rest r ic t ion simulation
ensures the equivalence (as par t ia l functions) of
the programs, so this is also a technique for
proving equivalence; however in general equivalent
programs w i l l not satisfy the simulation re la t ion.

I also claim that in order to prove by
Floyd's [1] method the correctness of a program
A, in a case where data is represented unnaturally,
perhaps for eff ic iency's sake, the easiest and
most lucid approach is rather close to f i r s t
designing a program B which is simulated by
program A and which represents the data
natural ly, and then proving B correct. This
was in fact the or iginal motivation for studying
simulation, and is discussed in more deta i l in
Milner [2] , which contains a f i r s t attempt at the
def in i t ion of simulation. The sequel [3] gener
alizes the def in i t ion and the current paper is a
synthesis of the two, and may be read independently

2. NOTATION

*This research was supported mainly by the Science
Research Council, Great Br i ta in and In part by
the Advanced Research Projects Agency of the
Department of Defense (SD-183) U.S.A.

482 Session No. 11 Theoretical Foundations

we get either an i n f i n i t e sequence in D , or
comp

a f i n i t e sequence in D followed by a single
comp

repeated member of D . We have (i i) merely

to keep F t o t a l , which the theory requires.
Why must the domains be disjoint? What about

a program which inputs an integer and outputs an
integer? Here one might argue that Din = D out =

[integers}; but we get into no trouble having two
formally d is jo int domains with for example an
in ject ion or a b i ject ion between them. In fact ,
in practice we can distinguish between an input
object and an output object of a program; for
example they occur on di f ferent media, or at
di f ferent spatial locations. We are concerned
with a level of abstraction (i . e . abstraction from
real computers operating on physical data symbols)
lower than that in which a program is considered
as for example a function from integers to
integers.

E is the set of possible state-vector values,
and for non-recursive (flowchart) programs N is
the f i n i t e set of nodes of the flowchart while for
recursive programs N is the i n f i n i t e set of
possible states of a pushdown store.

Before dealing with simulation, we state
without proof some theorems concerning correct
ness and termination of programs. Theorem 3.1
embodies Floyd's [1J method of proving par t ia l
correctness of programs. There is also a
correspondence with Manna's work - for example in
[4] ; our Theorems 3 .1 ard 3.2 correspond to
Theorems 1 and ? of that paper. However, Manna
is concerned with the representabil i ty of v e r i f i
cations (as defined below) in f i r s t order predi
cate calculus; we perhaps gain in succinctness by
stating results algebraically and ignoring the
question of representabi l i ty.

Henceforward we assume that the suff ix ' i n '
to a symbol denoting a set implies inclusion in
Din . Similarly for 'comp' and ' ou t ' . i

Session No. 11 Theoretical Foundations 483

simulation of a by a' we say a' strongly sim
ulates a, and it is easy to show that this is a
transi t ive reflexive relat ion, i . e . , a quasi-
ordering. Mutual strong simulation is therefore
an equivalence re la t ion, and equivalence classes
may be thought of as algorithms, each of which
is realized by i t s member programs. Moreover,
if we divide out by this equivalence relation we
obtain from the quasi-ordering of programs a
par t ia l ordering of algorithms.

It is worth noticing that there is always a
weak simulation between any pair of programs -
just take R = 0 - so a similar def in i t ion of
"a' weakly simulates a " is vacuous.

We f in ish this section with two simple
results which exhibit the close relationship
between ver i f icat ions and simulations.

Theorem 3.5

Thus in a precise sense a proof of part ia l
correctness of may be factored into a proof
of par t ia l correctness of together with a
proof of simulation of

4 . APPLICATION TO FLOWCHART PROGRAMS

In this section, we show how we may demonstrate

(Note that in the above we did not use the to ta l i t y
of R-1 , nor the single valuednesB of R,).

out
Let us return to the discussion of algorithm

in the introduction. If there is a strong

484 Session No. 11 Theoretical Foundations

485

486 Session No. 11 Theoretical Foundations

D , it is a simple out

a simulation between two programs in a manner which
bears a close relat ion to Floyd's method for proving
correctness of a single program. Of the two examples,
the f i r s t has the same data representation but d i f
ferent control in the two programs; the second has
di f ferent data representations in the two programs.

Given a flowchart program with input domain D.
i n ,

state-vector domain E, output domain D and node-out
set N, and given also an input function f :D, E

in in
and output function f :E out
matter to formalize it as a program according to
our de f in i t i on , with D = N x E and F:D D

comp
defined in terms of fin ,fout and the tests and

in out
assignments in the boxes. Al ternat ively, we may
formalize it by selecting a subset M N so that
every cycle in the flowchart contains a member of
M (we ca l l such an M a cycle-breaking set) and
define D instead as M x E. The cycle

comp
breaking property ensures that F : D D is
again t o t a l .

Now suppose i n a n d we have D = comp
M x E , D ' a n d m a y have

comp J

been obtained by the above formalization from flow
chart programs, for example. If H is a simu
lat ion o f b y i , we have R J comp
[M/ y E') , and to exhibit R it is suf f ic ient comp to exhibit R / for each m f M, m'ε M' where mm

In the following two examples we exhibit the R mm
and also indicate how the proof of RF' FR would
go.

Example 1. See F i g u r e A s s u m e that inputs to
each program are pairs , state vectors are
t r i p l e s , and only x is output. The
n o d e - s e t h a s been chosen to formalize
and {l ," to f o r m a l i z e . So if
denote integers and reals we have

For example, we may think of R12 as containing
a l l state-vector pairs attained at the node-pair

when are obeyed synchronously
start ing from an input pair in Rin . However, it
contains also many other state-vector pairs (since
there is no constraint on x in the def in i t ion
of R /) , and simulation w i l l normally have this
generous property. R-13 is here taken as the

empty set, because the node p a i r i s
never reached.

To prove RF' FR we must show for a l l
d ,d '

and this may be done by cases

which is a f a i r l y routine matter using the def in
i t ions of F,F', and we leave it to the reader.

Now since R is a strong simulation, and
indeed are ident i t ies , Theorem
ent i t les us to conclude

Example _. :See Figure "). This example
i l lus t ra tes simulation between two programs with
di f ferent data representation. We describe this
example in less de ta i l , to save space. Each
program is supposed to input a str ing c, a
character F and a str ing T, and to output the
result of substituting T for P everywhere in

Thus if S is the alphabet of characters,
I) J (w h e r e S * i s the set
in

of strings over S) and
Program handles strings and characters directly
using the functions h d , t l , (concatenation)
and the nul l str ing The three inputs are to
the program variables respectively,
and output is from the variable . On the other
hand, program represents each str ing as a
segment of an integer-indexed character array;
on input the two input strings are stored in
arrays s,t (indexed from 1), their lengths + 1
in integer variables h l . k l and the character in

Session No. 11 Theoretical Foundations 487

and output is the str ing ss(l) ,ss(2) ss (hh-

The flowcharts are formalized as programs
(in our sense) with node-sets
and we have D ■ t h e set o f possible

comp
values for the program variable vector of and
simi lar ly for D' . F and F' the t ransi t ion comp
functions, are easy but tedious to define. We
now exhibit a simulation by giving R, , R and

in out
the using
an auxi l iary function seq; arrays x integers x
integers → strings defined by

Now as in Lxaraple 1 the proof of RF' FR
must proceed by cases; it w i l l use certain propert
ies (or axioms) concerning the str ing handling
functions, the array and integer handling functions
and the function seq. We leave it to the reader
again. Again, since R, , R are ident i t ies we

in out
have proved that

There are some interesting points about this
example. (1) It seems that program is more
natural than , though this asymmetry was not
present in Example 1. In fact, program is
only a sl ight modification of part of a real
program wri t ten for use rather than as an example.
In the process of proving correct (See
using Floyd's technique, I found that the assert
ions associated with parts of the program were
most naturally expressed using the function seq.
Also (this is discussed in more deta i l in the
task of p r o v i n g c o r r e c t factored simply into
two tasks - that of proving correct (an easier
task since is more natural and closer to
programmer's in tu i t ion) and that of proving the
simulation. This ' factor ing' was made precise by
Theorem
(2) Unlike in Example 1, the flowcharts here have
identical shape, and it is meaningful iand even
true!) to say that under identical inputs the

programs follow the same path. In Example 1 such
a statement would not be meaningful,but in Section
5 we show that a similar statement has meaning in
cases more general then Example :, and provides us
with necessary and suff icient conditions for the
existence of a simulation between two programs.

5. PARTITIONED SIMULATION

We now obtain necessary and suff icient
conditions for the existence of simulation between
two programs and

Def in i t ion. If J is any indexing set ana
are part i t ions of D ,

comp
D' respectively, then is a par t i t ion comp
pair for D , D' (Of course any two domains

comp comp
can have a part i t ion pair, but we are only concerned
with computation domains).
Def in i t ion. Computation sequences

agree for

Def in i t ion. A simulation R respects
i f R

comp

Theorem 5.1

488 Session No 11 Theoretical Foundations

if and only if computation s e q u e n c e s i n
i n s u c h t h a t R T always

in
have length either both undefined or equal (the length o f i s defined a s m i n D out
There is a corresponding corollary to Theorem
5._ , which we omit.

Finally, we give a corollary for flowchart
programs of the same shape.

'". CONCLUSIONS AND POSSIBLE DEVELOPMENTS

The idea of simulation, which is really an
application of the notion of weak homomorphism,
is interesting in two ways: theoretically,
because it allows one to abstract some irrelevant
detail from programs to come closer to a definition
of algorithm, and practically because there is a
manageable technique for proving simulation
between programs, which in some cases may make
easier the task of proving a program correct.

There are two possible directions for
development. First, we have restricted to a
single-valued, total transition function r. The
situation looks rather different when we relax
these conditions - for example we should consider
computation trees rather than sequences. Second,
we should consider simulation of parallel programs,
and treat programs which perform the same compu
tations but not necessarily in the same sequence
as serializations of the same parallel program -
or of mutually simulating parallel programs. These
extensions may bear the same relation to the work
of Manna [5] and Ashcroft and Manna on the
correctness of nondeterministic and parallel
programs as the present paper bears to Manna's
work on serial programs [4] .

Session No. 11 Theoretical Foundations 489

ACKNOWLEDGEMENTS

This work owes much to Peter Landin who
largely pioneered the algebraic approach to
programs. This paper is in the sp i r i t of [8] ,
although that paper is concerned with the structure
of a single program (as a product algebra) rather
than relations between programs. I also had
prof i table discussions with Peter Landin, Rod
Burs ta l l and John Laski.

REFERENCES

1. Floyd, R.W., "Assigning Meanings to Programs",
Proceedings of Symposia in Applied Mathematics.
American Mathematical Society, Vol. 19, 19-32

1967).

Milner, R., "A Formal Notion of Simulation
Between Programs", Memo 14, Computers and
Logic Research Croup, University College of
Swansea, U.K. (17/0).

Milner, R., "Program Simulation: An Extended
Formal Notion", Memo 17, Computers and Logic
Research Group, University College of Swansea,
U.K. (1961).

4 . Manna, Z., "The Correctness of Programs", J.
of Computer and Systems Sciences, Vol. 3, No.
2. 119-127 (1969).

S. Manna, Z., "The Correctness of Non-deterministic
Programs", Stanford A r t i f i c i a l Intell igence
Project, Memo AI-95, Stanford University
(1969).

6. Ashcrof t, E.A., and Manna, Z., "Formalization
of Properties of Parallel Programs", Stanford
A r t i f i c i a l Intell igence Project, Memo AI-110,
Stanford University, (1970).

7. Ginzburg, A. , Algebraic Theory of Automata.
Academic Press (1968).

8. Landin, P., "A Program-Machine Symmetric
Automata Theory", Machine Intelligence 5,
ed. , D. Michie, Edinburgh University Press,
99-120 (1999).

