
Session No. 8 Robots and Integrated Systems

THE USE OF VISION AND MANIPULATION
TO SOLVE THE "INSTANT INSANITY" PUZZLE//

by

J. Feldman*, K. Pingle, T. Binford, G. Falk**
A. Kay, R. Paul, R. Sproul l***, & J. Tenenbaum****

A r t i l i c i a l Intelligence Project,
Computer Science Department,

Stanford University,
Stanford, Cali fornia, USA

This paper describes a system which solves
the puzzle "Instant Insanity". The puzzle con
sists of four multicolored cubes. The solution
involves arranging the cubes in a tower so that
no side of the tower reveals more than one face
of a given color. Our system, which runs as
eight (multitask) jobs under the PDP-10 time
sharing system, uses a TV camera to locate four
objects and, having ver i f ied that they are cubes,
to find the color of each face. A mechanical arm
turns the cubes over to expose all faces to the
TV. Having found the solut ion, the arm then
stacks the cubes into a tower to demonstrate i t .

Key words and phrases: Visual perception, mani
pulat ion, recognition, color f inding, game
playing, a r t i f i c i a l intel l igence, supervisory
systems.

1. INTRODUCTION

For several years the Stanford A r t i f i c i a l
Intelligence Project has been doing research in
visual perception by a computer and computer
control of mechanical manipulators in an attempt
Lo achieve direct computer interaction with the
environment. Early programs were writ ten to
demonstrate that a part icular task could be
accomplished and could not periorm other tasks,
even if quite simi lar, without being extensively
rewritten. Generality unnecessary for the task
at hand was sacrif iced to keep the programs as

*Currently on leave to The University of Jerusalem
**Now at Computer Science Department, Rutgers

University
***Is now at NIH, Bethesda, Maryland
****With Lockheed Palo Alto Research Labs

//This research was supported by the Advanced re
search Projects Agency of the Department of De
fense under Contract No. SD-183. The views and
conclusions contained in this document are those
of the authors and should not be interpreted as
necessarily representing the o f f i c ia l pol ic ies,
either expressed or implied, of the Advanced
Research Projects Agency of the U.S. Government.

359

Bmall as possible so they would f i t the core
l imitat ions of our computer. The main result of
this research was the development of programs
which could find and stack cubes, either sorting
them by size (1), or ordering them by voice com
mand (2) .

Recently we have been doing more fundamental
research involving better edge detectors, color
and texture recognition, c lassi f icat ion of objects,
coping with par t ia l ly described objects, and the
design and use of manipulators. Many programs
have been developed with varying degrees of
generality. A monitor ha6 been designed which
allows those programs necessary to perform a
particular task to run as separate jobs, with
the flow of control between them established
by a separate control program which is the only
part of the system tai lored to the task. This
not only reduces the problem of specialized
interfaces between the programs needed for the
task, but gets around our core l imi ta t ions.

Some of the programs are used to their
f u l l capabil i t ies while only part oi the
generality available in others is required for
a specific task. A new task requires only a
new control program, which w i l l select those
programs it needs.

This paper describes the f i r s t specific
task we have programmed using this new system,
which was designed to enable us to debug the
various parts of the system. It attempts to
solve the puzzle "instant Insanity". The puzzle
consists of four cubes, each with faces variously
selected from four colors: white, blue, red,
and green. To solve the puzzle, the blocks must
be stacked so that each of the four sides of
the resulting tower reveals only one face of
each color. Determining the orientation of the
cubes in the tower is normally quite d i f f i c u l t
for humans. For the computer this is relatively,
easy; most of i t s time and ef fort is spent in
locating and identi fying objects, determining
the colors of the faces, and, having found the
f ina l or ientat ion, deciding what arm motions
are required to physically produce the tower.

. HARDWARE

The visual input is done using a commercial
TV camera. The camera has a four lens tu r re t ,
a four position color wheel in front of the
vidicon, a pan- t i l t head, focus, and target
voltage a l l under program control . The com
puter can input, under program control , four
b i t intensit ies from any rectangular area of
the f ie ld of view up to 333 x 256 points. The
arm currently in use was designed and bu i l t at
kancho Los Amigos Hospital near Los Angeles
as a device to be fastened to a paralyzed
human arm. It is powered by small electr ic
mgtors mounted on I t . Each of the six joints
has a potentiometer mounted on it to provide
position feedback. The hand is a two-finger

360 Session No. 8 Robots and Integrated Systems

paral le l grip device about the size of a human
hand. The arm is controlled by DC pulses, the
width of which is varied by the program to con
t r o l the speed of the arm. The TV and arm are
connected, through analog to d ig i t a l converters,
to a Digi ta l Equipment PDP-6 and a PDP-10 computer
linked together and sharing 128K of core.

J,. SOFTWARE (11)

The system runs under Stanford's PDP-10
timesharing system, which has been modified
to enable our system to function in a time
sharing environment. Most of it is wri t ten
in SAIL, an ALGOL l ike language developed by
our project (3) which contains the LEAP associa
t ive processing language (4) . The entire system

FIGURE 1, Overv l tw of system

is 200-25OK in size without debugging routines.
To enable various sections to run asychron-

ously, and to f i t it into core, the system runs
as eight separate programs, [See Figure 1] .
The PDP-10 has two relocation registers, allowing
a program to be in two dis jo int segments in core.
In our system, one of these segments, known
as the upper segment, (5) is common to a l l the
programs and contains reentrant subroutines
common to a l l programs. In addit ion, it con
tains data which provides a complete global
model of the world as it is known to the
system at any given time. This model is gen
erated by the lower segment programs and can
be interrogated by them. Much of the model is
in the form of LEAP associations.

The basic elements of LEAP are items,
symbolic l i t e ra l s similar to LEAP atoms. They
can be put in sets or into associative relations
called t r i p l es . A typical t r i p l e is wri t ten
"COLOR ® CUBÊ RED" and is read "color of cube
is red". The items in the t r ip le can be de
clared at compile time or created as they are
needed. An element of a t r i p l e can also be
another t r i p l e as shown below. Any element of
a t r i p le can be retrieved by reference to the
other two elements. Each item can have assoc
iated with it a datum, which may be a number,
set, or array.

Many t r ip les are created by the various
programs in this system. Some are for the
use of only that program and are stored in a
local area in the program. Other t r ip les are
stored in the global model area of the upper
segment. Below are three of the major t r ip les
in the global model as examples of the represen
tat ion of objects in our system. The capitalized
items are declared; the others are created at
run time.

FOREACH HUE, FAC | COLOHg>[FACB8)0BJ=FAC]=HUE DO
BEGIN COMMENT OBJ is an itemvar, a variable
whose value is an item, which contains one of
the object items. The body of the statement
is executed once for each t r i p l e found which
matches the "such that" part of the FOREACH
specif ication with itemvars HUE and FAC bound
to the elements of each t r i p l e in turn;

The t r ip les are accessed mainly by a
FOREACH statement, which is similar to the
ALGOL FOR statement. A typical one in our
control program is

where the datum of a is an array
the edge coordinates for d is-
object

where the datum of object
specifying its position

where Fi is one of
items and Ci is one

color items
the six declared face
of the four declared

Session No. 8 Robots and Integrated Systems

In order that the programs may easily trans
fer control from one to another, we have imple
mented a construct which we ca l l message pro
cedures. When a program executes a message pro
cedure it specif ies, in addition to the name of
the procedure and i t s arguments, the symbolic
name of the program containing the procedure.
The name and arguments are copied into the
upper segment and, when the program containing
the procedure is ready, it is activated from
the upper segment. The cal l ing program may
continue as soon as the upper segment has the
information on the message procedure, or it can
be put to sleep by the timesharing system un t i l
the other program finishes execution of the
procedure. Programs waiting for message pro
cedures they contain to be requested can also be
put to sleep.

Belcw is a brief description of each of the
lower segment programs, except for the control
program, which w i l l be discussed in detai l la ter .
A reference to a more complete description is
given for most programs.

3a. The Hand-EYE Monitor (5)

The monitor is the only program which com
municates di rect ly with the operator. It creates
'pseudo-teletypes' (PTYs) and logs in jobs
through them. Then, a l l characters sent to a
PTY by the monitor go to the teletype input
buffer of the job attached to the PTY and any
teletype output from a job is available to the
monitor. It also contains f ac i l i t i e s for directing
teletype input to the proper job, outputting
teletype output from the jobs to the operator
with the job ident i f ied , tracing the teletype 1/0
and message procedure cal ls for debugging, and
setting up and control l ing the other jobs. Jobs
may activate a message procedure in the monitor
to send commands to i t .

3b. The TV Camera Model (6)

This is a small program which reads in a
cal ibrat ion f i l e from our disk and uses i t , along
with the readings of the potentiometers attached to
the camera's pan- t i l t head, to determine the
transform which takes points in the camera's
coordinate system into the arm's coordinate sys
tem, based on a grid on the table on which both
devices are mounted. If the camera is moved, this
program can be activated to provide a new trans
form. The current transform is stored in the
global model.

3c The Edge Follower (7)

The edge follower scans the TV's f ie ld of
view, using a coarse raster, looking for edges.
When one is found, the program traces around it
to f ind the outline of the object. If the br ight
ness of the areas scanned varies too much to keep
the intensit ies inside the range of the hardware,

361

the target voltage is changed to adjust the
camera's sens i t iv i ty . Various heuristics are
used to trace faint or noisy edges. After an
object's outline has been traced, straight lines
are f i t to i t , a l i s t of the corner coordinates
is put in the global model and the current
camera transform associated with the l i s t . An
Internal model of the f ie ld of view is maintained
by the edge follower to t e l l it what has a l
ready been seen so it w i l l not trace objects
already found. The program can be directed to
delete an object from i t s model and retrace it
if the or iginal trace was not good enough.
The edge follower Is able to trace objects in
more complicated scenes than are presented to
it by this system, which is restricted by the
object recognition program. Objects with
curved edges can be traced also but the current
curve f i t t e r can only f i t straight l ines.

3d. The Simple Body Recognizer (8)

This program gets the corner coordinates
of the objects in the global model and applies
various tests to obtain a prediction as to what
the object may be. It then attempts to match
the object's outline against the outlines of
prototype objects which it has stored in the
global model, using i t s prediction to select the
prototypes to be matched. The current proto
types include rectangles, rhomboids, wedges
and L-beams. The program can recognize objects
only if each outline given it is of only one
object [Figure 2-a] and not of several objects,
some of them par t ia l ly occluded. [Figure 2-b]
Also, it cannot handle head-on, or degenerate
views. [Figure 2-c] If the program is able
to recognize the object, it generates the 4 x 4
matrix which translates the prototype of the
object, located at a standard posit ion, into the
object found. This enables us to represent the
objects with a minimum of information as the
topological information is stored only once for
each class of objects.

In the global model this matrix is asso
ciated with the object. In addition, the coor
dinates of each corner are associated with the
object for display purposes and the norma]
vector to each face is associated with that face
and object to give the orientation.

While the body recognizer is able to re
cognize many classes of objects (in addition
to those l is ted above, new prototypes can be
added with relat ive ease), this system uses
the program only to determine whether or not an
object is a cube.

3e. The Color Finder

The camera has a color wheel between the
vidicon and the lens with a red, green, blue,
and neutral f i l t e r . The color recognizer reads
the intensity in an area at the center of each
face through each of the colored f i l t e r s and

362 Session No. 8 Robots and Integrated Systems

normalizes the result ing vector for each face.
It then finds the color of the face hy determining
which area of the color space the vector is i n .

3f. The Arm Solution (9)

This program is given two matricies. One
gives the current position and orientation oi a
cube and the other gives i t s desired position
and orientat ion.

The wrist jo in t is oriented to grasp the
cube by a pair of opposite faces if possible;
otherwise, opposite corners w i l l be used. Having
found the position of the wr is t , possible positions
of the other jo ints arc calculated and one se
lected which sat isf ied the constraints on the
arm's motion. The result of this program is a
series of 6 -tuples giving the potentiometer
readings the arm w i l l have in desired posit ions.
The f i r s t is a position d i rect ly over the cube.
To make sure the arm moves straight down, so as
to not knock over any nearby cubes, it is moved
through two positions on the way down to grasp
the cube. The sequence is reversed to l i f t the
cube, which is then moved into position above
the f ina l posit ion. Another pair of positions
is used f i r s t to lower the cubes and then to
raise the arm, which either waits for the next

sequence of moves, if any are ready, or ret i res
to a standard position out of view of the TV.

3g. The Arm Driver

The potentiometer readings generated by the
arm solution program are obtained and the arm
joints are servoed to each successive group
of six readings. Since the arm currently does
not use visual feedback, after the cube has been
moved and released the fingers are closed again
to determine if the cube stayed in posit ion.
If the program ever detects that i t s fingers
are empty when they are supposed to contain
something, the cal l ing program is no t i f ied . The
servo loop is executed by the timesharing system
in a special mode which guarantees it service
at intervals of 1/60 second in order that the
arm w i l l run smoothly and not overshoot i t s
target. This mode prevents the job from being
swapped out of core when running. Therefore,
this is a separate very small job rather than
a part of the arm solution program so as not
to lock other users out of core.

4. THE CONTROL PROGRAM (Figure 3,]

The heart of the system is the eighth job,
the control program. It sequences the various
tasks, attempts error recover, generates displays,
and has provision lor running parts of the sys
tem by themselves for debugging.

When the program is started, a l l the other
jobs except the camera model are assumed to be
set up and waiting for instruct ions. Their
status is checked during the run to insure
that they are ready when they are to be a c t i
vated. The program sets up the camera model
program to get the transform and then, since the
camera currently is not moved during the run,
i t i s k i l l e d .

The f i r s t task is to find four cubes.
The edge follower is asked to find an out l ine.
Curve f i t t i n g is performed and the result tested
for a degenerate view. If it is degenerate, the
arm rotates it 45° and it is traced again.
Also, if a complete curve was not found, or if
the body recognizer cannot ver i fy that the ob
ject is a cube, it is rejected and the edge f o l
lower traces it again. Since each trace begins
just beyond where the last edge was found, the
object w i l l be found at a different point on
the outl ine each time, which gives it a better
chance of eventually tracing correctly even
an object with poor contrast. Since noise in
the input usually resembles very small objects,
the scan w i l l not encounter the same patch of
noise on later scans. If necessary the entire
f i e ld of view w i l l be scanned twice to f ind
a l l four cubes before admitting fa i lu re .

The color recognizer is called to obtain
the colors of the faces v is ib le to the camera.
Then the arm turns over each of the cubes to
expose the other three faces and then retraces
them in case the arm did not reposition them
exactly. If the arm cannot reach any of the

Session No. 8 Robots and Integrated Systems 363

cubes, the user is asked to move them closer
to the arm, they are rejected from the world
model, and, after the user indicates that they
have been moved, the scene is rescanned to find
them again. If any cubes are dropped when being
turned over, or not found again for any reason,
the entire scene is scanned again to find them.
The colors of the remaining sides are found and
all the information necessary to find the solu
tion is present.

The solution is found using a scheme designed
by Feldman which will find a solution, if one
exists, in much less time than it would using
an exhaustive search. First the colors of each

cube are obtained from the associations and a
three element set is created for each cube,
each element being a digit from 1 to 10 re
presenting the two colors on one of the three
pairs of opposite faces of the cube.

The heart of this scheme is a 10 by 10
table which is indexed by the encodings for two
pairs of opposite faces. The program selects
one pair of opposite faces from each of two
cubes. The table is used to determine whether
or not a solution can exist if the two cubes are
stacked so that the selected pair of opposite
faces of one can be directly over the selected
pair for the other cube, in either of the two
possible configurations. If, for example, the
pairs are white-white and white-red, one side
of the tower already has two white faces. If
the table indicates a legal combination, a
legal combination is found using another pair of
faces from each of the same two cubes. Now
we have orientations for two cubes, modulo a
180° rotation about either or both of the axis
parallel to the table (since we are considering
only pairs, not which face of the pair is on
which side).

Then the same procedure is used to get legal
orientations for the other two cubes. The table
is constructed so that to have a solution for all
four cubes, the table entry for each face pair
of the one pair of cubes which are to be aligned
must equal the negative of the entry for the
face pairs of the other pair of cubes which are
to be on the same sides of the tower.

The program sequences through the possible
combinations until it finds one which gives a
solution. Then it f i l ls a 4 x 4 array with the
faces of each cube which go on each side of
the tower, doing the proper rotations of the
cubes to resolve ambiguities between pairs of
opposite faces.

If a solution was found, the control pro
gram obtains from the solution array the two
faces of each cube which make up two adjacent
sides of the resulting tower. The vector normal
to each of the faces in Its current orientation
is retrieved from the world model. Using the
cross product of the two vectors, the sequence
of rotations about the three axes necessary to
point the orientation vector up, with the two
faces pointing the correct direction, is found.
Finally, the arm driver is called to rotate and
stack the cubes to demonstrate the solution.

5. FUTURE PLANS

Since the current system can perform its
assigned task it is doubtful that a great deal
of work will be done with the aim of improving
this specific task. Instead, the development
of this system has given us a better understanding
of the weaknesses of the various modules. Future
work will be devoted to eliminating the major
weaknesses, replacing the more restrictive
modules, and adding new modules with capabilities
not currently available.

A new arm has been built and will soon re-

364

place the current one, which is rather slow and
inaccurate. A complex body recognizer, which
can handle objects par t ia l l y obscured by other
objects, is currently being debugged. Visual
feedback is planned to track the objects while
the arm is moving them to increase accuracy and
prevent objects from being dropped because they
were picked up poorly. Unti l then, the TV w i l l
be moved to the area where the object was set
down (or dropped) and the scene rescanned to
locate i t . A new TV camera with less noise is
being prepared for use.

A program which can focus the camera has
existed for some time and can be incorporated
into future systems to enable the camera to view
a wider area of the table. It can also be used
to provide depth information. Currently, the
system uses the ground-plane assumption (i . e .
that a l l objects rest on the table, whose
position is known), and it intersects the table
plane with the lines from the lens center
through the object to f ind the object's posit ion.
(10) This method fa i l s if objects are resting
on top of each other.

Languages for formulating and implementing
strategies are being developed so that even
less modification to programs w i l l be needed to
change tasks. The next proposed task is to look
at a complicated tower composed of blocks of
various sizes and shapes and then disassemble
it and rebuild it in a di f ferent part of the
work space.

REFERENCES

References 5 - 9 give additional references
relevant to their area of interest. A general
over-view of our work, including an extensive
l i s t of references, can be found in (11).

1. K. K. Pingle, I. A. Singer, & W. M. Wichman,
"Computer Control of a Mechanical Arm
Using Visual Input", Proceedings IFIP Congress
'68, Booklet H, pp. 140-146, North Holland,
1968.

2. J. McCarthy, L. D. Earnest, D. R. Reddy and
P. J. Vicens, "A Computer with Hands, Eyes,
& Ears", Proceedings Fal l Joint Computer
Conference, 1968, Vol. 33, Thompson Book
Company, pp. 329-338.

3. R. F. Sproull, D. Swinehart, "SAIL", Stanford
A r t i f i c i a l Intell igence Project Operating
Note 57.1, 1970.

4. J. A. Feldman, P. D. Rovner, "An Algol-Based
Associative Language", Communications ACM,
August, 1969, pp. 439-449.

5. J. A. Feldman, R. Sproull, "System Support
for the Stanford Hand-Eye System", Proceedings
of the 2nd International Joint Conference
on A r t i f i c i a l Intel l igence, London, 1971.

6. I. Sobel, "Camera Models and Machine Perception",

Session No. 8 Robots and Integrated Systems

Stanford A r t i f i c i a l Intell igence Project
Memo, AIM-122, Stanford University, May,
1970.

7. K. Pingle, J. M. Tenenbaum, "An Accomodating
Edge Follower", Proceedings of the 2nd
International Joint Conference on A r t i f i c i a l
Intel l igence, London, 1971.

8. G. Falk, "Recognition of Occluded Objects
Using a Computer", Proceedings of the 2nd
International Joint Conference on A r t i f i c i a l
Intel l igence, London, 1971.

9. R. Paul, "Computer Controlled Manipulation
at Stanford", Proceedings of the 2nd
International Joint Conference on A r t i f i c i a l
Intel l igence, London, 1971.

10. L. G. Roberts, "Machine Perception of 3-
Dimensional Solids", J. Tippet et al (Eds)
Optical and Electro-Optical Information
Processing MIT Press, Cambridge, Mass.
pp. 159-197, 1965.

11. J. M. Tenenbaum, A. C. Kay et a l , "A
Laboratory for Hand-Eye Research", Pro
ceedings of IFIP, 1971 Congress,
Ljubljana.

