
Session No. 5 Software Support 159 

A PROGRAMMING TOOL FOR MANAGEMENT OF A 
PREDICATE-CALCULUS-ORIENTED DATA BASE* 

Erik Sandewall 
Uppsala University 
Uppsala, Sweden 

Abstract 

This paper describes a LISP program, cal led 
PCDB, for storage and re t r i eva l in a data base 
of predicate calculus (PC) formulas. The PCDB 
pacxage uses standardized representations of 
PC formulas, where ground unit clauses are 
stored e f f i c i e n t l y , e.g. on the proper ty- l is ts 
of t he i r arguments, and other clauses have 
other representation. The major part of the 
PCDB package is a function generator, which 
accepts declarations of PC relat ions and 
functions, and Which also accepts "ru les" (= 
non-ground axioms intended for use in deduction) 

Declarations and rules are used to generate 
e f f i c ien t code for storage and re t r i eva l of 
" facts" (usually = ground uni t clauses) in and 
from the data base. This generation process 
may be characterized as a "compilation" of the 
rules (from predicate calculus to LISP). 

Key words and phrases 

Axiom compilation, deduction, function gene
ra to r , LISP, pa r t i a l evaluation, r e t r i e v a l . 

Motivation 

Many programming tasks in a r t i f i c i a l i n t e l l i 
gence require the manipulation of small data 
bases. Question-answering programs maintain a 
data base of accumulated fac ts , and inquire 
the data base for answers to questions. Robot 
programs maintain a data base which describes 
the robot 's environment. Advanced CAI programs 
maintain a data base of the subject-matter 
that they have to teach. Simulated scient ists 
(e.g. the Dendral program) maintain a data 
base of know-how in a narrow but deep f i e l d of 
human knowledge. These programs, and other 
s imi lar ones, need to perform complex re t r ieva l 
operations (and sometimes, reorganization) in 
the data base. 

(x) 

In the design of such programs, it is cruc ia l 
to f ind a good representation of one's data. 
Programming languages l i ke LISP, PL / I , or 
SIMULA 67 of fer a machine-oriented data struc
ture ; for example, LISP offers the use of 
p roper ty - l i s ts , and SIMULA 67 offers the use of 
Hoare's record structure. However, i t is often 
desirable to f ind a more problem-oriented rep
resentation, such as nested t r i t u p l e s , colored 
graphs, or "semantic nets". 

Predicate calculus notation is often used as 
such a "high-level data language". The SRI A . I . 
project uses predicate calculus fo r the i r 
robot project (see Nilsson, 1969) and fo r 
question-answering (see Green, 1969). Two d i f f e 
rent methods fo r using predi cate calculus as a 
data language in program manipulation programs 
have been proposed by Burstal l (1969) and by 
Manna and Waldinger (1970). Burstal l (1970) has 
proposed a set or conventions for expressing 
the deep structure of natural language in 
predicate calculus, and a s imi lar proposal has 
been made by the present author (Sandewall, 
1970). The l i s t can be continued. 

Predicate calculus of fers the user two major 
advantages: F i r s t , i t is a versat i le notat ion, 
and second, the user can express the log ica l 
properties of his data through a set of axioms. 
These axioms can be used as a theoret ical basis 
for the program, or they can be given to a 
theorem-proving program (such as QA3, see Green, 
1969). In the l a t t e r case, the theorem-proving 
program " in terprets" the axioms. This was 
discussed in Green, o p . c i t . , page 131. In the 
former case, the same axioms have been manually 
re-wr i t ten ("compiled") in to a program. Using 
a theorem-proving program is more convenient, 
but a tailor-made program can be expected to be 
much more e f f i c i e n t . 

Topic of th is paper: the PCDB 
package 

This research was supported in part by the 
Swedish Natural Science Research Council 
(contract Dnr 2654-3) 

This paper describes an exist ing LISP "program" 
(or to be precise, function package) which com
bines the general i ty and convenience of a 
theorem-proving program with the re la t ive e f f i 
ciency of tailor-made programs. Our program is 



160 

called PCDB ( for "Predicate Calculus Data 
Base"), and it is a function generator. PCDB 
takes the fol lowing types of input: 

declarations of the predicate calculus r e l a -
t ions and functions that the user wants to 
u t i l i z e ; 

fac ts , i . e . ground uni t clauses which are 
intended as contributions to the data base; 

questions, i . e . un i t clauses which are to be 
proved from the data base. Question clauses 
may be ground ( for closed questions) or non-
ground ( for open questions); 

ru les , i . e . non-ground (and usually non-unit) 
clauses which are to be accumulated, and la ter 
used for forward deduction from facts and/or 
for backward deduction in answering questions. 

When the package receives ru les , it generates 
"code" ( i . e . LISP S-expressions) that corres
ponds to these rules ( i . e . it "compiles" the 
ru les ) , and when it receives facts and quest
ions, th is code is u t i l i z e d . Declarations set 
certain f lags and properties which govern 
subsequent code generation. 

The PCDB package is useful in problem environ
ments where there is a large and open-ended 
data base of " fac ts" ( in the above sense of the 
word) and a re la t i ve l y small and l imi ted 
number of " ru les" . Question-answering app l i 
cations and Burs ta l l ' s notation for program 
descriptions sat is fy th is requirement. - The 
package is not useful in problem environments 
where the major part of the data base consists 
of " ru les" . Manna's approach to program analy
sis is an example of such an environment. For 
such appl icat ions, conventional resolut ion 
programs seem more sui table. 

Example of predicate calculus usage 

Before we proceed to a detai led description of 
PCDB, le t us give an example of the use of 
predicate calculus as a high- level data 
language. With th is example, the reasons for the 
design of PCDB w i l l be more transparent. 

Suppose we want to perform that standard exer
cise: wr i t ing a kinship handling, question-
answering program. Some simple kinship re la 
tionships may be expressed in predicate calculus 
as 

Sibling(Jesper,Bodil) 
Male(Jesper) 
Father(Jesper) = Edvin 
Wife (Edvin) = Edla 

Session No. 5 Software Support 

etc. ( "Sib l ing" stands for "brother or s i s t e r " ) . 
For simple facts there is no essential d i f f e 
rence in e f fo r t between making these predicate-
calculus statements and making the obvious 
proper ty - l i s t storage instruct ions. However, in 
more complex expressions, l i ke 

Sibl ing( Father(Hedvig), Wife(Neighbor 
(Halvard)) ) 

( for "Hedvig's father is a s ib l ing of Halvard's 
neighbor's wife) the predicate calculus formu
la t ion is probably more convenient than what we 
could immediately do with e.g. p roper ty - l i s t 
storage instruct ions. In th is sense, the nota
t i on is "h igh- level " and "problem-oriented". 

Moreover, predicate calculus permits us to state 
general axioms, which characterize these k i n 
ship functions and re la t ions , e.g. 

If we wr i te a d i rect program for the kinship 
exercise (without the support of any standard 
program), then the information contained in 
these axioms must somehow go in to that program. 
Normally, i t goes in to the re t r i eva l par t , but 
some of the axioms could also go in to the 
storage par t . For a t r i v i a l example, the f i r s t 
axiom could correspond to a segment of the 
re t r i eva l procedure which says " i f it has been 
asked whether x is male, and if there is no 
immediate information in the data base saying 
that he is or i s n ' t , then ask as a sub-question 
whet er x is female, and negate the answer", 
and to a corresponding segment fo r the case 
where x is female. But a l te rna t ive ly , it could 
correspond to a section of the storage proce
dure which says " i f you have to store that x is 
male, then store also that x is not female" and 
s imi la r ly fo r the symmetric case. The re t r i eva l 
procedure does backward deduction, whereas the 
storage procedure does forward deduction. It is 
one purpose of PCDB to generate code fo r and to 
administrate backward and forward deduction. 
With th is example as a background, l e t us now 
describe the PCDB program by tracing what 
happens when some selected expressions are given 
as " input " , i . e . as argument to functions in the 
package. 

Declarations of re lat ions 

LISP atoms areused for re lat ions symbols, 
function symbols, and object symbols. The pur
pose of declaring a re la t ion is to provide it 
wi th a number of functions (lambda-expressions) 
which are properties on the proper ty - l i s t of the 
re la t i on . For example, a binary re la t ion Father 



Session No. 5 Software Support 161 

(such that Father(x,y) means "y is the father 
of x") might be associated with at least the 
fol lowing lambda-expressions: 

These properties are used for assertions, fo r 
closed questions, and fo r open questions, 
respectively. Addit ional properties are needed 
fo r deduction, for undoing previous assertions, 
etcetera. It would have been possible to 
design the PCDB package so that a l l of these 
properties are generated and assigned at the 
point where FATHER is declared to be a binary 
re la t i on . However, we have preferred to do 
things as follows in PCDB: 

at declaration t ime, some flags are put on the 
proper ty - l i s t of the new re la t ion . These flags 
correspond d i rec t l y to the information in the 
declarat ion. No funct ional expressions are 
generated. 

when a funct ional property is needed, the 
system asks fo r it by doing e.g. 

getd f i l l FATHER, TESTDEF] 
where the function ge td f l t is defined essect i -
a l l y as 

g e t d f l t [ a , i ] = ge t [ a , i ] V pu tprop [a , i [a ] , 
il 

The f i r s t time the TESTDEF property of FATHER 
is asked f o r , the value of get[FATHER, TESTDEF] 
is NIL, so testdef[FATHER] is evaluated, stored 
as a property, and returned as a value. This is 
the required function de f i n i t i on . In other 
words, the functions testdef, storedef, etc. 
a l l return lambda-expressions as values. 

On each succeeding c a l l fo r the TESTDEF proper
t y , it can be retr ieved from the property-
l i s t , and it need not be computed again. (The 
value of the function testdef is memoized). 

This design has several advantages: 

(a) funct ional properties are not generated 
unless they are rea l l y needed; 

(b) the user may make several declarative 

statements, provided they have a l l been 
given before the f i r s t time the re la t ion 
(or function) is used; 

(c) declarations may be imp l i c i t . Functions 
l i ke testdef must c lear ly inquire the 
property-1ist of t he i r argument fo r the 
f lags that were assigned by the declara
t i o n . If these flags are not present, then 
testdef (and s imi lar functions) can com
pute default values. 

In f ac t , th i s is a simple example of backward 
deduction. 

The PCDB package contains various service 
functions fo r doing declarations in a conveni
ent way. However, l e t us ignore the conven
tions of those service funct ions, and look at 
the i r ef fect in the example of the re la t ion 
Father, where the declaration might have imme
diate ef fect of put t ing the fol lowing proper
t ies of the proper ty - l i s t of the atom FATHER: 

The functions t e s t d e f [ r ] , s to rede f [ r ] , etc. have 
been defined so as to branch on get[r,KELTyFE], 
get[r,LOCATED], etc. and to return a functional 
expression in each case. With the given decla
ra t ions, the above-mentioned lambda-expressions 
w i l l be obtained. 

The PCDB package recognizes d i f fe rent kinds of 
re la t ions , with d i f fe rent numbers of arguments 
(one, two, three, or more), d i f fe rent storage 
conventions (on proper ty- l is ts of arguments, on 
proper ty - l i s t of re la t ion symbol; hashed in an 
array is planned, e tc . ) and other idiosyncra-
cies. Since each re la t ion has i t s own storage 



162 Session No. 5 Software Support 



Session No. 5 Software Support 163 

Let us assume, furthermore, that th i s ru le is 
to be used for forward deduction, so that when 
R[x,y] is asserted, and Ply] has previously 
been asserted, then fo r a l l z such that S[y,z] 
has been asserted, Q[z,x] is to be asserted. 
The treatment of rules for backward deduction 
is analogous. 

Pass I: External to in ternal notat ion. This 
step transforms inf ixes (such as A, or i n f i x 
relat ions) to pre f ix form. It also makes a l i s t 
of the var iables, and c lass i f ies the l i t e r a l s 
as an antecedent, a l i s t of conditions, and a 
consequent. The resu l t is 

((X Y Z) 
(R X Y) 

vari ables 
antecedent 

((P Y) (S Y Z)) 
(Q Z X)) 

conditions 
consequent 

Thus the antecedent determines the contents of 
the f i r s t l ine (intended as lambda-variables 
e t c . ) ; each condition generates a bind-cont 
pa i r , and the consequent is used as an argument 
to the lambda-expression. The functions in th is 
prog are defined as fol lows: 
b i n d [ v a r l i s t , l i t e r a l , oont label, backuplabel, 
depth]. If v a r l i s t is NIL, then bind does a 
recsearch on the l i t e r a l with the indicated 
depth. If the value is T ( i . e . i f the condition 
is ve r i f i ed ) , then bind does a goto the 
cont label, where the next condition is tested, 
otherwise it does a goto the backuplabel, i . e . 
the corrt-statement of the previous condit ion. 

If the va r l i s t is non-NIL, then bind binds 
(using the LISP function set) the variables on 
the v a r l i s t . In general, the v a r l i s t contains 
a l l variables which occur in l i t e r a l , and which 
have not occurred in the antecedent or in any 
previous l i t e r a l . In posi t ion B2 above, bind 
w i l l assign to ZQUE the l i s t of a l l z which 
sat is fy S(y,z) fo r the given y, and to Z the 
f i r s t element of ZQUE. Moreover, bind w i l l go to 
contlabel if the value of zque is non-NIL ( i . e . 
some z has been found)), and to backuplabel 
otherwise. 

con t [ va r l i s t , l i t e r a l , backuplabel]. This func-
t ion has the primary purpose of doing ( in the 
above example) 

Z := car[zque] 
ZQUE := cdr[zque] 

Each argument to OR is a compiled axiom, and 
each compiled axiom ca l ls sysrecsearch once 
for each sub-question it generates. 

SEARCHDEF properties (which are used by 
syssearch for breadth- f i rs t search) are s imi lar 
to RECSEARQiDEF's, but instead of ca l l ing 
sysrecsearch, they store the sub-question on a 
FIFO subquestion queue which the function 
syssearch maintains as the value of a prog 
var iable, which then is free in the SEARCHDEF. 

Compilation of rules 

The compilation process starts with a ru le ( i . e . 
a non-ground, and usually non-unit clause), and 
ends when th i s ru le has been transformed to 
LISP code and inserted in an ASSERTDEF, 
SEARCHDEF, and/or RECSEARCIDEF property. Compi
la t ion is done in several passes. Let us 
i l l u s t r a t e it wi th a concrete example, namely 
the axiom 

In th i s example, R(x,y) is selected as the 
antecedent, since it is to be the t r igger ing 
l i t e r a l ( i . e . the compiled axiom is to be on 
the ASSERTDEF property of R). In general one 
may want to have several versions of the same 
axiom, with d i f fe rent choice of an antecedent. 

Pass 2: Convert to PROG-expression. This pass 
generates a very i ne f f i c i en t but yet executable 
prog-expression, and can be considered as the 
compilation proper. In our example i t w i l l 
generate the expression 



164 Session No. 5 Software support 

When zque has been exhausted, cont goes to 
backuplabel (where an "ear l ie r " variable w i l l 
be cont-ed), otherwise it leaves control to the 
next statement in the prog (where the next 
condition is bind-ed, or the consequent of the 
clause is processed). Moreover, i f the v a r l i s t 
is empty, the corresponding bind only served 
as a t e s t , and then cont should t r i v i a l l y go 
to backuplabel. 

The reason cont is given l i t e r a l as an argu
ment is that in cases l i ke 

(CONT '(Y) '(R X Y) 'M6) 
if R has been declared to be funct ional in the 
second argument, it is obvious that there is 
nothing to continue wi th . Then cont can again 
t r i v i a l l y go to backuplabel. 

close[form]. This function is defined as 
cons[car[ form],evl is [cdr[ form]] ] 

In the example, it is used to pick up the 
current values of x and z. - it should also be 
remarked that the variable n is used to control 
the number of new nodes that are introduced. 
N is decremented when we have forward axioms 
l i ke 

where y is a function from the predicate-
calculus viewpoint. 

Pass 3: Par t ia l evaluation. This is an equiva-
lence transformation which transforms the prog-
expression in to another expression, which has 
the same value and the same side-effects for 
a l l arguments, but which runs more e f f i c i e n t l y . 
Par t ia l evaluation is possible since a l l argu
ments to bind and cont have been given e x p l i c i t 
l y . For example, the function cont is defined 
as 
cont[vl ,e,m] = 

i f n u l l [ v l l then goto[m] 
e l se i f n u l l [ c d r [ v l ] ] then 

( i f then goto[m] 
else prog2[ set [car [v l ] ,car [eval [que[car 

[ v l ] ] ] ] ] 
set [que[car [v l ] ] ,cdr [eval 

[ q u e [ c a r [ v l ] ] ] ] ] ] ) 
else . . . 

where que is a packing and memoizing function 
defined so that 

que[Z] = ZQUE 
In p a r t i a l evaluation, the def in i t ions of cont, 
que, etc . are inserted in the prog-expression; 
lambda-expressions are expanded, and function 
expressions are collapsed whenever possible, 

e.g. so that 
(CAR (CONS x y)) -> x 
(EVAL (QUOTE X)) -> x 
(GOTO (QUOTE D) -> (GO 1) 
(SET (QUOTE x) y) -> (SETQ x y) 

With such s impl i f i ca t ions, the expression in 
posi t ion B2 above is reduced to 

B? (COND ((NULL ZQUE) (GO Ml)) 
(T (SETQ Z (CAR ZQUE)) 

(SETQ ZQUE (CDR ZQUE] 
which is quite reasonable code. 

Pass 4: Prog-reduction. Par t ia l evaluation w i l l 
leave a l o t of redundant go statements in the 
prog, e.g. l i ke 

In th is pass, the obvious s impl i f icat ions are 
made. 

In a f i f t h step, the prog-expression is inserted 
in to the relevant ASSERTDEF or other ...DEF 
propert ies. 

It should be noticed that pass 2 and step 5 are 
the only steps that are log ica l l y needed. Pass 1 
only provides some added notat ional convenience, 
and is dispensable. Passes 3 and 4 serve to 
speed up the program, but they are not necessary 
For test ing purposes, it is sometimes bet ter not 
to use them. 

Predicate-calculus functions 

Operators which are functions from the predicate 
calculus viewpoint (these must be carefu l ly 
distinguished from functions in the LISP system, 
which in a certain sense interprets the predi
cate calculus expressions), are handled in the 
fol lowing fashion: 

Every PC function is assigned a LISP function 
de f i n i t i on , which follows a standard pat tern. If 
g is an n-ary PC funct ion, then it is also an 
n-ary LISP function which returns an expression 
of the form 

(G8 G A B ) 
where G8 is a gensym-atom, and A and B are the 
evaluated arguments to g. This expression is 
cal led an H-expression. (H stands fo r Herbrand). 
I t is generated the f i r s t time g[A,B] is evalua
ted, and the same (with eq) expression is ob
tained on each successive evaluation of g[A,B]. 

(GO L) 
• * • 

L (GO M) 
• • » 



Session No. 5 Software Support 

The atom G8 carries a p roper ty - l i s t , on which 
relat ions can be stored. Moreover, the proper
t y - l i s t of the f i r s t argument ( in th is case, 
A) , contains a pointer to the above expression 
under a certain indicator. Notice that A need 
not be an atom, but it may i t s e l f have been 
generated by a PC function. 

When functions appear in axioms, then l inear 
code for the matching ("uni f icat ion") is 
generated at compile time. For a t r i v i a l 
example, if the axiom 

is declared for forward usage, then it is re 
wr i t ten in an early compilation step as 

where gg is considered as a re la t ion which has 
a peculiar mode of storage, but which is other
wise s imi lar in a l l respects to user-declared 
re lat ions. If the user declares g as a PC 
funct ion, then the necessary declaration of 
gg is imp l i c i t . - Notice that th is axiom would 
not be re-wr i t ten if i t were declared for 
backward usage. Thus new H-cxpressions may be 
introduced during deduction. 

Comparisons with some exist ing programs 

Several exist ing programs show s imi la r i t ies 
with PCDB in some respects. We shal l attempt 
a comparison, even if there is on obvious r isk 
that we are misinformed about some aspect of 
the other programs. The reader should take the 
discussion here as a f i r s t approximation. 

QA3 and QA3.5 (see Green, 1969, and Garvey and 
Kl ing, 1969). QA3 is a resolution-oriented 
theorem-proving program, which maintains a 
"memory" (set of clauses that are stored in 
the system) and a "c lausel is t " (set of clauses 
that are active during a deduction). Clauses 
in memory are indexed by predicate l e t t e r and 
then by length; clauses on the clausel ist by 
length only. Moreover, there are special 
heur ist ics for handling e.g. sequences of reso
lut ions with binary clauses ("chaining"). QA3. 
is s imi lar in a l l of these respects. The major 
differences between QA3 and PCDB are: 

1. QA3 interprets a l l " ru les" ; PCDB compiles 
them. 

2. QA3 can perform resolut ion proofs according 
to arb i t rary strategies. The proofs performed 
by the PCDB search executive and the compiled 
axioms correspond to some highly res t r ic ted 
resolut ion strategies. 

3. QA3 treats a l l clauses uniformly, and does 

165 

not store ground uni t clauses (" facts") in a 
special way as PCDB does, ( i t is possible to 
interface QA3 with a program for such storage, 
for example by using the predicate evaluation 
feature. However, it seems to be a non- t r i v i a l 
task to make th is work f u l l y automatically, 
and to implement it fo r clauses where the re la 
t i on ' s arguments have been constructed with 
PC funct ions). 

The difference indicated in point 2 implies 
that QA3 is more general-purpose than PCDB i s , 
and that it is more suitable fo r tasks where a 
major part of the clauses as non-ground and 
non-unit. On the other hand, points 1 and 3 
enable us to guess that PCDB should be much 
faster in those cases where it is applicable, 
although no comparative measurements are yet 
avai lable. 

The NIH Heuristics Laboratory program (see 
Norton, 1971, and Dixon, 1971). This program is 
s imi lar in approach to QA3. In some experiments, 
the NIH program has been guided by heur is t ic 
search, but th is does not affect the comparison 
with PCDB. The NIH group have compiled axioms 
using pa r t i a l evaluation, and did so a year 
before us. However, the i r compilation (at least 
as described in the paper by Dixon) seems to be 
more res t r i c ted . It is performed so that 

resolve[c,c'] = (compile[c]) lc'] 
whereas the execution of one compiled rule in 
PCDB may be equivalent to a large number of 
resolutions. 

Planner (see Hewitt, 1970). Like PCDB and unlike 
the preceeding programs, Planner is a substrate 
for special-purpose theoreni-provers, rather than 
a general-purpose theorem-prover. Planner is 
also more data-base-oriented than the preceeding 
programs. For example, Planner uses the idea of 
associating procedures with re la t ion symbols, 
and to execute these for storage and/or r e t r i e 
val . The dichotomy between forward and backward 
deduction is present in Planner, where one 
speaks about "consequent" and "antecedent" 
theorems, re spectively. 

The major difference is that Planner uses a 
general high- level control mechanism, which is 
simi lar in approach to non-deterministic prog
ramming. This control mechanism is available to 
the user of Planner; the user of PCDB does not 
have it (except t r i v i a l l y when he can u t i l i z e 
the system's search executive for backward 
proof in some round-about way). The control 
mechanism is also used inside Planner. The 
occurrences of th i s correspond e.g. to the 
breadth- f i rs t search that is performed by the 
function syssearch in PCDB, and to the loops 



166 

that are generated by bind and cant in compiled 
axioms. This difference is correlated wi th 
another: 

Planner thinks about i t s user as a programmer, 
and about i t s "theorems" as programs, a lbe i t in 
a very machine-remote programming language 
which assumes the above-mentioned control 
structure. PCDB thinks about i t s input as sta
t i c information ("declarat ions", " f ac t s " , 
" ru les " ) , plus some tags which h in t when and 
where th i s s ta t ic information is to be used; 
and PCDB takes as i t s task to "digest" i t s i n 
put so that it can la te r be used in the i n d i 
cated si tuat ions. (This at t i tude of PCDB can be 
overcome, e.g. using the function do that was 
described above, but i t i s s t i l l s ign i f i can t ) . 
As a consequence of t h i s , PCDB assumes predicate 
calculus notation as input, whereas Planner 
assumes i t s own input language. ( I t is an 
interest ing problem to wr i te a t ranslator from 
predicate-calculus-plus-control-tags to the 
Planner language). Thus PCDB is in several 
respects s l i gh t l y closer to conventional 
theorem-proving programs than Planner i s . 

Present status and planned extensions of PCDB. 
Most features described in th is paper are 
presently working (May 20, 1971). The excep
t ions are: (a) pass I of compilation ( i n f i x to 
pref ix notat ion) ; (b) pass TV of compilation 
(prog-reduction) and the function collapsing 
step in pass I I I (par t ia l evaluation); 
(c) funct ion- to-re lat ion conversion in compiling 
rules with PC functions in them. The immediate 
plans are to complete these steps; to add a 
package for answering open questions (exists in 
ou t l i ne ) ; and to compare the ef f ic iency of 
PCDB-generated code with manually produced 
code. 

Acknowledgement s 

Many thanks to Lennart Drugge, Anders Haraldson, 
Rene Reboh and Arne Tengvald, who helped great
ly with test ing and debugging various parts of 
the PCDB program. Thanks also to David Luckham, 
who pat ient ly explained some of the in t r icac ies 
of resolutionology, and to members of the SRI 
A . I . group for the opportunity to discuss and 
to play with the QA3.5 program. 

References 

Burs ta l l , R.M. (1969) 
Formal description of program structure and 
semantics in f i r s t -o rde r logic 
in Meltzer & Michie (eds) Machine I n t e l l i 
gence, Vol. 5 (Edinburgh, 1969) 

Session No. 5 Software Support 

Burs ta l l , R.M. (1970) 
Formalising the semantics of f i r s t -o rde r 
logic in f i r s t -o rde r l og ic , and an applica
t i on to planning for robots 

Dixon, John K. (1971) 
THE SPECIALIZER: A Method of Automatically 
Writ ing Computer Programs 
NIH Heuristics Laboratory (unpublished) 

Garvey, Thomas D. and K l ing, Robert E. (1969) 
User's Guide to QA3,5 Question Answering 
System 
SRI A r t i f i c i a l Intel l igence Group, Technical 
Note 15 (1969) 

Green, Cordell C. (1969) 
The appl icat ion of theorem proving to 
quest ion-answering systems 
SRI A r t i f i c i a l Intel l igence Group, June 1969 

Hewitt-, Carl (1970) 
PLANNER: a Language fo r Manipulating Models 
and Proving Theorems in a Robot 
MIT Project MAC A r t i f i c i a l Intel l igence 
Memo No. 168 

Manna, Zohar and Waldinger, Richard J. (1970) 
Towards Automatic Program Synthesis 
Stanford A r t i f i c i a l Intel l igence Project 
Memo AIM-127 

Nilsson, Ni ls (1969) 
A mobile automaton: an appl icat ion of 
a r t i f i c i a l intel l igence techniques 
Paper presented at the f i r s t Internat ional 
Joint Conference on A r t i f i c i a l Intel l igence 
(1069) 

Norton, Lewis M. (197]) 
Experiments with a Heurist ic Theorem-Proving 
Program for Predicate Calculus with Equality 
NIH Heuristics Laboratory (unpublished) 

Palme, Jakob (1971) 
Making Computers Understand Natural Language 
in Findler (ed . ) , A r t i f i c i a l Intel l igence 
and Heurist ic Programming 
Oxford University Press, 1971 

Sandewall, Erik (1970) 
Representing natural-language information in 
predicate calculus 
in Meltzer & Michie (eds) Machine I n t e l l i 
gence, Vol. 6 (Edinburgh, 1970) 


