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Abstract
Recently, Local Matrix Factorization (LMF) [Lee
et al., 2013] has been shown to be more effective
than traditional matrix factorization for rating pre-
diction. The core idea for LMF is to first parti-
tion the original matrix into several smaller sub-
matrices, further exploit local structures of sub-
matrices for better low-rank approximation. Vari-
ous clustering-based methods with heuristic exten-
sions have been proposed for LMF in the literature.
To develop a more principled solution for LMF,
this paper presents a Bayesian Probabilistic Multi-
Topic Matrix Factorization model. We treat the set
of the rated items by a user as a document, and em-
ploy latent topic models to cluster items as topics.
Subsequently, a user has a distribution over the set
of topics. We further set topic-specific latent vec-
tors for both users and items. The final prediction
is obtained by an ensemble of the results from the
corresponding topic-specific latent vectors in each
topic. Using a multi-topic latent representation, our
model is more powerful to reflect the complex char-
acteristics for users and items in rating prediction,
and enhance the model interpretability. Extensive
experiments on large real-world datasets demon-
strate the effectiveness of the proposed model.

1 Introduction
Nowadays, recommender systems have played a more and
more important role in e-commerce services. A typical task
for personalized recommendation is rating prediction which
predicts the rating of a user on a given item based on her
historical data. Various methods have been proposed in the
literature of rating prediction, especially the matrix factoriza-
tion technique (MF) [Koren et al., 2009]. MF projects users
and items into a latent low-dimensional space. Further, the
missing entries in the original matrix can be recovered using
the dot product between user and item latent vectors. MF
has been shown to perform well in many real systems and
competitions, such as Netflix Prize and KDD Cup 2011 Rec-

ommending Music Items.
⇤Corresponding author

Recently, local matrix factorization

[Lee et al., 2013] has
been shown to be more effective than the traditional MF. The
original matrix is divided into several smaller submatrices, in
which we can exploit local structures for better low-rank ap-
proximation. In each submatrix, the standard MF technique is
applied to generate submatrix-specific latent vectors for both
users and items. Typically, these submatrices are obtained
using cluster techniques. By combining the results from mul-
tiple local MFs, the original matrix R is reconstructed by a
set of K low-rank submatrices {R(1),R(2), ...,R(K)} with
the corresponding weight matrices {L(1),L(2), ...,L(K)}:

R̂um =
1

Zum

KX

k=1

L(k)
umR(k)

um (1)

where Zum =
PK

k=1 L
(k)
um is the normalizer and L(k)

um indi-
cates the weight for the entry R(k)

um in the submatrix R(k).
Two key issues of such a submatrix-ensemble method are
(1) how to generate the submatices and (2) how to set the
ensemble weights for submatrices. Several attempts have
been made to address these two points, using random sam-
pling [Mackey et al., 2011], extending anchor points with
nearest neighbors [Lee et al., 2013; 2014] or co-clustering
based matrix partition [Chen et al., 2015].

Although these studies have improved over tradition MF
to some extent, there is lack of a more principled approach
to characterize the local matrix factorization. By reviewing
previous studies [Mackey et al., 2011; Lee et al., 2013; 2014;
Chen et al., 2015], we have two important observations: (1)
Each submatrix can be considered as a local cluster of users
and items; (2) A user or an item has multiple latent repre-
sentations in different submatrices. Inspired by these two ob-
servations, we propose a novel Bayesian Probabilistic Multi-
Topic Matrix Factorization model (BPMTMF) for rating pre-
diction. Our model consists of two parts, namely modeling
the rated items and modeling the ratings. For the first part, we
treat the set of the rated items by a user as a document, and
latent topic models are employed to “cluster” items as topics,
which is a multinomial distribution over the set of items. Sub-
sequently, a user has a distribution (i.e., topical distribution)
over the set of topics. Based on such topics, we further set
topic-specific latent vectors for both users and items. We in-
tegrate the above two parts in a full Bayesian approach. The
final prediction by our model is an ensemble of the results
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generated from the topic-specific latent vectors in each topic.
Our model characterizes the core ideas in Eq. 1 in a Bayesian
probabilistic way: each topic can be considered as a clus-
ter. Using a multi-topic latent representation, our model is
more powerful to reflect the complex characteristics for users
and items in rating prediction. Another important merit of
using topics is that our approach has a better model inter-
pretability. Since topic models are effective to discover co-
herent topical semantics [Blei et al., 2003], the derived topics
in our model also group the items that are highly correlated
together. In this way, a topic will be more coherent than what
have been obtained in previous studies [Mackey et al., 2011;
Lee et al., 2013; 2014; Chen et al., 2015]. With topics as con-
textual information, we can analyze how the rating preference
of a user varies in different topical contexts.

Our work presents a Bayesian formulation of local ma-
trix factorization for the first time, which elegantly combines
topic models with probabilistic matrix factorization models.
By using topics as clusters, our approach has a better model
interpretability. Extensive experiments on large real-world
datasets demonstrate the effectiveness of the proposed model
compared with several competitive baselines.

2 Related Work
In this section, we review the related work.

Matrix Factorization. MF [Paterek, 2007; Mnih and
Salakhutdinov, 2007; Koren et al., 2009] is an important
kind of model-based collaborative-filtering methods. MF
constructs low-rank approximation by projecting users and
items into a latent low-dimensional space. Further, Prob-
abilistic Matrix Factorization (PMF) has been proposed by
using the Gaussian distribution to model observed ratings
with zero-mean spherical Gaussian priors. In essence, PMF
can be considered as a probabilistic realization of Regular-
ized Singular Value Decomposition. Further, Salakhutdinov
and Mnih [Salakhutdinov and Mnih, 2008] presented a full
Bayesian formulation of PMF. As the extensions of MF, bi-
ased MF and SVD++ have been proposed in [Koren et al.,
2009]. Biased MF incorporates both user bias and item bias,
while SVD++ uses implicit feedback to improve user prefer-
ence modeling.

Local Matrix Factorization. Recently, several studies fo-
cus on using the ensemble of submatrices for better low-
rank approximation, including DFC [Mackey et al., 2011],
LLORMA [Lee et al., 2013; 2014], ACCAMS [Beutel et al.,
2015] and WEMAREC [Chen et al., 2015]. These methods
partition the original matrix into several smaller submatrices,
and a local MF is applied to each submatrix individually. The
final predictions are obtained using the ensemble of multi-
ple local MFs. Typically, clustering-based techniques with
heuristic adaptations are used for submatrix generation. We
give a brief review of these studies. Mackey et al. [Mackey et

al., 2011] introduces a Divide-Factor-Combine (DFC) frame-
work, in which the expensive task of matrix factorization is
randomly divided into smaller subproblems. LLORMA [Lee
et al., 2013; 2014] uses a non-parametric kernel smoothing

method to search nearest neighbors; WEMAREC [Chen et

al., 2015] employs Bregman co-clustering [Dhillon et al.,
2003] techniques to partition the original matrix; ACCAMS
adopts an additive co-clustering approach [Shan and Baner-
jee, 2008] to derive sub-matrices and predict the ratings using
a Gaussian distribution. Our work is highly built on the above
studies, however, we propose to use probabilistic topic mod-
els to create “soft” clusters, further develop a full Bayesian
model by integrating topic models with probabilistic MF.

Matrix Factorization with Topic Models. In the litera-
ture, researchers have made several attempts to combine topic
models with MF, including CTM [Wang and Blei, 2011],
HFT [McAuley and Leskovec, 2013], and ETF [Zhang et al.,
2014]. However, these methods mainly aim to incorporate
ratings into topic models, and focus on combining the merits
from both kinds of models. Typically, a single MF component
is used, which is not suitable for local MF.

3 Bayesian Probabilistic Multi-Topic Matrix
Factorization

In this section, we present our model BPMTMF for rating
prediction. A glossary of notations used in the paper are listed
in Table 1. In what follows, we denote matrices by bold cap-
ital letters. Superscripts, such as in P(k), denote different
topics’ matrices for different superscripts; Subscripts on ma-
trices denote the indices of data. For example, Rum denotes
the entry in the u-th row and m-th column of the k-th topic
matrix.

Table 1: Notations used in the paper.
Symbols Descriptions
N,M number of rows (users) and columns (items)
R data matrix (2 RN⇥M ) (with missing values)
K the number (⌧ min(N,M)) of topics (or topic

number for simplification)
D the number (⌧ min(N,M)) of dimensions for

latent vectors
i = hu,mi the i-th observation in R

P(k)
u the topic-specific latent vector (2 RD) for the u-

th user w.r.t. the k-th topic
Q(k)

m the topic-specific latent vector (2 RD) for the m-
th item w.r.t. the k-th topic

zi (zu,m) latent topic associated with observation i =
hu,mi

✓u topic distribution (2 RK ) of the u-th user
�k item distribution (2 RM ) of the k-th topic
↵ Dirichlet priors over topics for topic models
� Dirichlet priors over items for topic models
 0 Gaussian-Wishart priors for probabilistic matrix

factorization

3.1 The Proposed Model
Our main idea is to construct clusters over items using topic
models, and predict the rating using the ensemble of multiple
topic-specific probabilistic matrix factorizations. Hence, our
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model consists of two parts: modeling the rated items and
modeling the ratings.

Modeling the Rated Items. To model rated items, we
adopt a similar approach following standard topic models
(e.g., Latent Dirichlet Allocation [Blei et al., 2003]) by mak-
ing the following analogy: an item is considered as a word
token while the set of rated items by a user is considered as
a document. In this way, a topic (i.e., item topic) is defined
as a multinomial distribution over the set of items. Let �k

denote the k-th topic and �k,m denote the probability of the
m-th item in the k-th topic. Given a set of K topics, the
user preference is modeled as a multinomial distribution over
them. Let ✓u denote the topical distribution of the u-th user
and ✓u,k denote the probability of the k-th topic in the topical
distribution of the u-th user. We employ symmetric Dirichlet
priors Dir(↵) and Dir(�) (with the hyper-parameters of ↵
and �) on ✓ and � respectively. The topic modeling is used to
generate the set of rated items for users as follows

P ({hu,mi}) /
Y

hu,mi

✓X

k

✓u,k�k,m

◆
, (2)

where a pair hu,mi indicates that the u-th user has rated the
m-th item. Eq. 2 enumerates all such pairs in the dataset.

Modeling the Ratings. To model ratings, topics are con-
sidered as contextual information, further a user or item is
associated with a topic-specific latent vector for each topic.
Let P(k)

u 2 RD (or Q(k)
m 2 RD) denote the topic-specific

latent vector for the u-th user (or the m-th item) w.r.t. the
k-th topic. We assume that a user will reflect different rating
behaviors in varying topical contexts, and an item will show
different rated patterns by users in varying topical contexts.
For example, a user is a fan of “Star War”, who is likely to
give high ratings to the movies of “Star Wars Episodes” but
low ratings to other action movies. Note that simply incorpo-
rating a categorical bias like in [Mirbakhsh and Ling, 2013;
Hu et al., 2014] will not solve the issue in the above exam-
ple, since the user give both high and low ratings in the same
“Action” category. Our model tries to capture the personal

impact of topical contexts on users’ rating process. To draw
topic-specific latent vectors, we employ Gaussian-Wishart
priors on latent vectors P(k) and Q(k) with the parameters
of  (k)

P = {µ(k)
P ,⇤(k)

P } and  (k)
Q = {µ(k)

Q ,⇤(k)
Q } as follows:

P ( (k)| (k)
0 ) = (3)

N (µ(k)|µ(k)
0 , (⇠(k)0 ⇤(k))�1)W(⇤(k)|W(k)

0 , ⌫(k)
0 )

where ⌫(k)0 is the degrees of freedom of Wishart distribu-
tion W(k), W(k)

0 is the scale matrix 2 RN⇥N for user (or
2 RM⇥M for item) and  (k)

0 = {µ(k)
0 , ⌫(k)0 ,W(k)

0 } for the
k-th topic. Given the k-th topic, a rating Rum is generated
according to a Gaussian distribution

P (Rum|P(k)
u ,Q(k)

m ,�2
k) = N (Rum|P(k)

u
>
Q(k)

m ,�2
k), (4)

1. For each topic k = 1, ...,K,
(1) Draw a multinomial distribution �k ⇠ Dir(�)

(2) Draw the hyperparameters of the topic-specific user and
item latent vectors P ( (k)

P | (k)
0 ) and P ( (k)

Q | (k)
0 )

2. For each item m = 1, ...,M ,
i. For each topic k = 1,...,K, draw the topic-specific item

latent vector Q(k)
m ⇠ P (Q(k)

m | (k)
Q )

3. For each user u = 1, ..., N ,
i. Draw ✓u ⇠ Dir(↵)

ii. For each topic k = 1, ...,K, draw the topic-specific user
latent vector P(k)

u ⇠ P (P(k)
u | (k)

P )

iii. For each rated item m by u

(1) Draw a topic z ⇠ Disc(✓u)
(2) Draw m ⇠ Disc(�z)

(3) Draw the rating Rum ⇠ N (Rum|P(z)
u

>
Q(z)

m ,�2
z)

Figure 1: The generative process of the BPMTMF model.

where the mean and variance are set to P(k)
u

>
Q(k)

m and �2
k

respectively.

The Final Model. Our proposed model, called BPMTMF,
integrates the above two components, i.e., the modeling of
rated items (Eq. 2) and the modeling of ratings (Eq. 4), in a
full Bayesian approach. We present the generative process of
BPMTMF in Fig. 1. We use item topics to connect these two
components, i.e., using topic-specific latent vectors. The gen-
erative story can be described as follows. When the u-th user
wants to rate the m-th item, she first draws a topic assign-
ment of z according to her topical distribution ✓u. Then the
m-th item is generated using �z . Finally the rating is gener-
ated based on the latent vectors P(k)

u and Q(k)
m corresponding

to the k-th topic. Given the hyper-parameters, the likelihood
over all ratings is as below

P (R|↵,�, 0,�) = (5)
Z �Y

u

P (✓u|↵)
��Y

k

P (�k|�)P ( (k)
P | (k)

0 )P ( (k)
Q | (k)

0 )
�

�Y

k

Y

m

P (Q(k)
m | (k)

Q )
��Y

k

Y

u

P (P(k)
u | (k)

P )
�

� Y

hu,mi

X

k

✓u,k · �k,m · P (Rum|P(k)
u ,Q(k)

m ,�2
k)
�

dP(k)
u dQ(k)

m d (k)
P d (k)

Q d✓ud�k.

Note that setting topic-specific latent vectors itself will in-
crease the hazard of overfitting, while our Bayesian approach
is effective to control the model complexity via using hyper-
priors. Although we incorporate more hyper-parameters, as
shown in BPMF [Salakhutdinov and Mnih, 2008] and our em-
pirical results, the performance is relatively insensitive to the
selection of hyper-parameters.
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3.2 Model Learning with a Collapsed Gibbs
Sampler

In our model, the parameters (or variables) to learn are listed
as follows: users’ topical distributions {✓u}, item topics
{�k}, users’ latent vectors {P(k)

u } and items’ latent vectors
{Q(k)

m }. Our task is to learn the parameters {✓,�,P,Q} to
maximize the likelihood of observing rating matrix R. It is
difficult to directly optimize such an objective function due
to the complex coupling of parameters and hidden variables.
We adopt the commonly used Gibbs sampling algorithm [An-
drieu et al., 2003] for both inference and parameter learning.
In each iteration, we alternatively infer topic assignments and
update the topic-specific latent factors {P(k)

u } and {Q(k)
m }.

When the algorithm converges, we can estimate {✓u} and
{�k} using the topical assignments.

Inferring Topic Assignments. Fixing all topic-specific la-
tent vectors and the hyper-parameters, we can derive the con-
ditional distribution for a data entry i = hu,mi as below

P (zi = k|Z¬i,R,P,Q,↵,�,�) (6)

/ nk
u + ↵� 1

PK
j=1(n

j
u + ↵)� 1

⇥ nk
m + � � 1

PM
h=1(n

k
h + �)� 1

⇥

N (Rum|P(k)
u

>
Q(k)

m ,�2
k),

where nk
u denotes the number of items rated by the u-th user

with the k-th topic, nk
m denotes the number of users who rate

the m-th item with the k-th topic, and the rating Rum is gen-

erated by the probability of N (Rum|P(k)
u

>
Q(k)

m ,�2
k) using

the latent vectors corresponding to the k-th topic. Actually,
the sampling equation is similar to the derivations for stan-
dard LDA models in [Heinrich, 2005] except that we incor-
porated the generation of ratings.

Updating Topic-specific Latent Vectors. The process
of updating topic-specific latent factors is similar to
the original Bayesian Probabilistic Matrix Factorization
(BPMF) [Salakhutdinov and Mnih, 2008]. The difference lies
in that we assume the topic assignment for each rated item
is given, then the updating is performed on the correspond-
ing topic-specific latent vectors. The conditional distribution
over users’ topic-specific latent vectors P(k)

u is a Gaussian
distribution:

P (P(k)
u |R,Q(k), (k)

P ,�2
k) (7)

= N (P(k)
u |µ(k)

P

⇤
, [⇤(k)

P

⇤
]�1)

/ P (P(k)
u |µ(k)

P ,⇤(k)
P )

MY

m=1

N (Rum|P(k)
u

>
Q(k)

m ,�2
k)

I
(k)
um ,

in which we have

⇤(k)
u

⇤
= ⇤P(k) +

1
�2
k

MX

m=1

(Q(k)
m Q(k)

m
>
)I

(k)
um (8)

µ(k)
u

⇤
= [⇤(k)

u
⇤
]�1(⇤P(k)µP(k) +

1
�2
k

MX

m=1

(Q(k)
m Rum))I

(k)
um (9)

where I(k)um is an indicator value which is equal to 1 only
when the topic assignment zu,m = k. We can learn items’
latent vectors {Q(k)

m } similarly, which are omitted here.

The Overall Learning Algorithm. In Alg. 1, we present
the overall Gibbs sampling learning algorithm [Andrieu et al.,
2003] for the BPMTMF model. At the beginning, we use
BPMF to initialize topic-specific latent vectors P and Q. In
each iteration, we first sample the topic assignments for all
the observed data entries, then update P and Q with topic
assignments fixed. After burn-in periods, we can estimate the
parameters of {✓u} and {�k} using a simple counting method
for each iterative

✓u,k =
nk
u + ↵

PK
j=1(n

j
u + ↵)

, (10)

�k,m =
nk
m + �

PM
h=1(n

k
h + �)

,

where nk
u, nj

u, nk
m and nk

h are the counts defined in Eq. 6.

Computational Complexity Analysis. Let S be the total
number of non-zero observations in R, and nk

u,· =
P

m I(k)um

defined in Eq. 10. In an iteration, the running time for up-
dating topic assignments is roughly O(KDS). For updating
users’ latent vectors, the cost mainly comes from the com-

putation of
PM

m=1(Q
(k)
m Q(k)

m
>
)I

(k)
um (Eq. 8) and the matrix

inverse for ⇤(k)
u

⇤
(Eq. 9), which take the costs of O(D2n(k)

u,· )
and O(D3) respectively. Here, we assume that it requires
O(D3) time for the RD⇥D matrix inversion even though
more efficient algorithms exist [Hu et al., 2008]. Hence, up-
dating ⇤(k)

u
⇤

and µ(k)
u

⇤
takes a cost of O(D3+D2n(k)

u,· ). Enu-
merating N users and K topics, it takes a cost of O(D3KN+
D2S) with S =

P
u,k n

k
u,·. Similarly, updating items’ latent

vectors takes a cost of O(D3KM +D2S). To sum the above
parts, the cost of an iteration is O(DKS+D2S+D3KN +
D3KM).

3.3 Rating Predictions
When all the parameters of BPMTMF are learnt, we can use
the following formula for rating prediction

R̂um ⇡ (11)

1
PK

k0=1 ✓u,k0 · �m,k0

KX

k=1

⇢
(✓u,k · �m,k)(P

(k)
u

>
Q(k)

m )

�
,

where R̂um is the predicted value for Rum. The above pre-
diction uses only a single Gibbs sample, which can be simply
extended to average the results from multiple samples.

Connections with Previous Studies. Eq. 1 presents a gen-
eral formulation for previous studies on non-probabilistic lo-
cal matrix factorization [Mackey et al., 2011; Lee et al., 2013;
Chen et al., 2015]. Interestingly, our prediction formula
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Algorithm 1: The learning algorithm for BPMTMF.

1 Use BPMF to initialize P(k) and Q(k);
2 repeat
3 for each entry i = hu,mi do
4 Sample a topic assignment zi using Eq. 6:

zi = P (zi = k|Z¬i,R,P,Q,↵,�,�)

5 end
6 for each topic k = 1, 2, ...,K do
7 Sample Gaussian-Wishart priors using Eq. 3:

 (k)
P = P ( (k)

P | (k)
0 ),  (k)

Q = P ( (k)
Q | (k)

0 )

for each user u = 1, 2, ..., N do
8 Sample users’ topic-specific latent vectors using

Eq. 7:

P(k)
u = P (P(k)

u |R,Q(k), (k)
P ,�k)

9 end
10 for each item m = 1, 2, ...,M do
11 Sample items’ topic-specific latent vectors:

Q(k)
m = P (Q(k)

u |R,P(k), (k)
Q ,�k)

12 end
13 end
14 until Convergence;

(Eq. 11) has a close connection with Eq. 1. Given a
pair of hu,mi, we can have the corresponding mappings:

P(k)
u

>
Q(k)

m ! R̂(k)
um indicating the predicted value for Rum

in the k-th “cluster”, ✓u,k ·�m,k ! L(k)
um indicating the weight

for R̂(k)
um, and

PK
k0=1 ✓u,k0 · �m,k0 ! Zum playing the role

of the normalizer. With such an analogy, our formula can
be considered as a probabilistic realization of previous non-
probabilistic methods: a cluster in Eq. 1 is essentially a topic
in our approach. Such a connection sheds lights on that previ-
ous studies can be explained in a probabilistic way with more
deep theoretical analysis and extensions.

4 Experiments and Analysis
4.1 Experimental Setup
Datasets. We evaluate the models on the two publicly avail-
able movie datasets Movielens1 and Netflix2 described in Ta-
ble 2. We randomly split the data into training set and testing
set with the ratio 9 : 1. The final results are reported by the
average of five such runs.

Table 2: Statistics of our datasets.
Data Set #Users #Items #Ratings Density

Movielens 69,878 10,677 10,000,054 1.31%
Netflix 480,189 17,770 100,000,000 1.17%

1http://www.grouplens.org/
2http://www.netflixprize.com/

Evaluation Metrics. We adopt the commonly used Root
Mean Square Error (RMSE) to evaluate the predictive accu-
racy, defined by:

RMSE =

sP
hu,mi(Rum � R̂um)2

Ntest

where Ntest is the number of ratings in test set. A smaller
value of RMSE indicates a better performance.

Comparison Methods. We compare the proposed
BPMTMF with following baselines.

• DFC [Mackey et al., 2011]: divides a large-scale matrix
factorization task into smaller subproblems, and uses
the techniques from randomized matrix approximation
to combine the subproblem solutions.

• LLORMA [Lee et al., 2013]: uses non-parametric ker-
nel smoothing to develop local low-rank approximation
and aggregate several submatices into unified matrix ap-
proximation.

• WEMAREC [Chen et al., 2015]: constructs submatrices
via partitional co-clustering and proposes a submatrix-
based weighting strategy to predict the final ratings.

• PMTMF: As a direct comparison of our Bayesian ap-
proach, we also implement a non-Bayesian Probabilistic
Multi-Topic Matrix Factorization, which does not have
any prior parameters. Expectation-Maximization algo-
rithm is employed for optimization.

We do not use traditional MF methods [Mnih and Salakhut-
dinov, 2007; Koren et al., 2009] as baselines here, since
previous studies [Mackey et al., 2011; Lee et al., 2013;
Chen et al., 2015] have shown that the above local MF meth-
ods have outperformed the traditional MF methods. We im-
plement our methods PMTMF and BPMTMF based on librec
toolkit [Guo et al., 2015].

Parameter Setting. Following [Chen et al., 2015; Lee et

al., 2013], the number of dimensions for latent vectors, i.e.,

D, is set to 20 for all the methods. For BPMTMF and
PMTMF, we empirically set the number of topics K to 20;
Following [Griffiths and Steyvers, 2004], ↵ and � are set
to 50

K and 0.01 respectively. Following [Salakhutdinov and
Mnih, 2008], we initialize µ(k)

0 = 0, ⌫(k)0 = D, W(k)
0

to the identity matrix and variance �2
k = 2. As indicated

in [Salakhutdinov and Mnih, 2008], the predictive accuracy
becomes relatively stable when the iteration number is larger
than 150 for BPMF. Hence, for BPMTMF, we discard 200
iterations for burn-in, and run another 150 iterations for sam-
pling. The other parameters for baselines are set to the re-
ported optimal values in the original papers since we have
similar experimental setup.

4.2 Results and Analysis
Performance Comparison for Rating Prediction. We
present the performance of the comparison methods for rating
prediction in Table 4. Among all the baseline methods, the
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Table 3: Top ten items in a cluster or a topic from two sample movie genres on MovieLens dataset. A “
p

” indicates a correct
categorization of an item in the corresponding category.

Action Drama
LLORMA BPMTMF LLORMA BPMTMF

p
Star Wars: Episode IV

p
Indiana Jones and the Last Crusade

p
American Beauty

p
Silence of the Lambsp

Star Wars: Episode V
p

Raiders of the Lost Ark
p

Braveheart
p

Saving Private Ryan
⇥ American Beauty

p
Die Hard

p
Saving Private Ryan

p
Shawshank Redemption

⇥ Shakespeare in Love
p

Star Wars: Episode IV ⇥ L.A. Confidential
p

American Beautyp
Saving Private Ryan

p
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recently proposed WEMAREC performs best. WEMAREC
adopts a partitional co-clustering method for submatrix gen-
eration, representing the state-of-art for local MF. Then we
examine the performance of our proposed methods, namely
PMTMF and BPMTMF. We can observe that PMTMF is only
slightly worse than the best baseline WEMAREC. It indicates
that our probabilistic realization of local MF (i.e., PMTMF)
can achieve very good performance compared with previous
local MF methods. Further, the Bayesian model BPMTMF
is substantially better than PMTMF and WEMAREC, which
shows the effectiveness of the Bayesian approach. Note
that the difference between PMTMF and BPMTMF is that
BPMTMF implements PMTMF in a full Bayesian approach.
Hence, to explain why BPMTMF improves over PMTMF, an
important reason is that a Bayesian model is more effective
to control the model complexity. Compared to the baseline
methods, BPMTMF provides a more principled solution to
both submatrix generation and weight setting in a joint model.
It benefits from the Bayesian approach that fewer efforts are
required in parameter selection due to the incorporation of
hyper-priors. As a comparison, WEMAREC needs to set the
co-clustering parameter and combine weights with more care.

Table 4: Comparison of RMSE results for different methods.
Methods MovieLens Netflix

DFC 0.8064 0.8451
LLORMA 0.7834 0.8243

WEMAREC 0.7769 0.8142
PMTMF 0.7792 0.8198

BPMTMF 0.7679 0.8081

Cluster Analysis. Besides performance improvement, an-
other merit of our proposed model is that we characterize
clusters as topics, which is likely to have more coherent se-
mantics. To see this, we construct a qualitative analysis for
the clustering results. Among the baselines, DFC adopts
a randomized method for submatrix generation, and WE-
MAREC tends to produce very small submatrices, hence both
are not suitable for clustering analysis. We select LLORMA
as a comparison for BPMTMF. In MoiveLens dataset, a
movie is attached with a set of movie genre labels. We first
run both LLORMA and BPMTMF to produce a set of clus-
ters (or topics). Given a learnt cluster (or topic), we assign a
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Figure 2: Performance with different numbers of topics on
Netflix dataset.

movie genre label with the most number of occurrences in the
labels of its ten top representative items. Table 3 presents the
two sample clusters generated by LLORMA and BPMTMF.
We can observe that BPMTMF is able to generate more co-
herent clusters, i.e., topics. With coherent topical semantics,
it provides a more interpretable latent representation for users
and items.

Impact of the Topic Number. An important parameter in
BPMTMF is the number of topics (i.e., K), since we set
topic-specific latent representations corresponding to each
topic. We vary K in the interval [5, 45] with a gap of 5,
and report the RMSE performance of BPMTMF in Fig. 2.
We can observe that the performance achieves the best when
15  K  25. We also incorporate the performance of
BPMF as a comparison, which is a special case of our model
BPMTMF when K = 1. The performance when K � 5
is substantially better than that of K = 1. By combining
the analysis for Table 3, we can see using multi-topic MF is
effective to capture the complex characteristics of users and
items, further improve the performance of rating prediction.

5 Conclusion
In this paper, we present a Bayesian formulation of local ma-
trix factorization. Our approach elegantly integrates prob-
abilistic matrix factorization with topic models in a joint
model. We have also shown that there is a close connection
between our model and previous non-probabilistic methods.
Our model is more powerful to reflect the complex charac-
teristics for users and items in rating prediction, and further
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enhances the model interpretability. Extensive experiments
on large real-world datasets demonstrate the effectiveness of
the proposed model.

Acknowledgments This work was partially supported by
NSFC grants (No. 61321064, 61472141, 61502502), Shang-
hai Knowledge Service Platform Project(No. ZF1213) and
Beijing Natural Science Foundation (No. 4162032).

References
[Andrieu et al., 2003] Christophe Andrieu, Nando De Fre-

itas, Arnaud Doucet, and Michael I Jordan. An introduc-
tion to mcmc for machine learning. Machine learning,
50(1-2):5–43, 2003.

[Beutel et al., 2015] Alex Beutel, Amr Ahmed, and Alexan-
der J Smola. Accams: Additive co-clustering to approx-
imate matrices succinctly. In Proceedings of the 24th In-

ternational Conference on World Wide Web, pages 119–
129. International World Wide Web Conferences Steering
Committee, 2015.

[Blei et al., 2003] David M Blei, Andrew Y Ng, and
Michael I Jordan. Latent dirichlet allocation. the Journal

of machine Learning research, 3:993–1022, 2003.
[Chen et al., 2015] Chao Chen, Dongsheng Li, Yingying

Zhao, Qin Lv, and Li Shang. Wemarec: Accurate and
scalable recommendation through weighted and ensemble
matrix approximation. In Proceedings of the 38th Inter-

national ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 303–312. ACM,
2015.

[Dhillon et al., 2003] Inderjit S Dhillon, Subramanyam Mal-
lela, and Dharmendra S Modha. Information-theoretic co-
clustering. In Proceedings of the ninth ACM SIGKDD in-

ternational conference on Knowledge discovery and data

mining, pages 89–98. ACM, 2003.
[Griffiths and Steyvers, 2004] Thomas L Griffiths and Mark

Steyvers. Finding scientific topics. Proceedings of the

National Academy of Sciences, 101(suppl 1):5228–5235,
2004.

[Guo et al., 2015] Guibing Guo, Jie Zhang, Zhu Sun, and
Neil Yorke-Smith. Librec: A java library for recommender
systems. In Posters, Demos, Late-breaking Results and

Workshop Proceedings of the 23rd International Confer-

ence on User Modeling, Adaptation and Personalization,
2015.

[Heinrich, 2005] Gregor Heinrich. Parameter estimation for
text analysis. Technical report, Technical report, 2005.

[Hu et al., 2008] Yifan Hu, Yehuda Koren, and Chris Volin-
sky. Collaborative filtering for implicit feedback datasets.
In Data Mining, 2008. ICDM’08. Eighth IEEE Interna-

tional Conference on, pages 263–272. IEEE, 2008.
[Hu et al., 2014] Longke Hu, Aixin Sun, and Yong Liu. Your

neighbors affect your ratings: on geographical neighbor-
hood influence to rating prediction. In Proceedings of the

37th international ACM SIGIR conference on Research

& development in information retrieval, pages 345–354.
ACM, 2014.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, (8):30–37, 2009.

[Lee et al., 2013] Joonseok Lee, Seungyeon Kim, Guy
Lebanon, and Yoram Singer. Local low-rank matrix ap-
proximation. In Proceedings of The 30th International

Conference on Machine Learning, pages 82–90, 2013.
[Lee et al., 2014] Joonseok Lee, Samy Bengio, Seungyeon

Kim, Guy Lebanon, and Yoram Singer. Local collabo-
rative ranking. In Proceedings of the 23rd international

conference on World wide web, pages 85–96. ACM, 2014.
[Mackey et al., 2011] Lester W Mackey, Michael I Jordan,

and Ameet Talwalkar. Divide-and-conquer matrix factor-
ization. In Advances in Neural Information Processing

Systems, pages 1134–1142, 2011.
[McAuley and Leskovec, 2013] Julian McAuley and Jure

Leskovec. Hidden factors and hidden topics: understand-
ing rating dimensions with review text. In Proceedings of

the 7th ACM conference on Recommender systems, pages
165–172. ACM, 2013.

[Mirbakhsh and Ling, 2013] Nima Mirbakhsh and Charles X
Ling. Clustering-based factorized collaborative filtering.
In Proceedings of the 7th ACM conference on Recom-

mender systems, pages 315–318. ACM, 2013.
[Mnih and Salakhutdinov, 2007] Andriy Mnih and Ruslan

Salakhutdinov. Probabilistic matrix factorization. In Ad-

vances in neural information processing systems, pages
1257–1264, 2007.

[Paterek, 2007] Arkadiusz Paterek. Improving regularized
singular value decomposition for collaborative filtering.
In Proceedings of KDD cup and workshop, volume 2007,
pages 5–8, 2007.

[Salakhutdinov and Mnih, 2008] Ruslan Salakhutdinov and
Andriy Mnih. Bayesian probabilistic matrix factorization
using markov chain monte carlo. In Proceedings of the

25th international conference on Machine learning, pages
880–887. ACM, 2008.

[Shan and Banerjee, 2008] Hanhuai Shan and Arindam
Banerjee. Bayesian co-clustering. In Data Mining, 2008.

ICDM’08. Eighth IEEE International Conference on,
pages 530–539. IEEE, 2008.

[Wang and Blei, 2011] Chong Wang and David M Blei. Col-
laborative topic modeling for recommending scientific ar-
ticles. In Proceedings of the 17th ACM SIGKDD interna-

tional conference on Knowledge discovery and data min-

ing, pages 448–456. ACM, 2011.
[Zhang et al., 2014] Yongfeng Zhang, Guokun Lai, Min

Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. Explicit
factor models for explainable recommendation based on
phrase-level sentiment analysis. In Proceedings of the 37th

international ACM SIGIR conference on Research & de-

velopment in information retrieval, pages 83–92. ACM,
2014.

3916


