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Abstract
Multi-view tagging has become increasingly popu-
lar in the applications where data representations by
multiple views exist. A robust multi-view tagging
method must have the capability to meet the two
challenging requirements: limited labeled training
samples and noisy labeled training samples. In this
paper, we investigate this challenging problem of
learning with limited and noisy tagging and pro-
pose a discriminative model, called MSMC, that
exploits both labeled and unlabeled data through
a semi-parametric regularization and takes advan-
tage of the multi-label space consistency into the
optimization. While MSMC is a general method for
learning with multi-view, limited, and noisy tag-
ging, in the evaluations we focus on the specific
application of noisy image tagging with limited
labeled training samples on a benchmark dataset.
Extensive evaluations in comparison with state-of-
the-art literature demonstrate that MSMC outstands
with a superior performance.

1 Introduction
Multi-view tagging has become increasingly popular in the
applications where data representations by multiple views
exist. It aims at improving generalization performance by
learning tagging tasks from multiple views simultaneously.
Multi-view tagging has shown a strong power in helping de-
velop effective solutions to many real-world problems. Most
of the existing multi-view tagging algorithms are proposed by
imposing a similarity constraint between two distinct single
view taggings. Generally, two requirements are imposed for a
robust multi-view learning method. First, since it is very time-
consuming and labor-intensive for manually labeling data, it
is expected that a robust multi-view tagging method needs
only a small portion of the labeled training samples. Second,
even with the manual labeling of images, there is no guarantee
that the provided labels are always correct. In many practical
engineering applications, the obtained training data are often
contaminated by noise. Figure 1 shows exemplar images with
noisy tagging. In Figure 1(a), the given tags of the image are
airplane and sky, while it is obvious that the tag airplane is
given incorrectly. In Figure 1(b), the given tags of the image

Figure 1: Exemlpar images with noisy tagging.

Figure 2: Exemplar images with multiple tags.

are person, sea, and bear, while it is obvious that the tag bear
is given incorrectly.

This paper is motivated to address both requirements for
developing a robust multi-view tagging method. First, we
want to make use of the unlabeled data through a semi-
parametric regularization. In particular, we consider the case
where the unlabeled data are expected to determine the
marginal distribution of the data if there is a small set of la-
beled data available along with a relatively large set of unla-
beled data. Thus, we must consider the geometric structure of
the marginal distribution of the whole data including the la-
beled data and the unlabeled data. Moreover, semi-parametric
regularization are applied to explore the geometric structure
of the whole data.

Second, we want to mitigate the influence of noisy tags by
exploiting the whole information contained in the tag space.
Figure 2 shows exemplar images with multiple tags. The im-
ages in the first row in Figure 2, which are all tagged as bird,
always have the accompanied tags of sky, cloud, and tree,
while the images in the second row in Figure 2, which are

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1718



all tagged as fish, always have the accompanied tags of wa-
ter, coral, and ocean. Obviously, these accompanied tags can
be utilized as an additional feature to help better distinguish
images tagged as bird from images tagged as fish. However,
in the one-vs-all (OVA) mode, most of the Support Vector
Machine (SVM)-based methods only utilize one tag of the
data at a time, and ignore the other tags the data contain at
the same time. For multi-view learning, since the multi-label
space, which is the constitution of accompanied tags, can be
considered as an additional shared feature between different
views, we make use of it to build multi-label space consis-
tency between samples from different views to mitigate the
influence of the noise.

In this paper we investigate the multi-view tagging problem
with a new perspective of considering semi-parametric regu-
larization and multi-label space consistency simultaneously.
In particular, we present Multi-view Semi-parametric Support
Vector Machine with Multi-label Space Consistency (referred
as MSMC), a discriminative method for multi-view tagging.
The key idea lies in incorporating the geometric structure of
the unlabeled data with the semi-parametric regularization
and extending the similarity constraints between predictions
on the samples from multiple views with the multi-label space
consistency constraint.

While MSMC is a general method, we demonstrate
through extensive evaluations in the application of multi-view
image tagging using real data that the proposed method per-
forms well in comparison with the peer methods in the litera-
ture as an effective and promising solution to the problem of
semi-supervised multi-view learning with limited and noisy
image tagging.

2 Related work
We begin by reviewing the literature on semi-supervised
learning and multi-view learning, and then review the related
work on the tagging methods. Finally, we introduce the liter-
ature in the field of noisy learning.

Most existing semi-supervised learning methods have been
casted as a regularization problem in the literature. As a
representative method, transductive SVM [Vapnik, 1998;
Xu et al., 2007] is considered as combining fully supervised
SVM with an additional regularization term on the unla-
beled data. Semi-parametric regularization is also an attrac-
tive solution to semi-supervised problems [Smola et al., 1998;
Ruppert et al., 2003; Guo et al., 2008; Bouboulis et al., 2010;
Li et al., 2013].

Multi-view learning utilizes the consensus among learners
trained on different views to improve the overall classifica-
tion result [Xu et al., 2013]. It has been extensively used in the
applications where data representations by multiple views ex-
ist [Sindhwani and Rosenberg, 2008; Rosenberg et al., 2009;
Li et al., 2010; Liu et al., 2015]. Farquhar et al. [Farquhar et
al., 2006] proposes SVM-2K by imposing a similarity con-
straint between two distinct SVMs each trained from one
view of the data.

Tagging methods in the literature are mainly categorized
into two types: generative methods and discriminative meth-
ods [Blei and Jordan, 2003; Zha et al., 2008; Zhang and Zhou,

2014]. Most generative methods introduce a set of latent vari-
ables to learn the joint distribution of the image features and
semantic labels [Barnard et al., 2003]. Discriminative meth-
ods reduce the multi-label problem to a set of binary clas-
sification problems. The representative techniques for this
category of approaches are extensions of SVM, which have
demonstrated a strong discriminative power [Goh et al., 2001;
Qi and Han, 2007; Yang et al., 2006].

Noisy tagging refers to scenarios of attribute noise and
class noise [Zhu and Wu, 2004]. In this paper, we concen-
trate on the problem raised by class noise. There are a num-
ber of denoising methods for classification; they can be fur-
ther classified into two categories: filtered preprocessing of
the data and robust design of the algorithms. In the former
category, filtered preprocessing is developed to remove the
noise from the training set as much as possible [Van Hulse
and Khoshgoftaar, 2006; Zhu et al., 2003]. For the latter cat-
egory, robust algorithms are designed to reduce the impact
of the noise in the classification [Lin and de Wang, 2004;
Liu and Zheng, 2007; Tang et al., 2011; Qi et al., 2012]. Qi
et al. [Qi et al., 2012] proposes a multi-view noisy tagging
method, called MSS-2K, which exploits the information from
a multi-label space. Further, they introduce an active learning
scheme called MITL to improve the performance of MSS-2K.
In addition, tag refinement is considered as the auxiliary work
for image noisy tagging in the literature [Wang et al., 2007;
Zhu et al., 2010; Liu et al., 2010].

3 Semi-parametric Regularization Learning
Semi-parametric Regression
In statistics, semi-parametric regression refers to regression
models that combine parametric and nonparametric models.

For example, suppose that we want to estimate an unknown
function from a set of labeled data points (xi, yi), 1  i  l
by minimizing

f̄⇤ =argmin
f̄

1

l

lX

i=1

L(xi, yi, f̄(xi)) (1)

where L(·) is a loss function.
Then for parametric regression models, f̄ can be given as

an explicit function which is dependent on a finite number
of parameters (e.g., linear regression); for non-parametric re-
gression models, f̄(x) cannot be estimated via an explicit
function; for semi-parametric regression models, f̄ can be de-
composed into two parts as f̄ , f + h, where f is a non-
parametric part which can be estimated from the data set,
h 2 span{ p}Mp=1, where { p}Mp=1 : X ! R is a family
of parametric functions.

Minimizing the framework in Eq. (1) may lead to nu-
merical instabilities and a bad generalization performance
[Schölkopf and Smola, 2001]. A possible solution is to add
stabilization (regularization) term to the above minimization
problem. This leads to a better conditioning of the problem.
Thus, we consider the following minimization problem

f̄⇤ =argmin
f̄

1

l

lX

i=1

L(xi, yi, f̄(xi)) + �1⌦1[f ] + �2⌦2[h]

(2)
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where �1 > 0 and �2 > 0 are regularization parameters.
When we equivalently think the feature space as a reproduc-
ing kernel Hilbert space, ⌦1[f ] is the norm of the RKHS HK

representation of the feature space kfk2K . ⌦2[h] is the norm
of the parametric space khk2 , where k · k is the norm in
 , span{ p}Mp=1. In this case, we equivalently minimize

f̄⇤ =argmin
f̄

1

l

lX

i=1

L(xi, yi, f̄(xi)) + �1kfk2K + �2khk2 
(3)

where f̄ , f + h with f 2 HK , and h 2  .
The following semi-parametric Representer Theorem

states that the solution to the minimization problem in Eq.
(3) exists in HK and  , and gives the explicit form of a min-
imizer.
Theorem 1. (Semi-parametric Representer The-
orem [Schölkopf and Smola, 2001]): Denote by
⌦ : [0,1)⇥ [0,1) ! R a strictly monotonically increasing
function, by X a set, and by c : (X ⇥ R2)l ! R [ {1} an
arbitrary loss function. Let { p}Mp=1 : X ! R be a set of M
real valued functions with the property that the l⇥M matrix
( p(xi))ip has rank M and span{ p} ,  ⇢ H?

K has the
norm k · k . Then for any f̄ , f + h with f 2 HK and
h 2  , minimizing the regularized risk

c((x1, y1, f̄(x1)), . . . , (xl, yl, f̄(xl))) + ⌦(kfkK , khk )
admits a representation of the form

f̄(x) =
lX

i=1

↵iK(xi,x) +
MX

p=1

�p p(x) (4)

with ↵i,�p 2 R.

Learning Parametric Functions
Let x1, . . . ,xl+� 2 Rd denote a set of inputs including l
labeled data points and � unlabeled data points. For semi-
parametric regression, we might hope that the geometric
structure of the whole data distribution can be exploited for
a better function learning. There are suitable choices for the
parametric functions. Specifically, we adopt the same strat-
egy as that in [Guo et al., 2008] to obtain the parametric
functions by applying Kernel Principal Component Analysis
(KPCA) algorithm [Schölkopf et al., 1997] to the whole data
set. KPCA finds the principal axes in the feature space which
carry more variance than any other directions by diagonaliz-
ing the covariance matrix.

⌃ =
1

l + �

l+�X

j=1

�(xj)�(xj)
T (5)

where � is a mapping function in the RKHS.
To find the principal component, we solve the eigenvalue

problem, ⌃W = ⇤W. Let ⇤ denote the M largest eigenval-
ues and W the corresponding eigenvector space. Given the
data point x, the projection onto the principal axes is given
by �(x)TW. Therefore, we can set the parametric function
for �(x):

 (x) = �(x)TW (6)

Since W is a linear combination of the kernel functions in
RKHS, the geometric structure of the marginal distribution of
the data can be obtained by this learned parametric function.
Further, the geometric structure of the data distribution is in-
corporated by a semi-parametric regularization. In this way,
we obtain the minimizer of Eq. (3) as follows:

f̄⇤(x) =
lX

i=1

↵⇤
iK(xi,x) +

MX

p=1

�⇤
p p(x) (7)

where K is the kernel in the original RKHS HK .

3.1 Semi-parametric SVM
Based on the above derivation, we extend the standard SVM
to semi-parametric SVM by solving the following optimiza-
tion problem:

min
w,�

1

2
kwk2 + 1

2

MX

p=1

�2
p + C

lX

i=1

⇠i

s.t. yi(hw,�(xi)i+ h�, (xi)i) � 1� ⇠i
⇠i � 0 i = 1, . . . , l (8)

where � = (�1, . . . ,�M+1) and  (xi) =
(1, 1(xi), . . . , M (xi)). In particular, the semi-parametric
SVM reduces to the standard SVM when M = 0.

4 Multi-view Semi-parametric SVM with
Multi-label Space Consistency

4.1 Notations for Multi-label Space
In this paper we concentrate on the two-view case. It is easy
to extend the proposed method to more than two views. Two
views of the dataset I are denoted as V(a) and V(b), respec-
tively. Each instance Ii 2 I is labeled with various tags. The
whole tag vocabulary for I forms the E-dimensional multi-
label space T . When one tag Tr (1  r  E) is chosen
as the classification target, the other tags can form the addi-
tional feature space of tags, denoted as Lr. Obviously, the
dimensionality of Lr is E � 1. Let an E-dimensional vec-
tor di = (di,1, di,2, . . . , di,E)0 be the tag representation for
Ii, where di,r 2 {0, 1}, 1  r  E represents the occur-
rence of the rth tag Tr for Ii. For each Ii and each Tr, we
denote yi,r as the class label of Ii, where yi,r = 2 · di,r � 1.
Ii = (x(a)

i ,x
(b)
i ,di), where x

(a)
i and x

(b)
i are the feature de-

scriptors of Ii.

4.2 Motivation of MSMC
In the two views learning, we assume that the labeled data are
of the following formulation: Ii = {x(a)

i ,x
(b)
i , yi}ni=1, where

x

(a)
i (x(b)

i ) is a feature vector of Ii in view V(a) (V(b)), and
yi 2 {�1,+1} is a class label of Ii. The classical SVM-2K
imposes a similarity constraint between two distinct SVMs
each trained from one view of the data. The constraint they
introduce into the optimization is

|f (a)(x(a)
i )� f (b)(x(b)

i )|  ⌘i, ⌘i � 0 (9)
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where f (a)\(b)(·) are the SVM decision functions belonging
to each of the two views by superscripts a and b, respectively,
⌘i is a variable that improves the consensus between the two
views.

A first approach to multi-view semi-parametric learning
is to combine the above constraint with the semi-parametric
SVM objective function for each view,

|f̄ (a)(x(a)
i )� f̄ (b)(x(b)

i )|  ⌘
(ab)
i , ⌘

(ab)
i � 0 (10)

where f̄ (a)\(b)(·) are the semi-parametric SVM decision
functions belonging to each of the two views by superscripts
a and b, respectively.

However, this model suffers from the limitation that it can-
not exploit the information contained in the tag space. As-
sume that we have three images, where the first has tags mo-
tor, people, and road, the second has tags people and road,
and the third has tags people, TV, and office. When the tag
people is chosen as the classification target, the second im-
age is more similar to the first one than the third one because
it shares road with the first image while the third image has
no road. From this point of view, the traditional multi-view
learning methods that ignore the tag information may not be
appropriate.

Specifically, in the OVA mode, when one tag Tr is cho-
sen as the classification target, the other tags can form
the additional feature space of the tags Lr. We denote
the feature vector of Ii in Lr as ti,r, where ti,r =
(di,1, . . . , di,r�1, di,r+1, . . . , di,E)0. The neighborhood of Ii
in Lr ( including Ii itself) is denoted as Nr(Ii). The neigh-
borhood information can then be added into the learning be-
tween the views by introducing the following consistency
constraints:

8l
i=1 and 8j 2 Ni :

|f̄ (a)(x(a)
i )� f̄ (b)(x(b)

j )|  ⌘(ab)ij , ⌘(ab)ij � 0 (11)

|f̄ (b)(x(b)
i )� f̄ (a)(x(a)

j )|  ⌘(ba)ij , ⌘(ba)ij � 0 (12)

where Ni , {j|Ij 2 Nr(Ii)}. We show that constraint (12)
can be approximately obtained by constraint (11). For i 2 Nj ,
constraint (11) works. For i /2 Nj , we obtain the following
constraint based on constraint (11):

|f̄ (b)(x(b)
i )� f̄ (a)(x(a)

j )|
= |f̄ (b)(x(b)

i )� f̄ (a)(x(a)
i ) + f̄ (a)(x(a)

i )� f̄ (b)(x(b)
j )

+ f̄ (b)(x(b)
j )� f̄ (a)(x(a)

j )|
 |f̄ (b)(x(b)

i )� f̄ (a)(x(a)
i )|+ |f̄ (a)(x(a)

i )� f̄ (b)(x(b)
j )|

+ |f̄ (b)(x(b)
j )� f̄ (a)(x(a)

j )|
 ⌘

(ab)
ii + ⌘

(ab)
ij + ⌘

(ab)
jj , ⌘̄ij (13)

From the above inference, constraint (12) coincides with con-
straint (11) approximately with a little larger constraint vari-
able. Thus, we only select constraint (11) in order to reduce
the computational complexity.

4.3 Formulation of MSMC
Combining the two-view constraint (11) with the semi-
parametric SVM and allowing different regularization con-
stants, we obtain the following optimization for multi-view

semi-parametric SVM with multi-label space consistency
(MSMC):

min
w,�

1
2
kw(a)k2 + 1

2
kw(b)k2 + 1

2
k�(a)k2 + 1

2
k�(b)k2

+C(a)
lX

i=1

⇠(a)i + C(b)
lX

i=1

⇠(b)i +
lX

i=1

X

j2Ni

C(ab)
ij ⌘(ab)ij

C(ab)
ij =

⇢
C0 i = j
C⇤/eSim(ti,r, tj,r) i 6= j (C⇤ < C0)

(14)

s.t. 8l
i=1 :

yi
⇣
hw(a),�(x(a)

i )i+ h�(a), (x(a)
i )i

⌘
� 1� ⇠(a)i , ⇠(a)i � 0

yi
⇣
hw(b),�(x(b)

i )i+ h�(b), (x(b)
i )i

⌘
� 1� ⇠(b)i , ⇠(b)i � 0

8l
i=1 and 8j 2Ni :���hw(a),�(x(a)

i )i+h�(a), (x(a)
i )i � hw(b),�(x(b)

j )i

� h�(b), (x(b)
i )i

���  ⌘(ab)ij , ⌘(ab)ij � 0

where Sim(ti,r, tj,r) represents the Jaccard similarity coef-
ficient between Ii and Ij in Lr.

Based on the above analyses, the algorithm of MSMC is
outlined in Algorithm 1.

Algorithm 1: MSMC Algorithm

Input : Datasets X(a)
L , X(b)

L , X(a)
U , and X

(b)
U ; XL is the

labeled set; XU is the unlabeled set.
Output: Estimated function f̄ (a) and f̄ (b).

1 Choose the kernel K and do KPCA on the whole data
set; get  (x) with Eq.(6);

2 Solve the convex optimization problem in Eq.(14) with
quadratic programming[Gill and Wong, 2015];

3 Output f̄ (a)(x) and f̄ (b)(x);

Computation Complexity Analysis. From the algorithm
flowchart we see that the main computational cost of MSMC
lies in two parts: (1) to perform KPCA on the whole dataset;
(2) to solve the optimization problem (14). Conventionally,
the first part costs O(n3), where n = l+� is the total number
of data points, and the second part costs O(P 3), where P is
the size of the support vectors. P ⇡ uQ, where u is the size
of the neighborhood in the paper and Q is the size of the sup-
port vectors of the traditional SVM-2K. Practically, u = 4 is
sufficient to secure a good performance.

5 Experiments
5.1 Data and Parameter Setting
While MSMC is a general method for multi-view learning
with limited and noisy tagging, we report the extensive eval-
uations in the specific application of multi-view noisy image
tagging with limited labeled training samples. We compare
our method with SVM, Semi-parametric SVM (Sp-SVM)
[Guo et al., 2008], fuzzy SVM [Lin and de Wang, 2004],
SVM-2K [Farquhar et al., 2006], Co-training, and MSS-2K
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[Qi et al., 2012] using the noisily tagged training images com-
bined with the plentiful untagged images to evaluate the per-
formances of these methods.

The NUS-WIDE [Chua et al., 2009] image dataset is used
in the experiments. It includes 269, 648 web images and 81
concepts which we treat as the ground truth tags. We choose
the top 75 concepts whose numbers of positive examples are
larger than 200 from the dataset to form the multi-label space
T . Hence, the dimensionality of the additional feature space
of tags (Lr) for each Tr is 74. For each concept, we ran-
domly choose 260 positive examples and 260 negative ex-
amples as the training data. In the testing set, the numbers
of the positive and negative examples are both 50. 10% ex-
amples are randomly selected from the training data to form
the perfectly tagged training set, and the left 90% examples
from the training data are used as the untagged training set. In
the experiments, s% noise is added into both the positive and
negative examples of the perfectly tagged training set to form
the noisily tagged training set. We denote the 500-D bag of
words feature based on SIFT descriptions as Va, and denote
the 1000-D bag of text words feature which describes the text
information correlated to the images provided by the dataset
as Vb.

The size u of the neighborhood Nr(Ii) for each Ii is de-
fined as the count of the nearest neighbors of Ii in Lr. Fur-
ther, the nearest neighbors of Ii is computed with the Jac-
card similarity coefficient between Ii and other samples in
Lr. We define R as the ratio between the weight of the loss
function for instances and in the weight of the loss function
for their nearest neighbors in the optimization. For MSMC,
R = C(ab)/C(a)\(b), where C(a) = C(b). In the experiments,
we choose the top M largest eigenvalues and the correspond-
ing eigenvectors from the results of KPCA to learn the para-
metric function for the training data. M = 0 means that we
learn no parametric function for the training data.

5.2 Evaluation Metric
For each tag Tr, let CTr be the number of correctly predicted
examples, GTr be the number of the examples which actually
have the tag as the ground truth, and PTr be the number of
all the predicted examples with the tag. Then the precision
Prer, recall Recr, and F1 measure are defined as

Prer =
CTr

PTr
; Recr =

CTr

GTr
;

F1r =
2PrerRecr
Prer +Recr

=
2CTr

PTr +GTr

We evaluate the performances of the methods using the stan-
dard performance measures of Macro-F1 (F1a) and Micro-
F1 (F1i). Macro-F1 averages the F1 measures on the pre-
dictions of different tags; Micro-F1 computes the F1 mea-
sure on the predictions of different labels as a whole.

F1a =
1
E

EX

r=1

F1r; F1i =
2
PE

r=1 CTrPE
r=1 PTr +

PE
r=1 GTr

5.3 Performance Comparisons
In Table 1, we summarize the F1 measure of the testing set
when M = 3, u = 4, R = 0.5, and s is selected as 30, 25, 20,

15, 10, and 5 in the two views combined, for SVM, Sp-SVM,
fuzzy SVM, Co-training, SVM-2K, MSS-2K, and MSMC,
respectively. For each method, we obtain the combined pre-
diction with the simple average strategy on the two views’
prediction. On the task of multi-view learning with limited
and noisy image tagging, compared with MSMC, SVM with
the noisily tagged training set considers the training set as the
perfectly tagged set and mistakenly takes the incorrect tags
as the perfect tags. Although Sp-SVM exploits the geometric
structure of the unlabeled data, it considers the training set as
the perfectly tagged set and cannot take advantage of the in-
formation from the multi-label space. Fuzzy SVM considers
the training set as noisily tagged dataset, but it cannot take
advantage of the information contained in multi-label space
and untagged data set. Although Co-training takes advantage
of the information from the untagged data, it considers the
training set as the perfectly tagged set and fails to make use of
the information from the multi-label space. Similarly, SVM-
2K also considers the training set as the perfectly tagged set,
and fails to make use of the information from the multi-label
space. Further, though MSS-2K utilizes the information con-
tained in the multi-label space by imposing more constraints
between multiple view learners, it fails to take advantage of
the information contained in the untagged data to make it
adaptive to the environment with limited and noisy training
data. Consequently, from Table 1, we see that MSMC per-
forms better than SVM, fuzzy SVM, Co-training, SVM-2K
and MSS-2K on the task of multi-view learning with lim-
ited and noisy image annotation in all the cases as the F1
measures achieved by MSMC are much higher than those
achieved by the competing models in all cases.

Specially, when s is selected as 30, 25, 20, MSMC per-
forms better than the competing models significantly. It
demonstrates the robustness of MSMC when the training set
is seriously noisy.

5.4 Sensitivity Study
We conduct a sensitivity study on the proposed MSMC al-
gorithm. In particular, we study how the semi-parametric pa-
rameter, the neighborhood size, and the regularization param-
eter affect the performance of MSMC, respectively.

We describe the F1 measure for the testing set as a function
of M when u = 4, R = 0.5, and s = 20 using the combina-
tion of feature Va and feature Vb for MSMC in Figure 3(a).
From Figure 3(a), we observe that the F1 measures for the
testing set increase when M increases, which shows that the
semi-parametric regularization is helpful to further improve
the performance of the classification by better exploiting the
geometric structure of the marginal distribution of the data.
The curves for the F1 measures of MSMC in Figure 3(a) ex-
hibit the major effect from M = 0 to M = 1, and then are
stable when M continues to increase. This is because M=1
corresponds to the most discriminative component in the data
distribution. It is also a well-known fact that most of the exist-
ing semi-parametric learning methods are implemented with
M = 1 [Guo et al., 2008].

Figure 3(b) shows the F1 measures for the testing set as a
function of u when M = 3, R = 0.5, and s = 20 using the
combination of feature Va and feature Vb for MSMC. From
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Table 1: The F1 measures for the testing set.
F1a\F1i using the combination of feature Va and feature Vb

s = 30 s = 25 s = 20 s = 15 s = 10 s = 5

SVM 0.6302\0.6536 0.6852\0.7031 0.7279\0.7398 0.7799\0.7858 0.8091\0.8114 0.8250\0.8261
Sp-SVM 0.6436\0.6664 0.6996\0.7163 0.7381\0.7487 0.7895\0.7953 0.8151\0.8172 0.8316\0.8327

Fuzzy SVM 0.6209\0.6426 0.6901\0.7073 0.7219\0.7325 0.7725\0.7808 0.8029\0.8059 0.8220\0.8238
SVM-2K 0.6295\0.6451 0.6735\0.6891 0.7250\0.7332 0.7714\0.7762 0.8047\0.8054 0.8179\0.8190

Co-training 0.6693\0.6883 0.7134\0.7267 0.7489\0.7596 0.7944\0.8003 0.8161\0.8182 0.8307\0.8326
MSS-2K 0.6396\0.6600 0.6972\0.7154 0.7449\0.7539 0.7869\0.7925 0.8148\0.8165 0.8278\0.8282
MSMC 0.7368\0.7600 0.7628\0.7675 0.7748\0.7840 0.7992\0.8055 0.8285\0.8305 0.8392\0.8384
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(a) u = 4, R = 0.5, and s = 20.
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(b) M = 3, R = 0.5, and s = 20.
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(c) M = 3, u = 4, and s = 20.

Figure 3: The F1 measures for the testing set as a function of M , u, and R using the combination of feature Va and feature
Vb for MSMC, respectively.

Figure 3(b), we observe that the F1 measures for the testing
set increase when the size of the neighborhood for each Ni

increases, which shows that it is helpful to use the nearest
neighbors of each Ii in Lr to further improve the performance
of the classification.

We describe the F1 measure for the testing set as a function
of R when M = 3, u = 4, and s = 20 using the combina-
tion of feature Va and feature Vb for MSMC in Figure 3(c).
As we defined before, R = C(ab)/C(a)\(b) represents the ra-
tio between the weight of the loss function for their nearest
neighbors and the weight of the loss function for instances in
the corresponding views. We observe from Figure 3(c) that
when R increases, the curves for the F1 measures of MSMC
ascend, which also shows that it is helpful to use the nearest
neighbors of each Ii in Lr to reduce the influence of the noise
in the classification.

6 Conclusion
In this paper, we have studied the challenging problem of
multi-view learning with limited and noisy tagging and have
developed a powerful discriminative model, called MSMC,
that exploits both labeled and unlabeled data through a semi-
parametric regularization and takes advantage of the multi-
label constraints into the optimization. While MSMC is a
general method for multi-view learning with limited and
noisy tagging, we have reported the extensive evaluations in
the specific application of multi-view noisy image tagging
with limited labeled training samples on a benchmark dataset.
Extensive evaluations in comparison with the state-of-the-art
literature demonstrate that MSMC outstands with a superior
performance.
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