
Temporal and Spatial OBDA with Many-Dimensional Halpern-Shoham Logic

R. Kontchakov,1 L. Pandolfo,2 L. Pulina,3 V. Ryzhikov4 and M. Zakharyaschev1

1Department of Computer Science, Birkbeck, University of London, UK
2DIBRIS Department, University of Genoa, Italy

3POLCOMING Department, University of Sassari, Italy
4Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

Abstract
We design an extension datalogHS2

n of datalog
with hyperrectangle generalisations of Halpern-
Shoham’s modal operators on intervals and a cor-
responding query language. We prove that, over
n-dimensional spaces comprised of Z and R, find-
ing certain answers to datalogHS2

n queries can be
reduced to standard datalog query answering. We
present experimental results showing the expressiv-
ity and efficiency of datalogHS2

n on historical data.

1 Introduction
The aim of ontology-based data access (OBDA) is to stream-
line the process of gathering information from various data
sources by providing the user with a convenient high-level
view of the data and thereby making IT middlemen redun-
dant [Poggi et al., 2008]. Typical application scenarios for
OBDA include querying databases with multiple tables and
complex schemas [Kharlamov et al., 2015], in particular, with
sensor and event data [Kharlamov et al., 2014]. Inciden-
tally, these and other real-world use cases reveal that standard
OBDA ontology and query languages, designed by the descrip-
tion logic, datalog and Semantic Web communities, do not
provide any natural means to deal with numerical information
such as historical, geospatial or sensor data.

There have been a number of attempts to add tempo-
ral or spatial constructs to conjunctive or SPARQL queries
while keeping intact the standard OBDA ontology language
OWL 2 QL. In the temporal case, this approach might seem to
be justified because ontology axioms are often assumed to hold
at all times; see, e.g., [Gutiérrez-Basulto and Klarman, 2012;
Baader, Borgwardt, and Lippmann, 2013; Borgwardt, Lipp-
mann, and Thost, 2013; Özcep et al., 2013; Klarman and
Meyer, 2014; Özçep and Möller, 2014]. In the spatial ontol-
ogy languages designed for OBDA [Özçep and Möller, 2012;
Eiter, Krennwallner, and Schneider, 2013], domain individ-
uals are associated with their spatial extensions via special
functions [Lutz and Milicic, 2007]. However, axioms saying
that those extensions stand in certain spatial relations easily
ruin the main feature of OWL 2 QL—first-order rewritability
of conjunctive queries (CQs) [Özçep and Möller, 2012].

The restriction of temporal and spatial constructs only to
queries places the burden of using them on the user rather

than on the ontology engineer, and thereby contradicts the
spirit of the OBDA paradigm. First temporal extensions of
OWL 2 QL and other logics in the DL-Lite family that enjoy
FO-rewritability were proposed by Artale et al. [2013; 2015b].
These formalisms feature LTL temporal operators over Z on
concepts and roles. One potential issue with using them in
practice could be the complexity of FO-rewritings caused by
the point-based temporal operators.

In this paper, we suggest a different approach to the design
of ontology languages for OBDA with numerical data. We
model such data by closed intervals [x, y] of appropriate lin-
ear orders, say (Z,) or (R, <), which can represent periods
of time (as in temporal databases), temperature or altitude
ranges, the length and width of rectangular (approximations
of) spatial regions, etc. Thus, our ‘spatio-temporal’ entities
are hyperrectangles in the n-dimensional Cartesian products
X =

Qn
`=1 X` of linear orders X` = (X`,�`). Relation

algebras over such entities are well-known in temporal and
spatial knowledge representation: Allen’s [1983] interval alge-
bra, the rectangle/block algebra RA [Balbiani, Condotta, and
del Cerro, 2002], cardinal direction calculus [Goyal and Egen-
hofer, 2001]; see also [Navarrete et al., 2013; Cohn et al., 2014;
Zhang and Renz, 2014] and references therein.

An expressive and elegant formalism for reasoning about
intervals was suggested by Halpern and Shoham [1991] who
used ‘modal’ operators of the form [R] and hRi, where R is
one of Allen’s interval relations. The full Boolean modal logic
HS with these operators is undecidable over any non-trivial
linear orders [Halpern and Shoham, 1991; Gabbay et al., 2003;
Bresolin et al., 2014]. However, it has recently been shown
that the Horn fragment of HS with the operators [R] over
(Z,) and the reflexive semantics of the interval relations
turns out to be tractable [Artale et al., 2015a].

Here we define an ontology language datalogHS2
n whose

programs consist of standard datalog rules with body atoms
possibly prefixed by operators hRi` or [R]` and head atoms by
[R]` over X` = (Z,) or X` = (R, <). The atoms represent
standard database relations that can hold at some hyperrectan-
gles of X, and the rules are assumed to hold globally at all of
them. Thus, a typical datalogHS2

n rule says that P (t) holds
at a hyperrectangle ◆ if Q1(t1), . . . , Qk(tk) hold at some (or
all) hyperrectangles ◆i such that Ri(◆, ◆i), where Ri is one
of the basic relations of the n-dimensional block algebra RA.
Sets of datalogHS2

n rules can define complex spatial relations

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1160

such as, for example, P holds at ◆ if the Qi hold at some ◆i
with ◆ =

T
◆i (or with ◆ being the smallest hyperrectangle

containing all the ◆i). As a query language we suggest con-
junctive queries (CQs) with atoms of the form P (t)@⌧ and
R`(⌧, ⌧ 0), where t and ⌧ are tuples of individual and interval
terms, respectively, and R` an interval relation over X`.

The main result of the paper is that, given a CQ q(v,�) and
a datalogHS2

n program ⇧, one can construct in linear time a
standard datalog program ⇧† with a goal G(v,�) such that,
for any data instance D, a tuple (c, �) is a certain answer to
q(v,�) and ⇧ over D iff ⇧†

,D |= G(c, �). To obtain this
datalog rewritability result, we investigate the structure of the
minimal model of (⇧,D) based on the space X and show that
one can always construct a (non-standard) finite Kripke model
of (⇧,D) that has polynomially-many worlds in the size of D
and gives all certain answers to any CQ. On the other hand,
we show that query evaluation for propositional datalogHS2

1
programs is P-hard for data complexity. Note that since satisfi-
ability of propositional datalogHS2

n programs is decidable in
polynomial time, we obtain a tractable fragment of the RCC8
analogue of the Halpern-Shoham logic HS interpreted over
hyperrectangles of Rn, which is known to be not recursively
enumerable [Lutz and Wolter, 2006].

We tested the expressivity and efficiency of datalogHS2
n on

two real-world data sets: 1D historical data about the Italian
Public Administration, and 2D (time⇥ temperature) weather
data. Our datalogHS2

n programs defined complex ‘spatio-
temporal’ predicates, which were then used in simple user
queries. Three off-the-shelf datalog tools demonstrated rea-
sonable scalability on the resulting datalog rewritings.

2 DatalogHS2
n

Let X = (X,�) be either (Z,) or (R, <). Denote by int(X)
the set of closed intervals [x1, x2] with x1�x2. We define the
Allen interval relations A, B, E, D, L, O on int(X) by taking

– [x1, x2] A [y1, y2] iff x2 = y1, (After)
– [x1, x2] B [y1, y2] iff x1 = y1 and y2 � x2, (Begins)
– [x1, x2] E [y1, y2] iff x1 � y1 and x2 = y2, (Ends)
– [x1, x2] D [y1, y2] iff x1 � y1 and y2 � x2, (During)
– [x1, x2] L [y1, y2] iff x2 � y1, (Later)
– [x1, x2] O [y1, y2] iff x1 � y1 � x2 � y2, (Overlaps)

and denote by Ā, B̄, Ē, D̄, L̄, Ō their inverses. Note that
int(Z,) contains punctual intervals while int(R, <) does
not. All of our results below would hold if we took any other
discrete order with in place of (Z,) and any other dense
order in place of (R, <). However, for (Z, <) the logic we are
about to define would be undecidable [Bresolin et al., 2016].

Fix some n � 1 and a linear order X` = (X`,�`) as
above, for 1 ` n. A hyperrectangle in the n-dimensional
space X =

Qn
`=1 X` is any n-tuple ◆ = (◆1, . . . , ◆n) such that

◆` 2 int(X`), for 1 ` n. The set of hyperrectangles in X
is denoted by hyp(X). Given ◆, 2 hyp(X) and an interval
relation R, we write ◆R` if ◆`R` and ◆i = i, for i 6= `.
Syntax of datalogHS2

n . A data instance, D, is a finite set
of facts of the form P (c)@◆, where P is an m-ary predicate
symbol, c an m-tuple of individual constants, for some m � 0,

and ◆ 2 hyp(X). This fact says that P (c) is true at ◆. We
denote by ind(D) the set of all individual constants in D, by
num`(D) the set of x1, x2 2 X` with ◆` = [x1, x2], for some
◆ mentioned in D, and by int(D) the set of [x1, x2] 2 int(X`)
with x1, x2 2 num`(D), for 1 ` n.

An individual term, t, is an individual variable, v, or a
constant, c. A datalogHS2

n program, ⇧, is a finite set of rules
of the form

A

+ A1 ^ · · · ^Ak or ? A1 ^ · · · ^Ak,

where k � 1, each Ai is either an inequality t 6= t

0 with
individual terms t and t

0 or defined by the grammar

A ::= P (t1, . . . , tm) | [R]`A | hRi`A,

for an m-ary predicate P and individual terms ti, and A

+ does
not contain any diamond operators hRi`. As usual, the atoms
A1, . . . , Ak constitute the body of the rule, while A

+ or ? its
head. We also impose other standard datalog restrictions on
datalogHS2

n programs. However, we cannot allow hRi` in the
heads as this would make our logic undecidable.
Semantics of datalogHS2

n . An interpretation, M, is based
on a domain � 6= ; (for the individual variables and constants)
and the space X. For any m-ary predicate P , m-tuple a from
� and ◆ 2 hyp(X), M specifies whether P is true on a at ◆,
in which case we write M, ◆ |= P (a). Let ⌫ be an assignment
of elements of � to the individual variables (we adopt the
standard name assumption: ⌫(c) = c, for every individual
constant c). We then set inductively:

M, ◆ |=⌫
P (t) iff M, ◆ |= P (⌫(t)),

M, ◆ |=⌫
t 6= t

0 iff ⌫(t) 6= ⌫(t0),

M, ◆ |=⌫ [R]`A iff M, |=⌫
A for all with ◆R`,

M, ◆ |=⌫ hRi`A iff M, |=⌫
A for some with ◆R`.

We say that M satisfies ⇧ under ⌫ if, for all ◆ 2 hyp(X) and
all rules A A1 ^ · · · ^Ak in ⇧, we have

M, ◆ |=⌫
A whenever M, ◆ |=⌫

Ai for 1 i k

(as usual M, ◆ 6|=⌫ ?). M is a model of ⇧ and D if it satisfies
⇧ under every assignment, and M, ◆ |= P (c), for every fact
P (c)@◆ in D. ⇧ and D are consistent if they have a model.
Example 1. Denote by hInti the binary modal operator such
that AhIntiA0 holds at a hyperrectangle iff A holds at some ◆,
A

0 at some ◆0, and = ◆ \ ◆0. One can show that rules such
as B AhIntiA0 are expressible as datalogHS2

n programs.
For example, for n = 2, there are 132 = 169 different relative
positions of two rectangles; see, e.g., [Navarrete et al., 2013,
Fig. 4] for an illustration. Those of them where the rectan-
gles have non-empty intersection are encoded by datalogHS2

n
rules such as B hĒi1hB̄i2A ^ hB̄i1hĒi2A0 for the position
on the left-hand side of the picture below:

◆

◆0

◆

◆0

Similarly, one can express the rule B AhCoviA0 such
that AhCoviA0 holds at iff is the smallest hyperrectangle
containing some ◆ with A and ◆0 with A

0; see above right.

1161

Ontology-mediated queries. An interval term, ⌧ , is either
an interval, ◆, or an interval variable, �. A conjunctive query
(CQ) is a formula of the form

q(v,�) = 9v0
,�0 �(v,v0

,�,�0), (1)

where � is a conjunction of atoms of two types:
– P (t)@⌧ with t = (t1, . . . , tm) and ⌧ = (⌧1, . . . , ⌧n),
– R(⌧, ⌧ 0) with an interval relation R,

and all individual and interval variables in � are from v [v0

and � [�0, respectively. A datalogHS2
n program ⇧ and a

CQ q(v,�) constitute an ontology-mediated query (OMQ)
Q(v,�) = (⇧, q(v,�)).
Example 2. Suppose X = X1 ⇥ X2, where X1 = (Z,)
represents time and X2 = (R, <) temperature. Imagine that a
turbine monitoring system is receiving from sensors a stream
of data of the form Blade(ID140)@(◆1, ◆2), where ID140 is
a blade ID and ◆2 2 int(R, <) is the observed temperature
range during the time interval ◆1 2 int(Z,). Then the rule

TempRise(v) hĀi1hŌi2Blade(v) ^ hAi1hOi2Blade(v)
says that the temperature of blade v is rising over a rectangle
(◆1, ◆2) if Blade(v)@(◆�1 , ◆

�
2) and Blade(v)@(◆+1 , ◆

+

2) hold at
some (◆�1 , ◆

�
2) and (◆+1 , ◆

+

2) located as shown below:

(Z,)

(R, <)

◆�1

◆1

◆+1

◆2

◆+2

◆�2 ◆�

◆+

◆

The temperature drop is defined analogously:

TempDrop(v) hĀi1hOi2Blade(v) ^ hAi1hŌi2Blade(v).
To find the blades v and the time intervals � such that the
temperature of v was rising before �, reaching 1500� in �,
and dropping after that, we can use the following CQ q(v,�)

9��
, ⇢

�
, ⇢,�

+
, ⇢

+
⇥
Blade(v)@(�, ⇢) ^

TempRise(v)@(��
, ⇢

�) ^ TempDrop(v)@(�+
, ⇢

+) ^
A(��

,�) ^ A(�,�+) ^ O(⇢, [1500, 1600])
⇤
.

Let Q(v,�) = (⇧, q(v,�)) be an OMQ and D a data
instance. A certain answer to Q(v,�) over D is any pair
(c, �) satisfying the following conditions:

– c ✓ ind(D) and � ✓ int(D), with |v| = |c|, |�| = |�|;
– for every model M of ⇧ and D, there is a map h of

the individual terms in q to � and the interval terms
to

S
` int(X`) preserving constants and dimensions such

that h(v) = c, h(�) = �, M, h(⌧) |= P (h(t)) for
every atom P (t)@⌧ in q, and R(h(⌧), h(⌧ 0)) holds in
the corresponding X`, for every atom R(⌧, ⌧ 0) in q.

We say that a program ⇧ is in normal form if it does not
contain occurrences of hRi` and nested [R]`. It is readily seen

that any OMQ Q = (⇧, q) can be transformed to an OMQ
Q0 = (⇧0

, q) with ⇧0 in normal form and of linear size in
|⇧| such that Q and Q0 have the same certain answers over
any data instance (in a given signature). For example, the
rule S(t) hRi`P (t) ^Q(t) can be replaced with two rules
S(t) P

0(t) ^Q(t) and [R̄]`P 0(t) P (t), for a fresh P

0.
We assume all our programs are in normal form.

Our aim now is to show that finding certain answers to an
OMQ Q(v,�) over any given D can be reduced to finding
answers to a standard datalog query (⇧†

, G(v,�)) over D.
To do this, we first characterise the structure of models of
datalogHS2

n programs.

3 Canonical Models
Let ⇧ be a datalogHS2

n program and C a set of ground atoms
of the form P (c)@◆. Denote by cl(C) the result of applying
non-recursively the following rules to C:

– if A A1 ^ · · · ^ Ak is a rule in ⇧ and C contains
⌫(Ai)@◆, for all 1 i k and some assignment ⌫, then
we add ⌫(A)@◆ to C;

– if [R]`A@◆ 2 C, then we add to C all A@ with ◆R`;
– if A@ 2 C for all with ◆R`, then add [R]`A@◆ to C.

(Here, given an atom A and an assignment ⌫, we denote by
⌫(A) the result of replacing each variable v in A with ⌫(v);
we also assume that C contains all inequalities c 6= c

0 for
distinct constants c and c

0.) Then we set cl0(C) = C and, for
any successor ordinal ⇠ + 1 and limit ordinal ⇣,

cl⇠+1(C) = cl(cl⇠(C)) and cl⇣(C) =
[

⇠<⇣
cl⇠(C).

Now, given a data instance D, we set C⇧,D = cl2
@0
(D). If

?@◆ /2 C⇧,D for all ◆, we regard C⇧,D as an interpretation
and call it the canonical model of ⇧ and D.
Theorem 3. (i) If ?@◆ 2 C⇧,D for any ◆, then ⇧ and D are
inconsistent; otherwise, ⇧ and D are consistent and C⇧,D is
their minimal model in the sense that P (c)@◆ 2 C⇧,D implies
M, ◆ |= P (c), for any model M of ⇧ and D.

(ii) A pair (c, �) is a certain answer to (⇧, q(v,�)) over
D that is consistent with ⇧ iff C⇧,D |= q(c, �).

Our next aim is to describe the structure of C⇧,D. Suppose
X = (X,�) is a linear order and K = {k1, . . . , km} a finite
subset of X with kj � kj+1, for 1 j < m. Denote by
secX(K) the following set of sections of X:

(�1, k1), [k1, k1], (k1, k2), [k2, k2], . . . , [km, km], (km,1),

where (�1, k) = {x 2 X | x�k, x 6= k} and symmetrically
for (k,1). Given �1,�2 2 secX(K), we write �1 � �2 if
[x1, x2] 2 int(X), for some x1 2 �1, x2 2 �2. The relation
� is a linear order, which is reflexive if � is reflexive (if � is
irreflexive then [k, k] 6� [k, k]). We now define a partition of
int(X) into non-empty zones of the form

⇣�1,�2 = {[x1, x2] 2 int(X) | x1 2 �1, x2 2 �2},
for any �1,�2 2 secX(K) with �1 � �2. The set of zones is
denoted by zoneX(K). For m = 3, the partition of int(X) into
zones is shown below, where intervals [x, y] are represented

1162

by points (x, y) in the Euclidean plane:

X = (R, <)
�1

�2

�3

�4

�5

�6

�7

�1 �2 �3 �4 �5 �6 �7 �1 �2 �3 �4 �5 �6 �7

X = (Z,)

Note the following property of zones in zoneX(K):
(zone-uniformity) for any interval relation R and any zones

⇣1 and ⇣2, if ◆1R◆2 for some ◆1 2 ⇣1 and ◆2 2 ⇣2, then for
every ◆

0
1 2 ⇣1 there is ◆02 2 ⇣2 such that ◆01R◆02.

It is not hard to see that, for p = 2|K|+ 1,

|zoneX(K)| =
⇢
(p2 + 1)/2, if X = (R, <),
p(p+ 1)/2, if X = (Z,).

Given a data instance D, we define the set zone(D) of
hyperzones of D as

Qn
`=1 zone`(D), where zone`(D) =

zoneX`(num`(D)). By using (zone-uniformity) for both R
and R̄ along with the definition of C⇧,D, we obtain:
Theorem 4. If P (c)@◆ 2 C⇧,D, then P (c)@ 2 C⇧,D for
all from the same hyperzone as ◆.

Note that (zone-uniformity) and Theorem 4 do not hold
for (Z, <); see [Bresolin et al., 2016]. For example, consider
⇧ = {[E]q [B]r, [E]r [B]q} and D = {q@[0, 0]}: we
have q@[n, n] 2 C⇧,D for even n 2 N but q@[n, n] 62 C⇧,D
for odd n.

We can view each order X` as a Kripke frame I` with the
set of worlds int(X`) and accessibility relations R. The space
X =

Qn
`=1 X` gives rise to the n-dimensional product frame

I =
Qn

`=1 I` [Gabbay et al., 2003]. The canonical model
C⇧,D can then be regarded as a first-order Kripke model with
the first-order domain ind(D) and Kripke frame I where P (c)
holds at a world ◆ iff P (c)@◆ 2 C⇧,D.

Denote by Z` the Kripke frame with the set of worlds
zone`(D) and accessibility relations R over them such that
⇣1R⇣2 iff ◆1R◆2 for some ◆1 2 ⇣1 and ◆2 2 ⇣2. Now, define
a Kripke model S⇧,D over the product frame Z =

Qn
`=1 Z`

as follows: P (c) holds in a world ⇣ iff P (c)@◆ 2 C⇧,D for
some (equivalently, all) ◆ 2 ⇣. Let f` be a map from X`

onto zone`(D) sending all intervals in any zone ⇣ to ⇣, and
let f(◆) = (f1(◆1), . . . , fn(◆n)). By Theorem 4 and (zone-
uniformity), f is a p-morphism from C⇧,D onto S⇧,D. This
fact and Theorem 3 give the following theorem:
Theorem 5. Fix some X =

Qn
`=1 X` with X` = (Z,) or

X` = (R, <). For any OMQ Q(v,�) = (⇧, q(v,�)) and
any data instance D that is consistent with ⇧, a pair (c, �) is
a certain answer to Q over D iff there is a tuple ⇠ of zones
such that S⇧,D |= q(c, ⇠) and �i 2 ⇠i, for 1 i |�|.

The model S⇧,D can be constructed in polynomial time
using the same rules as in the definition of C⇧,D, but with a

quadratic number of hyperzones in place of hyperrectangles.
This gives the upper bound of the next theorem:
Theorem 6. The problem of checking whether (c, �) is a
certain answer to Q(v,�) over D is P-complete for data
complexity and EXPTIME-complete for combined complexity.
For propositional datalogHS2

n programs, the problem is P-
complete for combined complexity.

We establish the lower bound for data complexity by reduc-
tion of the monotone (fan-in 2) circuit value problem, which
is known to be P-hard. Let C be a monotone circuit whose
gates are enumerated by consecutive positive even integers so
that if there is an edge from n to m then n < m. We encode
C with an input ↵ by a data instance D with the facts:

– V@([0, n� 1]) (or V@([0, n])) if the first (resp., second)
input of gate n gets a value V 2 {T, F};

– G@([n� 1, n]), for every G-gate n, G 2 {AND,OR};
– I@([n,m� 1]) (or I@([n,m])) if the output of gate n is

the first (resp., second) input of gate m;
– S@([N,N + 1]) and I@([N,N + 1]), where N is the

last (output) gate in C.
We illustrate the construction by the following example:

^
4

_
2

^
6

F

T

T

0 2 4 5 6 7

T

F

_ ^ ^
F

T

I
I

I
S

Let ⇧ be the propositional program

T I ^ hĀi(AND ^ hĀiT ^ hĒiT),
F I ^ hĀi(AND ^ hĀiT ^ hĒiF),

F I ^ hĀi(AND ^ hĀiF ^ hĒiT),
F I ^ hĀi(AND ^ hĀiF ^ hĒiF),

whose clauses encode the truth-table for AND and dually for
OR with F and T swapped (which can clearly be rewritten in
datalogHS2

1). One can check that C(↵) = 1 iff the answer
to the OMQ (⇧, 9� (S@�^T@�)) over D is ‘yes’. Note that
this reduction works for both (Z,) and (R, <). Note also
that OMQs with LTL2

horn

ontologies [Artale et al., 2015b]
(which are syntactically similar to propositional datalogHS2

1
programs but with the underlying 2-fragment of the linear
time temporal logic) can be evaluated in AC0 for data com-
plexity. The difference between the data complexities of these
formalisms can be explained by the fact that (classical) HS
is essentially two-dimensional whereas LTL operates in one
dimension; cf. [Gabbay et al., 2003].

We show now that the problem of finding certain answers
to datalogHS2

n OMQs can be reduced to computing answers
to standard datalog programs over the same data instances.

4 Datalog Rewriting
Suppose we are given an OMQ Q(v,�) = (⇧, q(v,�)). Our
aim is to rewrite Q(v,�) to a datalog program ⇧† with a goal
G(v,�) such that, for any data instance D, a tuple (c, �) is
a certain answer to Q(v,�) over D iff ⇧†

,D |= G(c, �). To
simplify presentation, we only consider the case of 1D space;

1163

a generalisation to n dimensions is straightforward though
cumbersome. Here we only show the rules for X = (R, <)
and indicate the necessary modifications for (Z,).

To operate with numbers in num(D), we first use the built-
in <, 6= and stratified negation to define in ⇧† the predicates
succ, max and min over num(D), where succ(s1, s2) iff s2
is an immediate <-successor of s1 in num(D), max(s) iff s
is the maximal number in num(D), and similarly for min(s).
We also use two constants +1 and�1 assuming that�1 <

s < +1, for any s 2 num(D). Note that stratified negation
(supported by most datalog tools) is not required elsewhere in
⇧†. In fact, a system implementing datalogHS2

n could simply
maintain the extensions of the above predicates, which are
ontology- and query-independent.

We encode sections secX(num(D)) of the partition of X
using a binary predicate sec(s1, s2): punctual sections corre-
spond to s1 = s2 and open sections to s1 < s2. More formally,
sec(s1, s2) is defined by the following rules:

sec(s1, s2) (s1 = s2) ^ (s1 6= �1) ^ (s2 6= +1),

sec(s1, s2) succ(s1, s2),

sec(s1,+1) max(s1),

sec(�1, s2) min(s2).

We also require the immediate proper �-successor relation on
secX(num(D)). Recall that for (R, <) each punctual section
is followed by an open one and the other way round:

nx(s1, s1, s1, s2) sec(s1, s2) ^ (s1 < s2) ^ (s1 6= �1),

nx(s1, s2, s2, s2) sec(s1, s2) ^ (s1 < s2) ^ (s2 6= +1).

Thus, nx(s1, s2, s01, s02) holds just in case the section defined
by (s01, s

0
2) immediately follows the section of (s1, s2). Note

that there is a third option for (Z,): the punctual section
[s, s] can be followed by the punctual section [s+ 1, s+ 1].

Each zone in zoneX(num(D)) is characterised by a pair
of sections in secX(num(D)), and so we use quadruples of
variables to specify zones and define a quaternary predicate
zone for (R, <) by the rule

zone(s1, s2, e1, e2) sec(s1, s2) ^ sec(e1, e2) ^ (s1 < e2).

For (Z,), the inequality is (s1 e1) ^ (s2 e2).
Assuming that ⇧ is in normal form, we replace each P (t) in

it with P

⇤(t, s, e) and each [R]P (t) with P[R](t, s, e), where
two pairs s = (s1, s2) and e = (e1, e2) form a zone quadruple.
To translate the facts from a data instance into zones, we use
the rules

P

⇤(t, s, s, e, e) P (t)@[s, e].

Thus, it remains to define the predicates of the form P[R]. We
begin with P[E]. A slice of the accessibility relation E in the
Kripke frame Z with worlds zoneX(D) is illustrated below:

E0
nx nx nx nx

We use the predicate E0(s, e) to identify zones without any
proper E-successors:

E0(s1, s2, e1, e2) zone(s1, s2, e1, e2) ^ (s2 = e2).

If [E]P holds at a zone, then both P

⇤ and [E]P are propagated
to all E-accessible zones using the rules

P[E](t, s
0
, e) P[E](t, s, e) ^ nx(s, s0) ^ zone(s0, e),

P

⇤(t, s0, e) P[E](t, s, e) ^ nx(s, s0) ^ zone(s0, e),

P

⇤(t, s, e) P[E](t, s, e) ^ (s1 < s2).

(The last rule reflects reflexivity of E in zones based on punc-
tual sections.) For the converse direction, we require the
following recursive rules for P[E] of its fixpoint definition:
P[E](t, s, e) P

⇤(t, s, e) ^ E0(s, e),

P[E](t, s, e) (s1 = s2) ^ nx(s, s0) ^ P[E](t, s
0
, e),

P[E](t, s, e) (s1 < s2) ^ P

⇤(t, s, e) ^
nx(s, s0) ^ P[E](t, s

0
, e).

We define P[Ē], P[B] and P[B̄] in a similar manner. For
example, we need

Ē0(�1, s2, e1, e2) min(s2) ^ sec(e1, e2),

and the rules for P[B] and P[B̄] contain nx(e, e0) in place of
nx(s, s0). These predicates are then used to define P[R] for the
remaining relations R. For example, for P[A], we have

P[A](t, s, e) zone(s, e) ^ B0(e, s
0) ^ P[B̄](t, e, s

0),

P[B̄](t, e, s
0) B0(e, s

0) ^ P[A](t, s, e).

Finally, suppose q(v,�) = 9v0
,�0 �(v,v0

,�,�0), where
� is a conjunction of atoms of the form P (t)@[⌧1, ⌧2] and
R(⌧1, ⌧2). For each such P (t)@[⌧1, ⌧2], we add to our program
the rules

P

†(t, s, e) P

⇤(t, s, e) ^ in(s, s) ^ in(e, e),

where the ternary predicate in is defined by
in(s, s1, s2) sec(s1, s2) ^ (s1 = s = s2),

in(s, s1, s2) sec(s1, s2) ^ (s1 < s < s2).

We also add the rules defining the interval relations R such as
E(x1, x2, y1, y2) (x1 < y1) ^ (x2 = y2).

Finally, we add the rule with the head G(v,�) and the body
containing the P

†(t, ⌧) and R(⌧1, ⌧2) from the given CQ, and
denote the resulting program by ⇧†.
Theorem 7. For any data instance D, a tuple (c, �) is a
certain answer to Q(v,�) over D iff ⇧†

,D |= G(c, �).
Note that the size of ⇧† is linear in the size of Q. Indeed,

the rewriting consists of a fixed number of rules to define the
partition and a fixed number of rules for each [R]P in the
program. The arity of predicates in ⇧† is the original arity of
predicates +4n for n zone quadruples in n-dimensional case.

5 Case Studies
We tested the expressive power and efficiency of OBDA with
datalogHS2

n using two real-world scenarios. In our experi-
ments, we used three off-the-shelf tools for (extensions of) dat-
alog: CLASP [Gebser, Kaufmann, and Schaub, 2012] (v 3.1.4,
with GRINGO v 4.5.4 as grounder), DLV [Leone et al., 2006]
(v Dec 17 2012), and XSB [Sagonas, Swift, and Warren, 1994]
(v 3.6). The three systems ran with default parameters on
an Intel Xeon E3-1245 3.30 GHz workstation with 16GB of
memory under the Ubuntu 12.04 64-bit OS.

1164

5.1 Querying Historical Documents: 1D Case
In the first case study, we used datalogHS2

n to query the histor-
ical data in the STOLE1 ontology, which extracts facts about
the Italian Public Administration from journal articles [Adorni
et al., 2015]. The dataset contains 1743 facts about institutions,
legal systems, historical events and people obtained from ar-
ticles published between 1850 and 1935. We represented the
timestamps in years using the interval structure of (Z,). The
(atemporal) STOLE ontology was extended with datalogHS2

n
rules such as

RdSInst(x) Institution(x)^hBihD̄iLegalSystem(RdS),
EventD J(x, y) HistoricalEvent(x) ^ hD̄iJournal(y),

for institutions founded during the Regno di Sardegna period
and historical event during the publication period of a journal,

J EstIn(x, y) Journal(x) ^ hBihD̄iLegalSystem(y),

J ClosedIn(x, y) Journal(x) ^ hEihD̄iLegalSystem(y)

relating journals to the legal system when they were estab-
lished and closed, respectively, and

CitedAftDeath(x) hL̄iPerson(x)^Article(y)^cites(y, x)

for persons cited by journal articles after their death. We
then used the new intensional predicates to formulate complex
queries such as 2SysJ(x) given by the formula

9y, y0 �J EstIn(x, y) ^ J ClosedIn(x, y0) ^ (y 6= y

0)
�
,

which finds journals published over two or more legal systems.
The runtimes (in seconds) of the three systems on our queries
are reported in table below:

query CLASP DLV XSB mat. facts
RdSInst 0.54 7.04 0.36 93 332
EventDuring J 0.55 6.66 0.12 60 291
2SysJ 0.69 8.03 0.28 60 712
CitedAftDeath 3.34 47.61 0.41 77 718

The total number of zones for the dataset is 38 503, and the
last column gives the number of facts in the materialisation.

5.2 Querying Meteorological Data: 2D Case
In the second case study, we used datalogHS2

n to query the
US weather data collected by MesoWest2 and containing sen-
sor measurements of the temperature, precipitation, pressure,
etc. by weather stations across the country. We mapped the
MesoWest dataset tables to tuples T�(s, t1, t2, ⌧1, ⌧2), where
s is the ID of a weather station, [t1, t2] a time interval, and
[⌧1, ⌧2] the minimal and maximal temperature observed during
this interval. The measurements are taken every six hours,
so that t2 � t1 = 6 for all s, but different s may have dif-
ferent [t1, t2]. We extended this data by tuples of the form
NAM(0:00/10.01.2016, 6:00/10.01.2016, ,) to indicate the
night AM hours, and similar tuples NPM for night PM, DAM
for day AM, and DPM for day PM hours. Normally, during
sunny days, the day AM temperature is not lower than the
night AM temperature and the night PM temperature is not

1For STOria LEgislativa della pubblica amministrazione italiana.
2http://mesowest.utah.edu

higher than the day PM temperature. The picture below shows
patterns with abnormally low and high temperatures:

NAM DAM DPM NPM NAM

0 6 12 18 0 6

ALT

AHT

Such patterns can be represented as datalogHS2
n rules:

ALT(x) hŌi1hUi2DAM ^ hB̄i2T�(x) ^ hĀi1hAi2T�(x),

AHT(x) hŌi1hUi2NPM ^ hĒi2T�(x) ^ hĀi1hĀi2T�(x),

where U is the universal interval relation. We use (Z,) for
time and (R, <) for temperature intervals. The CPU time (in
seconds) used by the systems to query for abnormally low
temperatures is given in the table below:
days CLASP DLV XSB mat. facts zones1 zones2
7 0.14 0.81 0.25 60 189 11 026 925
30 5.73 46.47 13.62 1 849 345 199 396 4 513
60 40.98 347.96 66.57 8 910 837 795 691 5 513
90 134.67 1209.88 MEM 24 757 694 1 758 750 8 065
120 315.43 MEM MEM 51 119 769 3 148 795 10 513
180 MEM MEM MEM – 7 097 028 13 613

MEM means that the system runs out of memory (16 GB). The
total number of zones for the time and temperature dimensions
is given in the last two columns. The experiments show that
standard off-the-shelf systems scale relatively well even with
such large numbers of zones. Specialised index data structures
and optimisations should boost performance. For example, one
could pre-compute zones and relations on them, and use highly
scalable triple store RDFox [Nenov et al., 2015] (without the
need to implement arithmetic).

6 Conclusions
We designed an ontology language datalogHS2

n with the
aim of OBDA over many-dimensional interval-based spatio-
temporal data. DatalogHS2

n ontologies are supposed to define
complex spatio-temporal predicates (such as those in the ex-
amples above), which can then be used in user queries. We
proved datalog rewritability of ontology-mediated queries, and
demonstrated experimentally, using real-world data, that these
rewritings are reasonably well executable by off-the-shelf dat-
alog systems. This seems to be the first working application
of a fragment of the Halpern-Shoham logic HS, which is
undecidable over any interesting linear order.

Note that the following are disallowed in datalogHS2
n : (i)

operators hRi in the head of the rules, (ii) the strict seman-
tics for R over Z (which can express metric constraints such
as ‘interval of length n’), and (iii) punctual intervals [n, n]
over R. The addition of (i) or (ii) would make datalogHS2

n
undecidable; the effect of (iii) remains unknown.

Propositional datalogHS2
n can be of interest in classical

spatial representation as it provides a tractable formalism
for reasoning about hyperrectangles. For example, it would
be interesting to investigate whether our formalism can be
adopted to handle rotated rectangles in the world of Angry
Birds [Zhang and Renz, 2014], regions of arbitrary shape, and
operators based on more expressive relations than Allen’s.

1165

Acknowledgments. This work has been supported by the
EPSRC UK grant and EP/M012670/1 (iTract).

References
[Adorni et al., 2015] Adorni, G.; Maratea, M.; Pandolfo, L.;

and Pulina, L. 2015. An ontology for historical research
documents. In Proc. RR, 11–18.

[Allen, 1983] Allen, J. F. 1983. Maintaining knowledge about
temporal intervals. Commun. ACM 26(11):832–843.

[Artale et al., 2013] Artale, A.; Kontchakov, R.; Wolter, F.;
and Zakharyaschev, M. 2013. Temporal description logic
for ontology-based data access. In Proc. IJCAI, 711–717.

[Artale et al., 2015a] Artale, A.; Kontchakov, R.; Ryzhikov,
V.; and Zakharyaschev, M. 2015a. Tractable interval tem-
poral propositional and description logics. In Proc. AAAI.

[Artale et al., 2015b] Artale, A.; Kontchakov, R.; Kovtunova,
A.; Ryzhikov, V.; Wolter, F.; and Zakharyaschev, M.
2015b. First-order rewritability of temporal ontology-
mediated queries. In Proc. IJCAI, 2706–2712.

[Baader, Borgwardt, and Lippmann, 2013] Baader, F.; Borg-
wardt, S.; and Lippmann, M. 2013. Temporalizing
ontology-based data access. In Proc. CADE-24, 330–344.

[Balbiani, Condotta, and del Cerro, 2002] Balbiani, P.; Con-
dotta, J.; and del Cerro, L. F. 2002. Tractability results
in the block algebra. J. Log. Comput. 12(5):885–909.

[Borgwardt, Lippmann, and Thost, 2013] Borgwardt, S.;
Lippmann, M.; and Thost, V. 2013. Temporal query
answering in description logic DL-Lite. In Proc. FroCoS.

[Bresolin et al., 2014] Bresolin, D.; Della Monica, D.;
Goranko, V.; Montanari, A.; and Sciavicco, G. 2014. The
dark side of interval temporal logic: marking the undecid-
ability border. Ann. Math. Artif. Intell. 71(1-3):41–83.

[Bresolin et al., 2016] Bresolin, D.; Kurucz, A.; Muñoz-Vel-
asco, E.; Ryzhikov, V.; Sciavicco, G.; Zakharyaschev, M.
2016. Horn fragments of Halpern-Shoham interval tempo-
ral logic. Tech. Rep., arxiv.org/abs/1604.03515

[Cohn et al., 2014] Cohn, A. G.; Li, S.; Liu, W.; and Renz, J.
2014. Reasoning about topological and cardinal direction
relations between 2-dimensional spatial objects. J. Artif. In-
tell. Res. (JAIR) 51:493–532.

[Eiter, Krennwallner, and Schneider, 2013] Eiter, T.; Kren-
nwallner, T.; and Schneider, P. 2013. Lightweight spa-
tial conjunctive query answering using keywords. In Proc.
ESWC, 243–258.

[Gabbay et al., 2003] Gabbay, D.; Kurucz, A.; Wolter, F.; and
Zakharyaschev, M., 2003. Many-Dimensional Modal Log-
ics: Theory and Applications. Elsevier.

[Gebser, Kaufmann, and Schaub, 2012] Gebser, M.; Kauf-
mann, B.; and Schaub, T. 2012. Conflict-driven answer
set solving: From theory to practice. AIJ 187–188:52–89.

[Goyal and Egenhofer, 2001] Goyal, R., and Egenhofer, M..
2001. Similarity of cardinal directions. In Proc. SSTD.

[Gutiérrez-Basulto and Klarman, 2012] Gutiérrez-Basulto,
V., and Klarman, S. 2012. Towards a unifying approach
to representing and querying temporal data in description
logics. In Proc. RR, 90–105.

[Halpern and Shoham, 1991] Halpern, J., and Shoham, Y.
1991. A propositional modal logic of time intervals. JACM
38(4):935–962.

[Kharlamov et al., 2014] Kharlamov, E.; Solomakhina, N.;
Özçep, Ö. L.; Zheleznyakov, D.; Hubauer, T.; Lamparter,
S.; Roshchin, M.; Soylu, A.; and Watson, S. 2014. How
semantic technologies can enhance data access at Siemens
Energy. In Proc. ISWC, Part I, 601–619.

[Kharlamov et al., 2015] Kharlamov, E.; Hovland, D.;
Jiménez-Ruiz, E.; Lanti, D.; Lie, H.; Pinkel, C.; Rezk,
M.; Skjæveland, M. G.; Thorstensen, E.; Xiao, G.;
Zheleznyakov, D.; and Horrocks, I. 2015. Ontology based
access to exploration data at Statoil. In Proc. ISWC.

[Klarman and Meyer, 2014] Klarman, S., and Meyer, T. 2014.
Querying temporal databases via OWL 2 QL. In Proc. RR,
92–107.

[Leone et al., 2006] Leone, N.; Pfeifer, G.; Faber, W.; Eiter,
T.; Gottlob, G.; Perri, S.; and Scarcello, F. 2006. The DLV
system for knowledge representation and reasoning. ACM
Trans. Comput. Log. 7(3):499–562.

[Lutz and Milicic, 2007] Lutz, C., and Milicic, M. 2007. A
tableau algorithm for description logics with concrete do-
mains and general TBoxes. JAR 38(1–3):227–259.

[Lutz and Wolter, 2006] Lutz, C., and Wolter, F. 2006. Modal
logics of topological relations. LMCS 2(2).

[Navarrete et al., 2013] Navarrete, I.; Morales, A.; Sciavicco,
G.; and Viedma, M. A. C. 2013. Spatial reasoning with
rectangular cardinal relations — the convex tractable subal-
gebra. Ann. Math. Artif. Intell. 67(1):31–70.

[Nenov et al., 2015] Nenov, Y.; Piro, R.; Morik, B.; Horrocks,
I.; Wu, Z.; and Banerjee, J. 2015. RDFox: A Highly-
Scalable RDF Store. In Proc. of ISWC, 3–20.

[Özçep and Möller, 2012] Özçep, Ö., and Möller, R. 2012.
Scalable geo-thematic query answering. In Proc. ISWC.

[Özçep and Möller, 2014] Özçep, Ö., and Möller, R. 2014.
Ontology based data access on temporal and streaming data.
In Reasoning Web, 279–312.

[Özcep et al., 2013] Özcep, O.; Möller, R.; Neuenstadt, C.;
Zheleznyakov, D.; and Kharlamov, E. 2013. A seman-
tics for temporal and stream-based query answering in an
OBDA context. Tech. Rep., FP7-318338, EU.

[Poggi et al., 2008] Poggi, A.; Lembo, D.; Calvanese, D.;
De Giacomo, G.; Lenzerini, M.; and Rosati, R. 2008. Link-
ing data to ontologies. J. Data Semant. X:133–173.

[Sagonas, Swift, and Warren, 1994] Sagonas, K.; Swift, T.;
and Warren, D. S. 1994. XSB as an efficient deductive
database engine. ACM SIGMOD Record 23:442–453.

[Zhang and Renz, 2014] Zhang, P., and Renz, J. 2014. Qual-
itative spatial representation and reasoning in Angry Birds:
The extended rectangle algebra. In Proc. KR, 378–387.

1166

