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Abstract
We study a combinatorial problem formulated in
terms of the following group-formation scenario.
Given some agents, where each agent has prefer-
ences over the set of potential group leaders, the
task is to partition the agents into groups and as-
sign a group leader to each of them, so that the
group leaders have as high support as possible from
the groups they are assigned to lead. We model this
scenario as a voting problem, where the goal is to
partition a set of voters into a prescribed number of
groups so that each group elects its leader, i.e., their
leader is a unique winner in the corresponding elec-
tion. We study the computational complexity of this
problem (and several of its variants) for Approval
elections.

1 Introduction
Consider a situation where some agents must be split into
k groups, and each group must be assigned a group leader.
The agents have preferences over the set of potential group
leaders and, intuitively, we would like each leader to have as
high support as possible. However, since the requirement that
every leader should have as high support as possible is not
well-defined, initially we only insist that the group leader of
each group is a unique winner under some given voting rule.
If this voting rule is accepted by all agents as a measure of
fairness, then no group will be tempted to change its leader.
(Later we also discuss more demanding requirements for the
leaders, such as having sufficient advantage over the next con-
tender.) We are interested in the complexity of this problem.

Our scenario is deeply related to some problems of pro-
portional representation in politics. Suppose the society must
choose k representatives (among a number of candidates
standing in the election), say, a parliament. It is known that
splitting the electorate into districts, arranged by the territo-
rial principle, and electing a representative in each district,
leads to low-quality representation, especially in terms of rep-
resenting minorities [Rae, 1967].

Alternatively, the society may consider forming districts
not on the basis of geography, but on the basis of voter pref-
erences, putting like-minded voters into the same virtual dis-
trict. Then, each group can pick its representative using a vot-

ing rule. This important idea was suggested by Charles Dodg-
son [1884], known also as Lewis Carroll, and considered in
a different form by Black [1958]. This approach was further
developed by Chamberlin and Courant [1983] and by Mon-
roe [1995]; the two rules suggested by them assign voters to
representatives in such a way that each group of voters, repre-
sented by the same representative, creates a virtual district for
which their representative is the Borda winner. The main dif-
ference between the rules of Monroe and of Chamberlin and
Courant is that the former requires the district sizes to be as
close to each other as possible, while the latter does not. Our
work is very close in spirit to that of Chamberlin and Courant
(see the discussion regarding related work, and later in the
paper). However, we prefer to consider our results in terms of
group formation since this framework is broader.
Our Results. We focus on the variant of our group-
formation problem for approval-based voting rules (i.e., for
rules where each agent indicates which leaders he approves
of, and where the elected winner within a group is the candi-
date approved by the largest number of agents), mostly for the
case of partitioning the agents into two groups (this setting is
already challenging). Our main findings are as follows:

1. If either the number of agents or the number of potential
group leaders is small, then the problem can be solved
efficiently (formally speaking, the problem is in FPT
for the parameterizations by the number of agents or the
number of potential group leaders).

2. For the case of partitioning the agents into two groups,
the problem is in P if either each agent approves at most
two group leaders, or each agent approves almost all
group leaders with the exception of one or two.

3. The problem becomes NP-hard as soon as each agent
approves up to six group leaders (even for two groups).

In addition to the basic setting, we consider three variants of
the problem. In the first one, we require the selected leaders to
be approved by sufficiently many more agents than their next-
best contenders. In the second one, we are given the sizes of
the groups that we should form (quite a natural requirement
in many applications). In the third one, the group leaders are
part of the input and the goal is to check if there is a partition
where each leader is a unique winner in some group (for this
case, our NP-hardness holds already for the case where each
agent approves up to three group leaders).
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Related Work. Team formation and group formation are
among the main research topics in the field of artificial in-
telligence and multiagent systems, and has been analyzed
from many different perspectives. In a number of works, re-
searchers take the view that a group of interdependent agents
needs or wants to find teams that would satisfy their goals
(see, e.g., the works of Shehory and Kraus [1998], Dignum
et al. [2000], Gaston and desJardins [2005], Anagnostopou-
los et al. [2012], and Bredereck et al. [2013]). In another line
of work, the team-formation problem is viewed as a coalition
formation task, i.e., through the lens of cooperative game the-
ory (see the works of Sandholm et al. [1999] or Rahwan et
al. [2012; 2011] as examples). Our case, with the centralized
group (or district) formation (by a manager or an electoral de-
signer) is, however, much similar to voting scenarios studied
in computational social choice literature, specifically (1) win-
ner determination for Chamberlin–Courant and Monroe elec-
tions, and (2) control by partition of voters [Bartholdi et al.,
1992] (however, this should not be confused with works on
teams of voting agents such as those of Marcolino et al [2013;
2015]). We discuss these two connections now.

Under the approval-based Chamberlin–Courant rule (see
the original work of Chamberlin and Courant [1983] as well
as the papers of Procaccia et al. [2008], Betzler et al. [2013],
Skowron and Faliszewski [2015], and Aziz et al. [2015] for a
more general view of similar voting rules), the goal is to pick
a committee of k candidates that, in some sense, best repre-
sents the society of voters. Formally, a given size-k commit-
tee receives one point from each voter that approves at least
one of the committee members, and the committee with the
most points wins. This is similar to our setting, where the set
of assigned group leaders can be viewed as such a commit-
tee. However, the problems are different. For example, choos-
ing a constant-sized committee is in P under the approval-
based Chamberlin–Courant rule [Betzler et al., 2013], but our
problem—even for the case of partitioning agents into two
groups—is NP-hard.

The problem of (constructive) control by partition of
voters was introduced by Bartholdi et al. [1992] and has
been studied in detail since (most notably by Hemaspaan-
dra et al. [2007], but see also the survey of Faliszewski and
Rothe [2015]). In it, we are given the voters’ preferences and
ask if it is possible to partition the voters (into two groups)
so that a given distinguished candidate wins in the following
two-round election: First, the two groups elect winners us-
ing a prescribed single-winner rule (independently from each
other) and then the two selected candidates stand in the final
election (under the same rule) where all the voters vote.

For the Approval rule, Hemaspaandra et al. [2007] show
that this problem is NP-hard. Our problem is similar (es-
pecially to the ties-eliminate variant of the control problem,
where a candidate has to be a unique winner in her subelec-
tion to pass to the next round), but in our problem it does not
matter how these winners compare to each other; as a result,
also our proofs work very differently compared to those of
Hemaspaandra et al. [2007]. Indeed, our task seems simpler,
therefore it is somewhat disappointing that we still face NP-
hardness.

Finally, our work is related to papers concerning the influ-
ence of tie-breaking procedures on the complexity of strate-
gic voting [Obraztsova and Elkind, 2011; Obraztsova et al.,
2011].

2 Preliminaries

We formulate our group-formation problems in the language
of elections and in this section we provide the necessary def-
initions. We assume familiarity with standard notions regard-
ing algorithms and complexity theory. For a positive inte-
ger z, we write [z] to denote the set {1, . . . , z}.

Elections. An election E = (C, V ) consists of a set C of
m candidates and a collection V of n voters v1, v2, . . . , vn.
We do not assume that the voters and candidates are neces-
sarily distinct, i.e., voters may elect the leaders among their
ranks. For convenience, we usually refer to the voters as
males and to the candidates as females. Each voter is associ-
ated with his preference over the candidates; throughout this
paper we assume that the preferences are defined in the form
of sets of approved candidates. That is, each voter has a set
of candidates that he approves of (and he disapproves of—
sometimes we say vetoes—the other ones). A voter which
approves a candidate c is said to be a c-voter.

A winner of such an election, called an approval winner, is
a candidate that is approved by the highest number of voters.
It is possible that several candidates get the same maximal
number of approvals and, then, we say that they all tie as win-
ners. Usually some kind of tie-breaking must be employed;
however, our goal would be to achieve unique clear winners
in each group, such that the tie-breaking is not required for
their determination.

There are several special cases of this setting, depending
on how many candidates each voter is asked to approve of:

t-Approval and t-Veto (and Plurality and Veto). If each
voter has to approve exactly t candidates (respectively,
has to approve all but t candidates) then we say that
the election is held according to the t-Approval rule
(respectively, the t-Veto rule). 1-Approval is known as
the Plurality rule, while 1-Veto is known as the Veto
rule. (For t-Veto, it is sometimes more convenient to
count not approvals but the number of vetoes, i.e., the
number of times each candidate is not approved. The
number of vetoes of a candidate is her Veto score.)

Approval. If each voter can approve any number of can-
didates, then we say that the election is held accord-
ing to the Approval voting rule (note that all our NP-
hardness results for t-Approval immediately translate to
NP-hardness results for Approval).

For a voting rule R (in our case, one of t-Approval/t-
Veto/Approval) and an election E = (C, V ), we denote the
set of winners of E under R by R(C, V ).
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The Problem. We study the computational complexity of
the following problem.

R-k-PARTITION
Input: An election E = (C, V ) and a positive integer k.
Question: Is there a partition of V into subsets V1, . . . , Vk

such that |R(C, Vi)| = 1 for each i 2 [k], and R(C, Vi) 6=
R(C, Vj) whenever i 6= j?

That is, the task is to partition the voters into k groups (each
voter should belong to exactly one group) so that in each
group there is a unique R-winner, distinct from all others.
R-k-PARTITION is the vanilla variant of our problem. We
also consider the following variants (we describe each of
them by specifying how it differs from R-k-PARTITION):

1. In the R-MAXGAP-k-PARTITION variant, in addition
to the standard parts of the input, we are also given a
number t, and ask whether there is a partition of V into
V1, . . . , Vk so that, for each i, the unique winner in Vi

has at least t points more than the next-best candidate(s).
2. In the R-SIZED-k-PARTITION variant, in addition to the

standard parts of the input, we are also given k numbers,
s1, . . . , sk, and ask whether there is a partition of V into
V1, . . . , Vk such that, for each i, Vi has a unique winner
and |Vi| = si.

3. In the R-PRESELECTED-k-PARTITION variant, in addi-
tion to the standard parts of the input, we are also given
the desired k group leaders, and the task is to check
whether there is a partition of the voters so that each
group leader is a unique winner for exactly one group.

The R-PRESELECTED-k-PARTITION variant is interesting
for two reasons. First, we might be in the setting where the de-
signer has already identified the set of desirable group leaders
and would like to check if it is possible to form groups that
give the preselected leaders necessary support. Second, most
of our results translate from this case to the other scenarios.

For the other two problems, R-MAXGAP-k-PARTITION
speaks of situations where we maximize the (relative) support
of the selected group leaders, and R-SIZED-k-PARTITION
deals with the case where groups have to be of specified sizes.

Comparison to Chamberlin–Courant. Our problems are
similar to, but different from, that of winner determination
under Approval-based Chamberlin–Courant rule (R-k-CC):

R-k-CC
Input: An election E = (C, V ) and a positive integer k.
Task: Find a subset {c1, . . . , ck} of candidates and a par-
tition of the voters into k groups, V1, . . ., Vk, so that the
sum of approval scores of c1 in V1, c2 in V2, . . ., ck in Vk

is maximal.

We mention that R-k-CC is in P for the cases where k is
fixed [Betzler et al., 2013], whereas we will see that already
6-APPROVAL-2-PARTITION is NP-hard.

Parameterized Complexity. An instance (I, k) of a pa-
rameterized problem consists of an instance I of a non-
parameterized problem and an integer k, referred to as the
parameter (see, e.g., the textbook of Niedermeier [2006]

for more details). A parameterized problem is called fixed-
parameter tractable (or, is said to be in FPT) if there is an
algorithm solving it in f(k) · |I|O(1) time, where f is some
computable function. Betzler et al. [2012] survey parameter-
ized complexity results in voting.

3 Results
We first present the results for the case of preselected group
leaders. Then, based on those, we give results for all the other
scenarios. Finally, we consider the case where we have either
only a few candidates or only a few voters. We mostly focus
on the case of partitioning the voters into two groups, but oc-
casionally (e.g., in the next two theorems) we prove results
for general values of k.

3.1 Results for Preselected Group Leaders
Plurality is a simple and fundamental voting rule, so it is not
surprising that we get a polynomial-time algorithm for it.
Theorem 1. PLURALITY-PRESELECTED-k-PARTITION is
in P.

Proof. Consider an instance of Plurality-Preselected-k-
Partition, where the preselected leaders are p1, . . . , pk. If for
some i 2 [k] there is no voter approving pi, then we obvi-
ously reject. If we did not reject at the first stage, we check if
n � k � 2Q, where Q is the number of voters who approve
none of the preselected leaders. We accept if this is true and
reject otherwise. To justify this, for each i 2 [k], let Pi be the
number of voters who approve pi. For each i, the ith group
of voters in the partition can accommodate the Pi voters that
approve of pi and up to Pi � 1 voters who do not approve
of pi. Then, we have a yes-instance iff

Pk
i=1(Pi � 1) � Q.

Since
Pk

i=1(Pi � 1) = n�Q� k, we have a yes-instance if
and only if n� k � 2Q.

For the case of Veto, we need a bit more involved reasoning.
Due to space constraints, we omit the corresponding proof,
as well as some other later proofs. From now on we will not
mention this explicitly.
Theorem 2. VETO-PRESELECTED-k-PARTITION is in P.

The fact that we can quite easily deal with Plurality (and
Veto) is encouraging. Unfortunately, going beyond these two
simplest rules becomes more challenging. We still obtain
polynomial-time algorithms for 2-Approval and 2-Veto, but
only for the case of partitioning the voters into two groups.
Theorem 3. 2-APPROVAL-PRESELECTED-2-PARTITION is
in P.

Proof. Given an instance of 2-Approval-Preselected-2-
Partition that includes an election E = (C, V ) and two pres-
elected leaders, p1 and p2, we will show how to check if it is
possible to partition V into V1 and V2, so that p1 is a unique
winner in V1 and p2 is a unique winner in V2.

It is clear that we can assign all the voters who approve p1

but not p2 to V1, and all the voters who approve p2 but not p1
to V2. Regarding voters who approve both p1 and p2, we pro-
ceed as follows: Let q be the number of such voters. We guess
a number q0  q and assign q

0 of these voters to V1, while the
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remaining ones we assign to V2 (clearly, it is irrelevant which
specific voters we assign to each of the groups). Let U1 and
U2 denote the voters already allocated to be in V1 and V2.

We might have some remaining voters who approve nei-
ther p1 nor p2. We will assign parts for these voters by first
translating the problem to a multigraph problem. We form a
vertex for each candidate in C \ {p1, p2}. For each not-yet-
allocated voter v (i.e., for each voter from V \ (U1 [U2)), we
form an edge between the two vertices that correspond to the
candidates approved by v. This gives us a multigraph which
we denote as G. Consider the following illustrating example.

Example 1. Consider an election with candidates
{a, b, c, d, p1, p2} and the situation after we have al-
ready allocated the voters who approve of p1 and/or p2.
Imagine we have four unallocated voters, such that the first
one approves a and b, the second and the third one both
approve b and c, and the fourth one approves c and d. We
then construct the following multigraph.

a b

c d

The score that each candidate receives from the unallocated
voters is equal to the degree of the corresponding vertex. 4

The problem of assigning the unallocated voters to either
V1 or V2 without meeting-or-exceeding the scores of p1 and
p2, respectively, can now be reduced to the (g, f)-FACTOR
problem defined as follows (for a multigraph G and some ver-
tex v in it, we write degG(v) to denote its degree). By N0 we
denote the set of all non-negative integers.

(g, f)-FACTOR
Input: A multigraph G = (V,E) and two functions
g, f : V ! N0, with g(v)  f(v) for each v 2 V .
Question: Does G contain an (g, f)-Factor, that is, a sub-
graph G0 = (V,E0) of G such that g(v)  degG0

(v) 
f(v) for all v 2 V ?

It is known that (g, f)-FACTOR is polynomial-time
solvable [Anstee, 1985] (see also the prior work of
Gabow [1983]).

We use the following notation to describe the specific in-
stance of (g, f)-FACTOR that we form. Recall that G is the
multigraph we have constructed. Note that, for each vertex c

in G, its degree degG(c) is equal to the Approval score of c
in the original election where we remove the voters already
assigned to V1 and V2. For each vertex c and each i 2 {1, 2},
let us denote the number of voters who are assigned to part Vi

and approve c by scoreUi(c) (this is the 2-approval score of c
in the subelection Ui).

We note that scoreUi(pi) � scoreUi(c) � 1 is the number
of not-yet-allocated voters which approve c, that can be added
to Ui without preventing pi from being the 2-approval winner
in the resulting subelection. We are now ready to describe the
instance of (g, f)-FACTOR that we solve. For each vertex c

of graph G we define the following two values:

g(c) := degG(c)� (scoreU2(p2)� scoreU2(c)� 1), (1)
f(c) :=scoreU1(p1)� scoreU1(c)� 1. (2)

If for some c it holds that g(c) > f(c), then our guess of the
number q0 was unsuccessful. Otherwise, if g(c)  f(c) for
all vertices of G, then, using a polynomial-time algorithm for
(g, f)-FACTOR, we compute the graph G0. If it does not exist,
then we reject (this guess of q0). If it exists then we obtain the
desired partition of voters, and we assign all the voters corre-
sponding to the edges in G0 to part V1, and all the remaining
voters to part V2. Note that, for each candidate c, it is not pos-
sible to assign more than f(c) edges to V1, since otherwise c

would win in part V1. Similarly, at least g(c) edges must be
assigned to V1, since otherwise c would win in part V2. Thus,
the algorithm is correct (i.e., if there is a solution for the input
instance of 2-APPROVAL-PRESELECTED-2-PARTITION then
the algorithm accepts for some guessed q

0, and otherwise it
rejects for all q0).

We obtain a similar result for the case of the 2-Veto rule.
While the proof also relies on using the (g, f)-FACTOR prob-
lem, it requires some additional tricks.
Theorem 4. 2-VETO-PRESELECTED-2-PARTITION is in P.

There are two ways of extending the above two the-
orems. We can consider either t-{APPROVAL, VETO}-
PRESELECTED-2-PARTITION for t > 2, or 2-{APPROVAL,
VETO}-PRESELECTED-k-PARTITION for k > 2. For the for-
mer cases, we show NP-hardness (we omit the proofs here,
but later we describe how to adapt the proof of Theorem 8 to
apply to Theorem 5).
Theorem 5. 3-APPROVAL-PRESELECTED-2-PARTITION is
NP-hard.
Theorem 6. 3-VETO-PRESELECTED-2-PARTITION is NP-
hard.

The following two corollaries are achieved by simple adap-
tations of the reductions used in the proofs of Theorem 5 and
Theorem 6.
Corollary 1. t-APPROVAL-PRESELECTED-k-PARTITION is
NP-hard whenever t � 3 and k � 2.
Corollary 2. t-VETO-PRESELECTED-k-PARTITION is NP-
hard whenever t � 3 and k � 2.

The other line of extending the results for 2-{APPROVAL,
VETO}-PRESELECTED-2-PARTITION is more problematic.
As far as polynomial-time algorithms are concerned, the
simplest case to consider would be that of 2-APPROVAL-
PRESELECTED-3-PARTITION. It appears that the ideas we
used for our polynomial-time algorithms cannot be general-
ized to this case: We would need to solve a problem which has
a lot of similarities with the NP-hard EDGE COLORING prob-
lem [Garey and Johnson, 1979]. Yet, we could not prove NP-
hardness for any variant of the 2-APPROVAL-k-PARTITION
problem, for k � 3; the complexity of these cases remains
open.

3.2 Other Variants of the Problem
Most of our results for preselected leaders still hold for the
other variants of the problem, with only a few exceptions.
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First, it holds that PLURALITY-k-PARTITION and VETO-
k-PARTITION are in P. To show this, we use algorithms that
are somewhat different from those used in the case of prese-
lected leaders. For the case of creating two groups, we show
that, whenever we have a polynomial-time algorithm for R-
PRESELECTED-2-PARTITION, we automatically get an algo-
rithm for R-2-PARTITION.
Proposition 1. Let R be a voting rule. If R-PRESELECTED-
2-PARTITION is in P then so is R-2-PARTITION.

Proof. Consider an instance of R-2-PARTITION, with can-
didate set C. It suffices to run the polynomial-time algorithm
for R-PRESELECTED-2-PARTITION for each possible choice
of two distinct group leaders. If the algorithm accepts for any
such choice, then we accept; otherwise, we reject.

Naturally, similar approach works for more groups, pro-
vided that their number is upper bounded by a constant, but
for our results the above proposition is sufficient. Altogether,
we get the following.
Theorem 7. PLURALITY-k-PARTITION, VETO-k-PAR-
TITION, 2-APPROVAL-2-PARTITION, and 2-VETO-2-PAR-
TITION are in P.

Unfortunately, we were not able to show NP-hardness of
t-APPROVAL-2-PARTITION for t 2 {3, 4, 5}, but we do get
NP-hardness for the 6-Approval case.
Theorem 8. 6-APPROVAL-2-PARTITION is NP-hard.

Proof. We provide a reduction from the following NP-hard
problem [Gonzalez, 1985].

RESTRICTED EXACT COVER BY 3-SETS
Input: Set of elements X = {x1, . . . , xn}, collection
S = {S1, . . . , Sn} of size-3 subsets of X such that each
xi appears in exactly three sets.
Question: Is there a subcollection S 0 ✓ S of sets such
that each element xi appears exactly once in S 0?

Given an instance for RESTRICTED EXACT COVER BY 3-
SETS, we create an instance for 6-APPROVAL-2-PARTITION
as follows. For each element xi, we create two candidates,
xi and x

0
i. We also create two special candidates, a and b.

For each set Si, we create a voter Si who approves the set of
candidates {xi, x

0
i : xi 2 Si}. Moreover, we create two voters

who approve a and three voters who approve b. This finishes
the reduction, which is computable in polynomial time.1

We omit the full proof of correctness, but only mention
that, given a solution for RESTRICTED EXACT COVER BY 3-
SETS, that is, a subcollection S 0 ✓ S such that each element
appears exactly once in S 0, we partition the voters as follows.
We assign to part V1 all the voters that correspond to sets from
S 0, as well as the two voters that approve a; we assign all the
other voters to part V2. Since each element xi appears exactly
once in S 0, it follows that each candidate xi and x

0
i appears

exactly once in V1.
1Note that the reduction, as stated above, generate an Approval

but not 6-Approval elections as, in the latter, voters who approve
a or b should also approve some five other candidates. This can be
easily fixed by adding 25 dummy candidates.

Remark 1. The above proof also works for Theorem 5: we fix
a and b as the preselected leaders and remove x

0
1, . . . , x

0
n.

Let us consider the MAXGAP variant. It turns out we can
get the following results, by using techniques similar to those
we have used so far. For example, to show that 2-APPROVAL-
MAXGAP-2-PARTITION is in P, we take the same approach
as in Theorem 3: we iterate over all choices of group leaders
(as in Theorem 1) and in equations (1) and (2) we replace
“�1” with “�t,” where t is the minimum score advantage
any group leader must have over the next-best contender.
Theorem 9. PLURALITY-MAXGAP-k-PARTITION, VETO-
MAXGAP-k-PARTITION, 2-APPROVAL-MAXGAP-2-PAR-
TITION, and 2-VETO-MAXGAP-2-PARTITION are in P
while 6-APPROVAL-MAXGAP-2-PARTITION and 6-VETO-
MAXGAP-2-PARTITION are NP-hard.

The situation is more complex for the SIZED variant. For
example, we did not obtain results for PLURALITY-SIZED-k-
PARTITION for the case where k is part of the input. Indeed,
our algorithm for PLURALITY-SIZED-2-PARTITION is quite
different from all other ones, thus, for this case, we provide a
proof after the theorem statement.
Theorem 10. PLURALITY-SIZED-2-PARTITION, VETO-2-
SIZED-2-PARTITION, 2-APPROVAL-SIZED-2-PARTITION,
and 2-VETO-SIZED-2-PARTITION are in P while 6-
APPROVAL-SIZED-2-PARTITION and 6-VETO-SIZED-2-
PARTITION are NP-hard.

Proof for PLURALITY-SIZED-2-PARTITION. We begin by
guessing a pair of candidates, a1 and a2, which will be the
winners of V1 and V2, respectively.

Let T1 be the number of a1-voters in the election and T2 be
the number of a2-voters in the election (recall that a c-voter
is a voter who approves c). Due to the given size constraints,
i.e., that |V1| = s1 and |V2| = s2, we cannot simply assign
all a1-voters to V1 and all a2-voters to V2. Instead, we begin
by guessing a value Z1, which is the number of a1-voters that
we assign to V1, as well as a value Z2, which is the number of
a2-voters that we assign to V2. After fixing these values and
assigning the relevant voters according to them, the problem
can be reduced to finding a maximum flow in the network
constructed as follows (note that at this point we assigned
Z1 + (T2 � Z2) voters to V1 and Z2 + (T1 � Z1) voters to
V2; if this already breaks the size constraints, or prevents a1
from winning in V1, or prevents a2 from winning in V2, then
we try a different set of guesses).

We construct a source node s and a target node t. For each
candidate c /2 {a1, a2}, we construct a node vc (recall that
all the a1-voters and all the a2-voters are already assigned to
groups). We construct two additional nodes, t1 (correspond-
ing to V1) and t2 (corresponding for V2). For each vc, we
create an arc (s, vc) with capacity equal to the number of
c-voters in the election. Further, for each vc, we create an
arc (vc, t1) with capacity Z1 � 1, as well as an arc (vc, t2)
with capacity Z2 � 1. We create an arc (t1, t) with capacity
s1 � Z1 � (T2 � Z2), as well as an arc (t2, t) with capac-
ity s2 � Z2 � (T1 � Z1). This finishes the description of the
network. A maximum flow in this network can be found in
polynomial-time. If the network can be completely saturated
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(i.e., all the edges from s can be used to their maximum ca-
pacity), then we accept; otherwise, we reject. Further, for each
c /2 {a1, a2}, the amount of flow on the arc (vc, t1) (respec-
tively, (vc, t2)) corresponds to the number of c-voters which
will be assigned to V1 (respectively, V2).

The correctness of the algorithm follows by noticing that,
for correct guesses of the values Z1 and Z2, and for each can-
didate c /2 {a1, a2}, no more than Z1�1 (respectively, Z2�1)
c-voters can be assigned to V1 (respectively, V2). Further, the
capacities on the arcs (t1, t) and (t2, t) make sure that, when
the network is saturated, the sizes of the groups will be as
required.

3.3 Few Candidates or Few Voters
We conclude the technical discussion by showing that the R-
k-PARTITION problem is fixed-parameter tractable with re-
spect to parameterizations either by the number n of voters
or by the number m of candidates. Note that these algorithms
work not only for approval-based voting rules, but for a much
larger family of voting rules, including, for example, all scor-
ing rules.
Proposition 2. Let R be a voting rule for which the winner-
determination problem is fixed-parameter tractable with re-
spect to the number n of voters. Then, R-k-PARTITION is
also fixed-parameter tractable with respect to the number n

of voters.
By formulating the R-k-PARTITION problem as a lin-

ear integer program (ILP) and applying a famous result of
Lenstra [1983], we get the next result, for all consistent vot-
ing rules (including all the rules studied in this paper).
Definition 1. A voting rule is consistent if, for every pair of
elections, E1 = (C, V1) and E2 = (C, V2), it holds that if
R(C, V1)\R(C, V2) 6= ; then R(C, V1+V2) = R(C, V1)\
R(C, V2).
Proposition 3. Let R be a consistent voting rule for which
winner-determination can be decided by an integer linear
program where the number of variables is upper-bounded
by a function which depends only on the number m of can-
didates. Then, R-k-PARTITION is fixed-parameter tractable
with respect to the number m of candidates.

These results mean that, after all, the NP-hardness results
from the preceding sections are not necessarily problematic if
we have only a few voters or only a few candidates.

4 Conclusions and Future Research
We have shown that the problem of partitioning a group of
agents into groups that have clear leaders is surprisingly diffi-
cult. It is NP-hard already for two groups, for the case where
each agent approves at most six possible leaders (and if we
want to have a predetermined set of leaders for the groups,
then it is NP-hard already when each agent approves at most
three possible leaders). Nonetheless, we have also found a
number of cases where our problem can be solved efficiently.

Our hardness results are somewhat unexpected, es-
pecially when contrasted with the easiness of the
winner-determination problem under the approval-based
Chamberlin–Courant rule. For example, the problem of

PRESELECTED-k-PARTITION
k = 2 k > 2 Reference

Plurality P P Theorem 1
Veto P P Theorem 2

2-Approval P Open Theorem 3
2-Veto P Open Theorem 4

� 3-Approval NP-hard NP-hard Corollary 1
� 3-Veto NP-hard NP-hard Corollary 2

Table 1: Summary of our results for the variant with pre-
selected leaders. For the non-preselected variant, we have
NP-hardness only for 6-Approval and 6-Veto. The results
hold also for the two generalizations considered in this pa-
per, namely, where we (1) require a specific score advantage
for the leaders, or (2) impose constraints on the group sizes.

finding a winning committee of size two under this rule
is in P, but we show that finding such a committee and
partitioning the voters into two groups, each represented by
their assigned committee member, is NP-hard if we insist
that the committee members are the unique most-supported
candidates among the voters they represent.

Our results lead to a number of avenues for future re-
search. To mention just a few, it would be natural to study
ordinal voting rules (where the voters rank the candidates
instead of giving approvals) and it would be interesting to
study restricted domains (e.g., variants of single-peakedness
and single-crossingness for Approval voting (see the works
of Faliszewski et al. [2011] and Elkind and Lackner [2015]).

Acknowledgments. Piotr Faliszewski was supported NCN
grant DEC-2012/06/M/ST1/00358. Arkadii Slinko was sup-
ported by the Royal Society of NZ Marsden Fund UOA-254.
Nimrod Talmon was supported by a postdoctoral fellowship
from I-CORE ALGO.

References
[Anagnostopoulos et al., 2012] A. Anagnostopoulos,

L. Becchetti, C. Castillo, A. Gionis, and S. Leonardi.
Online team formation in social networks. In Proceedings
of the 21st International Conference on World Wide Web
(WWW’12), pages 839–848. ACM Press, April 2012.

[Anstee, 1985] R. Anstee. An algorithmic proof of Tutte’s
f -factor theorem. Journal of Algorithms, 6(1):112–131,
1985.

[Aziz et al., 2015] H. Aziz, M. Brill, V. Conitzer, E. Elkind,
R. Freeman, and T. Walsh. Justified representation in
approval-based committee voting. In Proceedings of
AAAI-2015, pages 784–790, 2015.

[Bartholdi et al., 1992] J. Bartholdi, III, C. Tovey, and
M. Trick. How hard is it to control an election? Math-
ematical and Computer Modeling, 16(8/9):27–40, 1992.

[Betzler et al., 2012] N. Betzler, R. Bredereck, J. Chen, and
R. Niedermeier. Studies in computational aspects of
voting—a parameterized complexity perspective. In The
Multivariate Algorithmic Revolution and Beyond, volume
7370 of LNCS, pages 318–363. Springer, 2012.

248



[Betzler et al., 2013] N. Betzler, A. Slinko, and J. Uhlmann.
On the computation of fully proportional representation.
Journal of Artificial Intelligence Research, 47:475–519,
2013.

[Black, 1958] D. Black. The Theory of Committees and Elec-
tions. Cambridge University Press, 1958.

[Bredereck et al., 2013] R. Bredereck, T. Köhler, A. Nichter-
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