
Advances in Nonparametric Hypothesis Testing

Aaditya Ramdas
Machine Learning Department

Carnegie Mellon University
aramdas@cs.cmu.edu

Executive Summary
The advent of “big data” is causing a merging of fields, due
to the need of simultaneously solving a variety of problems
which are usually in distinct domains. As someone with a
Bachelors degree in computer science, my PhD involved a
rapid change in mindset, as I quickly embraced the necessity
of using statistics and optimization together for effectively
solving modern data problems. Indeed, this spirit is captured
by my wide range of successful research projects, exploring
the depths of multiple related fields with collaborators from
the Department of Statistics, Machine Learning Department
and the Tepper School of Business, together informing my
overall research agenda.

My research goal involves simultaneously addressing
statistical & computational tradeoffs encountered in mod-
ern data analysis and high-dimensional machine learning
(eg: hypothesis testing, regression, classification). My fu-
ture interests include incorporating additional constraints
like privacy or communication, and settings involving hid-
den utilities of multiple cooperative agents or competitive
adversaries.

Along with the recent explosion in quantities of available
data, our appetite for finding “patterns” in this data has grown
exponentially faster, and we run a large risk of false discover-
ies. When one takes statistical precautions, being appropriately
conservative in declaring findings, one is plagued with false
negatives (low power). Two basic questions that are not well
understood are for a given computational budget, what is the
tradeoff between false positives and power? and what is the
tradeoff involved in using general nonparametric hypothesis
testing for simple or parametric alternatives? These problems
become critical when data is high-dimensional (the number of
samples and features are comparable), especially when there
are parameters to tune or a class of models to select from. I
will later elaborate on free lunch theorems & computational-
statistical tradeoffs for the practically important problems of
nonparametric two-sample and independence testing.

On a related note, advances in numerical algorithms are
increasingly critical for applications. Optimization is now a
vital ingredient in ML and statistics, and the development of
practical algorithms with theoretical convergence guarantees
is a direction I have pursued with vigor, and intend to con-
tinue to pursue through my career. For maintaining brevity,
the reader is directed to Ramdas and Tibshirani [2014] for

trend filtering algorithms with potential to replace smoothing
splines/kernels, Ramdas and Peña [2014a,b] for margin-based
algorithms for classification, Ramdas et al. [2014] for ran-
domized algorithms for regression, and Ramdas and Singh
[2013b,a] for non-intuitive lower and upper bound connections
between active learning and stochastic optimization.

Free Lunches and Comp./Stat. Tradeoffs in
Two-Sample Testing
One of my current research aims is to characterize the behavior
of nonparametric “two sample tests” in high dimensions, mak-
ing precise non-asymptotic guarantees on their false positive
and false negative rates, as a function of their computational
cost. Given X1, ..., Xn ∈ Rd drawn i.i.d. from a distribution
P and Y1, ..., Yn ∈ Rd i.i.d. from Q, the two-sample or homo-
geneity testing problem involves testing the null hypothesis
P = Q against the alternative hypothesis P 6= Q. In the high-
dimensional setting, the number of samples n and d can be
comparable. It is easiest to motivate the problem and introduce
the terminology with a simple toy example.

Example. To understand whether a particular brain region
(say R) with 500 voxels (volume pixels) is involved in differ-
entiating faces from non-faces, imagine placing patients inside
an fMRI (functional MRI) machine, and showing 100 faces
and 100 houses in some random order, while the machine
records their “hemodynamic” response in region R. Given
readings for faces X1, ..., X100 and houses Y1, ..., Y100, both
in R500, we want to know if their underlying distributions are
different.

If we choose to make no parametric assumptions like Gaus-
sianity on P,Q, and the possible difference between P,Q
could be arbitrary (in their means or variances or in higher
moments), then we call this nonparametric two-sample test-
ing against general alternatives. Neuroscientifically, suppose
one expects a difference in the mean brain activity (if R
differentiated faces from non-faces). Then we may instead
choose to test EP [X] = EQ[Y ] against the simpler alterna-
tive EP [X] 6= EQ[Y ]; the problem is still nonparametric
(no assumptions on P,Q) but with mean-difference alterna-
tives. Several high-dimensional nonparametric tests, based
on kernels and distances, have been proposed for general al-
ternatives over the last decade. However, there is almost no
understanding of their power in high dimensions. After healthy
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progress in [Ramdas et al., 2015a,b], our most recent (unpub-
lished) work successfully addresses some very fundamental
open problems related to these tests, such as:

1. Can we precisely characterize the false positive rate &
power in the high-dimensional setting?

2. How do tests that are designed to be consistent against
general alternatives compare against “specialized” tests
specifically designed for mean-difference alternatives?

3. Can one get the same power with cheaper computation,
or can we prove there is a tradeoff?

We give exciting and surprising answers to all of these ques-
tions for the two most popular kernel and distance based test
statistics - the Maximum Mean Discrepancy in RKHSs using
the Gaussian kernel (GMMD) and the Energy Distance (ED)
using the Euclidean distance, but these can be generalized
to other kernels and distances. Below, I summarize some of
our results, where the SNR or signal-to-noise-ratio (loosely
speaking, the KL divergence) between P,Q is denoted by Ψ.

1. Explicit characterization of power as a function of
n, d,Ψ in the high-dimensional setting as (n, d) → ∞,
for nonparametric P,Q differing in their means. This in
itself is a big step forward - there has been no power anal-
ysis for kernel or distance based tests in high dimensions.
Recent papers based on kernels and distances do not have
any explicit rates for power or even asymptotic consis-
tency when (n, d)→∞, and there currently exist many
misconceptions that both kernel and distance based tests
“work well” in high dimensional settings. These arise
due to confusing low estimation error of the test statistic
with high power of the test, or incorrect intuition from
the normal means problem (see Ramdas et al. [2015a]).

2. A clear and smooth computation-statistics tradeoff in
high dimensions, which includes linear, quadratic and
sub-quadratic versions of GMMD and ED - ignoring
small absolute constants, if computation scales as n2x for
1 ≤ x ≤ 2, then the power scales as Φ(nxΨ2/

√
d) when

Ψ 6 d/n (low SNR), for Gaussian CDF Φ. Specifically,
linear-time and sub-quadratic block-based tests have been
suggested as computationally cheaper alternatives to the
full quadratic-time U-statistic, and we clearly character-
ize the tradeoffs involved. While there is existing analysis
in the classical fixed d setting, the asymptotic power (ig-
noring constants) has been derived to be Φ(

√
n), with

computation time seemingly affecting only constants in
the rate - our analysis shows that in high-dimensional
settings we pay in exponents of n.

3. ED & GMMD provably have exactly the same power
against mean-difference alternatives. While there has
been recent work characterizing the similarity between
distance and kernel based tests, there has been no formal
power statement, especially about the performance of
the “default” choice for kernel (Gaussian) and distance
(Euclidean) in any setting.

4. Free Lunch! ED & GMMD provably have the same
power as specialized tests that have been designed in
the literature to test for differences in means, for example

by Bai & Saranadasa (BS) or Chen & Qin (CQ). This is
rather remarkable, since one does not lose anything for
the extra generality! Indeed, it implies that unless one
has any further information, one needn’t ever use BS/CQ
since GMMD/ED are strictly superior, being additionally
consistent against any general alternatives.

5. The power is provably independent of Gaussian ker-
nel bandwidth, as long as it is chosen to be Ω(

√
d),

which happens to be the choice made by the popular “me-
dian heuristic”. This heuristic chooses the bandwidth as
the median pairwise distance between all points, and has
had no justification or power analysis in even the classical
setting, and characterizing its behavior in any formal way
is an important open problem.

Future work involves extending these results to the impor-
tant problem of independence testing, as well as investigating
the mathematical relationship between two sample testing and
classification, independence testing and regression.
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