
Distribution of UCT and Its Ramifications

Marc Chee
The University of New South Wales

Sydney, Australia
marcchee@cse.unsw.edu.au

Abstract
My thesis is largely focused on the parallelisation
of UCT (and other Best-First Search techniques)
and the ramifications of doing so. I have identi-
fied issues with chunking in UCT, created by some
forms of parallelisation, and developed a solution
to this involving buffering of simulations that ap-
pear “out of order” and reevaluation of propagation
data. I have developed a technique for scalable dis-
tribution of both tree data and computation across
a large scale compute cluster. The context of most
of my work is General Game Playing, but the tech-
niques themselves are largely agnostic to domain.

1 Introduction
The UCT (Upper Confidence Bound for Trees) algorithm is a
prevalent instance of Monte Carlo Tree Search. UCT draws
inspiration from the work of the mathematical community on
Multi-Armed Bandit problems and revolves around finding a
balance between exploration and exploitation.

UCT iterates using four phases: Selection, Expansion,
Simulation and Backpropagation. Each iteration, the tree is
traversed from the root to a leaf which is selected in a way that
balances favouring promising subtrees (exploitation) against
exploring parts of the tree with less information. The tree is
then expanded by a single node at the selected leaf. A Monte
Carlo simulation plays to the end of the game so as to get
some initial information of the newly created node. This new
piece of information is aggregated to the information already
present in ancestor nodes as it is backpropagated to the root.

The tree grows after each iteration and the information as-
sociated to its nodes can be shown to converge to their game
theoretic value over time. UCT has also proved to be very
successful in practice for numerous game domains [Browne
et al., 2012].

UCT converges over time based on the number of com-
pleted iterations. It makes sense that parallelisation of UCT
should yield convergence in less real time than a serial algo-
rithm. However, the nature of UCT is inherently serial, re-
quiring information from previous iterations to be able to di-
rect future ones. Some efforts have been made to parallelise
the algorithm [Cazenave and Jouandeau, 2007], but there is
still the potential for the behaviour of parallelised UCT to

stray from the mathematical ideal of a standard UCT search.
The main focus of my research is to create a framework that
will be able to utilise the extra computing power of paralleli-
sation while not sacrificing the benefits of a mathematically
correct UCT search.

I first present my buffering and reevaluation techniques
that allow us to alleviate the issues inherent in creating chunks
of simulation data outside of the normal order of UCT. I then
present my distributed framework that distributes UCT (or
any other kind of Best-First Search) across a compute cluster
without the need for shared memory and with minimal com-
munications overhead.

2 Chunking and Buffering
I’ve identified the issue of chunking, which can be caused by
modifications on UCT such as leaf parallelisation[Cazenave
and Jouandeau, 2007] and the use of transposition
tables[Romein et al., 1999]. In these situations, it is possi-
ble for a “chunk” of more than one simulation to be created
or discovered at a leaf of the tree. Since this chunk is not cre-
ated with UCT’s usual balance of exploitation/exploration, it
could mislead its parent node to weigh too heavily in favour
of that particular node.

I developed the technique of buffering to try to alleviate
the negative effects of chunked simulation data without sac-
rificing the extra information in the chunk. Buffering basi-
cally delays the propagation of chunked simulations. When
a chunk of data (more than one simulation at a time) is re-
ceived, we do not immediately update our current node and
continue propagation. Instead, we store the data in a buffer
at the receiving node. During backpropagation a parent node
and its children are considered as a group. The parent loops,
using UCT selection to select a child and propagate a single
simulation (using the average winrate of that child’s buffered
simulations) from that child into the parent’s buffer. This loop
continues until it reaches a child that has an empty buffer, po-
tentially leaving other buffers unused, but importantly propa-
gating from the children in a ratio according to a UCT search.

Continuing work on the buffering system showed that this
technique still had possibly negative ramifications on the con-
vergence of a uct search, so I developed the idea of buffering
with reevaluation. The first step was to realise that the buffer-
ing technique would take a significant amount of propaga-
tions to balance weighting between two different chunks at

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4351



the same node. Reevaluation removes all prior propagations
from a node if a new chunk arrives and then recalculates the
node’s statistics based on the average of all simulations that
have been propagated to the node and its current UCT value.
It then carries out a buffered propagation.

Reevaluation also had a potential issue in that it could put
a node out of balance with the other nodes in its generation.
The next step was to develop multi-node reevaluation which
has brought the buffering technique to the point where it will
reevlauate a generation of nodes, using whatever buffers are
stored in each of them. The result of the multi-node reevalua-
tion is a generation of nodes and their parent who end up bal-
anced as if all simulations were created and propagated using
a normal UCT search and in addition, the winrates in the sim-
ulations benefit from all the simulations in the chunks at each
node. In an IJCAI submission [Chee et al., 2015] we show
experimentally that this technique can significantly alleviate
the issues inherent in chunked UCT simulations, accelerat-
ing convergence over naive methods. The paper also shows
that buffering is a principled technique that can return a tree
with chunked data to the correct the mathematical balance of
exploration and exploration.

3 A Framework for Distributed Best-First
Search

This framework distributes a UCT search across multiple pro-
cessors without the need for a shared memory space. It seeks
to leverage the fact that UCT converges based on the num-
ber of iterations, and so the more processing power can be
utilised, the less real time is necessary. This means that it
is capable of being run on a compute cluster such as the
Leonardi UNSW Engineering HPC cluster. The framework
consists of a master process that is responsible for organising
the cluster as well as reporting results and an arbitrary num-
ber of worker processes. Each worker process is uniquely ad-
dressed and will be storing and processing one or more sub-
trees of the UCT tree.

One worker is selected by the master as the “root worker”
and is assigned the root of the UCT tree and builds a sub-tree
over a set amount of time or number of simulations. From
then on, the master will send “requests for work” to the root
worker, who will begin a UCT selection descent of their own
tree. When they reach a leaf of their tree, they will either as-
sign that leaf to another worker or, if it is already assigned,
pass on the request. Any worker receiving a request will per-
form a selection descent of the corresponding sub-tree in the
same way. Once a worker selects an unassigned leaf, it will
send a “work order” to the worker that the request was sent
on behalf of. This worker will be given the leaf of the tree
as the root of a new sub-tree, which it will then build for a
set amount of time or simulations. Once the sub-tree is com-
pleted, the worker will send a propagation message back to
the worker that sent it the work order (its parent in terms of
the current sub-tree). The propagation message will contain
all the statistics that have been gathered at the root node of the
sub-tree and will then be propagated through other workers
sub-trees exactly as in a normal UCT until eventually reach-
ing the global root.

In this way, a UCT tree is built that is distributed across
the processors. This allows us to distribute both processing
(building and descending sub-trees) as well as memory usage
(storing sub-trees) across multiple processors and their mem-
ory. Communication overheads are reasonably low as the
messages being passed between workers never need to con-
tain actual tree information, only identifiers or statistics (for
UCT the statistics are numbers of simulations and scores).
The framework has been scaled up to 2000 CPUs in testing.

It does, however have one disadvantage and that is the issue
of chunking. When a worker propagates all of the statistics
of its sub-tree to another worker, that information arrives in
a chunk at a single leaf node. The chunk may cause a single
leaf node to have unrealistically high weighting in the statis-
tics that are propagated. Utilising the buffering and reeval-
uation techniques, I hope to alleviate the negative effects of
chunking in this framework.

4 Current and Future Work
Both techniques in this abstract have been developed to the
point of proof of concept and reliability but have yet to be in-
tegrated into one system together. It will be interesting to see
if what is theoretically a weakness of the cluster player frame-
work is in practice alleviated by the introduction of buffering.

A prototype of the distributed framework is incorporated
into Quorum Player, UNSW’s General Game Player and has
taken part in the International GGP Competition in 2014.

On top of this, the buffering technique has been shown to
be effective in a few particular scenarios. I am currently test-
ing it in General Game Playing conditions under several dif-
ferent domains to see whether the effect is as readily notice-
able in “normal” game conditions as it is in situations that are
theoretically more susceptible to the chunking issue.

Another potential avenue for future work is to apply my
buffering technique to best-first searches using transposition
tables.

References
[Browne et al., 2012] Cameron B Browne, Edward Pow-

ley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A survey of
monte carlo tree search methods. Computational Intelli-
gence and AI in Games, IEEE Transactions on, 4(1):1–43,
2012.

[Cazenave and Jouandeau, 2007] Tristan Cazenave and
Nicolas Jouandeau. On the parallelization of uct. In
Proceedings of the Computer Games Workshop, pages
93–101, 2007.

[Chee et al., 2015] Marc Chee, Abdallah Saffidine, and
Michael Thielscher. A principled solution to the problem
of chunking in uct. In IJCAI, 2015. Submitted.

[Romein et al., 1999] John W Romein, Aske Plaat, Henri E
Bal, and Jonathan Schaeffer. Transposition table driven
work scheduling in distributed search. In AAAI/IAAI,
pages 725–731, 1999.

4352




