
Abstract 
Location-based services allow users to perform 
geo-spatial recording actions, which facilitates the 
mining of the moving activities of human beings. 
This paper proposes a system, TimeRouter, to 
recommend time-sensitive trip routes consisting of 
a sequence of locations with associated time 
stamps based on knowledge extracted from 
large-scale location check-in data. We first propose 
a statistical route goodness measure considering: 
(a) the popularity of places, (b) the visiting order of 
places, (c) the proper visiting time of each place, 
and (d) the proper transit time from one place to 
another. Then we construct the time-sensitive route 
recommender with two major functions: (1) 
constructing the route based on the user-specified 
source location with the starting time, (2) 
composing the route between the specified source 
location and the destination location given a 
starting time. We devise a search method, 
Guidance Search, to derive the routes efficiently 
and effectively. Experiments on Gowalla check-in 
datasets with user study show the promising 
performance of our proposed route 
recommendation method. 1 

1 Introduction 
Location-based Services (LBS), such as Foursquare and 
Gowalla, allow users to perform the action of location 
recording that pins the geographical information of current 
locations and time stamps onto their personal pages. By 
continuously recording such actions by users, a location 
sequences dataset can be generated. The rapid accumulation 
of location sequence data can not only collectively represent 
the real-world human activities, but also serve as a handy 
resource for constructing location-based recommendation 
systems. Since the user-moving records implicitly reveal 
how people travel around in an area with rich spatial and 
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temporal information, including longitude, latitude, and 
recording timestamp, one reasonable application leveraging 
such user-generated location sequence data is to construct 
and recommend travel routes. Indeed, many of existing 
works had recommended routes using GPS trajectories (e.g. 
[Wei et al., 2012;Yoon et al., 2011;Yuan et al., 2011]). 
Furthermore, using geo-tagged photos and check-in data can 
reveal how people sequentially visit places in an area. Using 
geo-tagged photos, Y. Arase et al. [Arase et al., 2010] mine 
frequent route patterns for recommendation. A.-J. Cheng et 
al. [Cheng et al., 2011] propose personalized travel 
recommendation using geo-tagged photos. X. Lu et al. [Lu 
et al., 2011] construct routes based on user preference 
querying locations. Zheng et al. [Zheng et al., 2013] present 
the activity trajectory similarity search which returns k 
check-in trajectories that cover the activity labels. Lu et al. 
[Lu et al., 2012] develop a personalized trip 
recommendation that scores attractions by social links and 
temporal properties. L.-Y. Wei et al. [Wei et al., 2012] infer 
the top-k detailed routes traveling a given location sequence 
within a specified travel time. Different from these works, 
we aim to perform knowledge discovery to construct the 
time-sensitive routes. 

In this paper, instead of relying on past trajectories to 
recommend trip routes, we propose a novel time-sensitive 
route recommender system, TimeRouter, using location 
check-in data. We argue that a good route should consider 
four factors. (a) The popularity of a place: popular 
landmarks will likely attract more visitors. (b) The proper 
time to visit a place: the pleasure of visiting a place can be 
significantly diminished if arriving at the wrong time. Some 
places have a wider range of preferred visiting time while 
others are constrained to certain particular time slots. For 
example, most people do not want to visit a beach during 
boiling hot noon, but rather arrive in the late afternoon to 
enjoy the sunset scene. Sports game events usually take 
place at particular time period. (c) The amount of time 
transiting from one place to another: for example, if one has 
bought tickets to a football game at a stadium 2 hours away, 
then he or she shall logically choose to start traveling 
toward the stadium 2 hours ahead of the official kick off 
time instead of going to a nearby museum 30 minutes away 
then. (d) The visiting order of places: for example, going to 
the gym first then going to restaurant for dinner might be a 
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better plan than the other way around since it is not healthy 
to exercise right after a meal. 

In this work, we utilize check-in data to acquire the 
time-stamped geographical information. Check-in data 
provides explicit or implicit information that allows us to 
fulfill the abovementioned requirements for the sake of 
planning a proper trip route. First, we can distill from the 
check-in data the number of people who have visited a 
certain place, and thus derive the popularity of places. 
Second, users in LBS tend to perform check-in actions to 
keep track of their trips. As a result, we can obtain and 
consider the visiting order of places. Third, the check-in 
records contain the visiting time stamps of locations. Users 
in LBS are able to collectively reveal the proper visiting 
time of places. Fourth, followed by the check-in time 
stamps from existing routes, we are able to hypothesize the 
transit time between places. Equipped with such elements, 
we utilize the check-in data to recommend and construct trip 
routes. 

Formally, the goal of this work is to recommend 
time-sensitive routes using time-stamped location sequence 
data according to user requirements. We propose to tackle 
two real-world demands of recommending time-sensitive 
routes. The first is to construct a time-sensitive route given a 
source location, and the second is to create a time-sensitive 
route given the source-destination pair of locations. Both 
queries consider the starting time of the trip. Given a source 
or source-destination query, our system will return a 
sequence of recommended places as the final route, in 
which each location can be visited at a proper time with a 
reasonable transit time from one place to another in the 
route. In addition, in the query, we also allow users to 
determine the extent of time-sensitivity of locations through 
specifying a time-sensitivity parameter. Time-sensitive 
routes are supposed to be more effective than a simple route 
without time stamp as it allows the users to better manage 
their time during the trip. Both queries are very common for 
real-world trip planning. 
In this work, a statistical-based approach is proposed to 
model the time-sensitivity of location, and a novel search 
algorithm to recommend time-sensitive routes with respect 
to the queries. In general, our work consists of two 
important issues. First, we aim to design a goodness 
function, which integrates the abovementioned four 
requirements about a good trip route to measure the quality 
of a route. Second, given a query, we devise an effective 
and efficient search method, Guidance Search, to identify 
the places to be visited by optimizing the route goodness 
function. 

2 Methodology 
Notations. A location li is a tuple, li = (xi,yi), where xi is the 
longitude, yi is the latitude. A route is a sequence of locations 
with the corresponding time stamps, denoted by 
s=<(l1,t1),(l2,t2),..., (ln,tn)>, where n is the number of locations. 
The source query Qs=(ls,ts) contains a starting location ls with 
time stamp ts, and the source-destination query Qd=(ls,ts,ld) 
further contains a destination location ld, where k is the 

number of locations in the final route (either specified  by  
users or determined automatically). A time-sensitive route is 
sr = <(l1,t1),...,(lk,tk)>, where l1 = lq, t1 = tq, and/or lk=ld. 
Time-sensitive Route Construction problem. Given (a) 
routes derived from location check-in data, and (b) either the 
source query Qs=(ls,ts) or the source-destination query 
Qd=(ls,ts,ld), the goal is to construct a route 
sr=<(l1=ls,t1=ts),...,(lk,tk)> to optimize the time-sensitive route 
goodness function f(sr). A route with maximum route good-
ness score tends to be a preferred one. Note that lk is required 
to be ld for the source-destination query. 

2.1 Measuring Route Goodness  
We propose that a good trip route should consider the 
following four factors: (a) the popularity of a place, (b) the 
proper visiting time of a location, (c) the proper transit time 
traveling from one location to another, and (d) the visiting 
order of places in the route. We attempt to model these 
factors into the goodness function, and utilize such function 
to greedily selecting locations for the construction of the 
final trip route. 

Route Popularity 
If a route contains more popular places, it has higher 
potential to satisfy a user. The popularity of a place can be 
represented by the number of recording actions performed at 
that place. Given a route s=<(l1,t1),(l2,t2),...,(ln,tn)>, we 
define the popularity-based goodness function ���� � �

��� ��
�
���

�� , where ��� �� � ���������� , �����  is 
the number of recording actions performed on location ��, 
and ���� is the total number of recording actions among all 
locations. 

Proper Visiting Time 
We define a Temporal Visiting Distribution for a location l, 
TVDl (ti), as the probability distribution of a randomly 
picked recording action of location l occurs at time ti. Then 
we can determine whether it is proper to visit a place at a 
given time. We generate a thin Gaussian distribution 
���� ����� whose mean value � is 8 with a small variance 
�� (e.g. standard deviation is 1), and measure the difference 
between the Gaussian distribution with the learnt TVD of 
such location by symmetric Kullback-Leibler (KL) 
Divergence. Consequently, the temporal visiting goodness 
function ������ �  of a route s=<(l1,t1), (l2,t2), ..., (ln,tn)> is 
defined as a combination of the popularity of places together 
with the fitness of each location over time: 

������ � � ��� ���� �� ��
������������ �

�

�������

�

���

��
�

 

If the places in a route s are visited during the proper time 
period, the ������ � �value would become higher. 

Proper Transit Time 
We treat the duration between two checked-in places as the 
summation of the visiting time of the first place plus the 
transportation time from one place to another. To model 
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such ‘visiting plus transit time’ between places, we propose 
the Duration Distribution (DD) between locations li and lj, 
which is defined as the probability distribution over time 
duration t, ��������� , and can be obtained from the 
following random experiment: randomly pick two 
consecutive location recording actions (li,ti), (lj,tj) of a 
person, and calculate the probability that tj-ti=t. We consider 
only one-day trip, and therefore treat the outcome space of 
DD between hours 0 through 24. Given a pair of locations li 
and lj together with an assignment of a given duration � 
among them, we model � as a thin Gaussian distribution and 
compare it with ��������� by symmetric KL divergence. 
Given a route s, the goodness function of durations is 
defined by: 

�������	� � � ��� ������������
��������� � ���

���

���

��
���

 

Visiting Order 
We exploit n-gram language model to measure the goodness 
of the order of visits in a trip route from the location 
sequence corpus. Technically, we use the average value of 
the probabilities of uni-gram, bi-gram, and tri-gram to 
estimate the goodness of orders: ������ � � ���� � �

��� � � ���� � ��. Higher forder(s) value represents better 
quality of route. Note that we utilize the add-one technique 
for smoothing. 

 2.2 Final Goodness Function  
We divide the final goodness function into two parts and 
provide a weighting parameter � � �����  for users to 
determine the significance and balance of such two parts. 
The first part is the average temporal visiting goodness 
������ �  and the location transition goodness ��������� � . 
The second part is visiting order goodness ������ � . The 
final goodness function � �  is defined as 

� � � ��
������ � � �������	� �

�
� �� � ��������� �  

A route � with higher value of � �  is considered as a 
better route. Note that the parameter � provides users the 
flexibility to specify whether they prefer the time-sensitive 
routes.  

2.3  Route Construction Algorithm 
We develop the Guidance Search algorithm to recommend 
time-sensitive routes for the source and source-destination 
queries. Guidance Search, consisting of two parts, is a kind 
of best-first search that finds a least-cost path from a given 
initial node to the goal. The first is the heuristic satisfaction 
function, which is in charge of the guidance to determine the 
next most promising location towards the destination. The 
second is the backward checking mechanism that keeps the 
search tree (i.e., all the expanded routes starting from the 
source location) for reconstructing the route with higher 
satisfaction score. 

We consider the route goodness function � �  to design 
the heuristic satisfaction function �� � , which is to measure 
the satisfaction of selecting location � as the next visiting lo-
cation considering the sub-route from source location �� to 
location � (i.e., �� � �) and from location � to destination lo-
cation ��  (i.e., � � ��). Therefore, we design �� �  to have 
two parts: (1) time-sensitive route goodness function 
���� � �� �� � � , and (2) heuristic function ���� that con-
siders both the time-sensitive goodness � � � ��  and the 
geographical distance ��� � ��� of a sub-route from location 
� to destination ��. We use the geographical distance between 
� and �� as the steering force to direct the search process to 
move towards the destination location. When selecting next 
visiting location during the route construction, those loca-
tions with shorter distance to the destination has higher 
chance to be picked, if the rest of the criteria are equally sat-
isfied. Moreover, because there could be many sub-routes 
from � to �� in the route database, we will compute all the 
scores and take the best one as the final � �  value. Conse-
quently, the heuristic function is formally written as: 
� � � ������������������ � � � �� ��� � ��� � ����� 

where ��� � ��� is the set of sub-routes starting from � to 
��. Eventually, the final heuristic satisfaction function is de-
fined as: 

�� � � �� � ���� � � ������, 

where � � ����� is the parameter to control the strength of 
the guidance to the destination. Higher � indicates stronger 
guidance. When � � �, �� �  is simply a greedy search with 
the backward checking mechanism, and can be used to tackle 
the source query (because in � �  function, no destination 
information is needed). Note that � is the most important 
parameter in our system, which allows users to determine the 
time-sensitivity of locations in the final routes, according to 
user needs and scenarios. 

The backward checking mechanism is the key to the 
best-first search in our algorithm. When exploiting the heu-
ristic satisfaction function to choose the next location to visit, 
it is necessary to expand all neighbor locations to generate 
the satisfaction scores. We keep track of such scores in the 
search tree. When it is needed to select the next visiting loca-
tion, not only the expanded locations from the current loca-
tion, but also those had ever been expanded during the pre-
vious rounds can be considered. In other words, in addition 
to continue expanding the current location, the algorithm can 
possibly go backward to consider the previously expanded 
nodes for finding the ones with the highest satisfaction score. 

We elaborate the details of Guidance Search algorithm as 
follows. We first construct the initial route �� by including 
the source location ��. A priority queue is employed for the 
purpose of the backward checking mechanism. Each ele-
ment in the priority queue consists of a route � and the cor-
responding heuristic satisfaction score. The priority queue 
automatically sorts its elements according to their satisfac-
tion scores. We add �� to initialize the priority queue. After 
setting the final route �� as the initial one ��, we perform the 
iterative expansion search process until the route �� is con-
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structed up to length �. For each iteration, the last location 
�����  in the route ��  with the highest satisfaction score is 
identified and each possible next visiting location ����� is 
put into a candidate set �. Then for each candidate of the 
next location �� , we can derive the heuristic satisfaction 
score ������  (if �� � � , we set the weighting parameter 
� � � for the function ��; otherwise � � � � �). We put 
�� ��  together with the corresponding route ���� into the 
priority queue. The priority queue will then pick the next 
best route and location to conduct the further expansions. 
Finally, the route �� is reported as the final route 

3 Experiment  
We use Gowalla dataset [Cho et al., 2011] to evaluate our 
proposed route construction method. Such dataset contains 
6,442,890 check-in records from Feb. 2009 to Oct. 2010 on 
1,280,969 locations. By regarding a route as a sequence of 
check-in locations of a user within a day, we have the route 
database containing 1,136,737 routes whose lengths are more 
than one (the average length of them is 4.09). We extract 
three subsets for the experiments, which corresponds to cities 
of New York (NY), San Francisco (SF), and Paris (PR). We 
test the effectiveness of our goodness model and demonstrate 
the performance of the proposed search methods by a 
time-sensitive location cloze test. Given some real trip routes 
with time stamp in each location, by removing some middle 
locations, the goal of cloze experiment is to test whether a 
method can successfully identify the removed locations. We 
use Hit Rate as the accuracy measure. Given N removals of 
locations over all routes, and assumed M places out of N is 
successfully predicted, the hit rate is defined as M/N. Higher 
hit rate indicates better quality. We compare our method with 
a strong greedy algorithm [Hsieh et al., 2012] and a series of 
baseline methods: (1) Distance-based approach: choose the 
closest location to the current spot as the next one. (2) Popu-
lar-based approach: choose the most popular spot of a given 
time in that city as the next one. It rates the path using the 
goodness function ���� � . (3) Forward heuristic: choose the 
location possessing the largest bi-gram probability with the 
previous location ���������� as the next location. (4) Back-
ward heuristic: choose the location possessing the largest 
bi-gram probability with the next location ���������� as the 
next one. 

In the cloze experiment, we vary the number of guessing 
instance per route and report the hit rate in three cities. Here 
we set � � ��� (i.e., ���� and ���� are considered as equally 
important). The results are shown in Figure. 1. In general, the 
hit rate of each method is decreasing while the number of 
guessing instance increases. Nevertheless, our method sig-
nificantly outperforms the greedy search method [Hsieh et 
al., 2012] and other baselines. 

  

Figure 1: Hit rates by varying the number of guessing instance per route 
(i.e., 1, 2, 3, 4, and 5) on SF, NY, PR (left to right). 

4 Conclusion  
We develop the TimeRouter system that measure and rec-
ommend time-sensitive trip routes based on user needs on 
source, destination, current time, and time-sensitivity. Ex-
perimental results encourage the promising performance and 
practicability of our route construction method. TimeRouter 
is mostly data-driven, which assures diverse results can be 
learned from different cities in which visiting patterns may 
vary with different culture and characteristics of the city. 
Moreover, despite that we emphasized on the check-in data, 
in fact any kinds of route data (e.g. GPS trajectory data) can 
be exploited in our framework. 
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