
A Direct Boosting Approach for Semi-Supervised Classification

Shaodan Zhai, Tian Xia, Zhongliang Li, Shaojun Wang
Kno.e.sis Center

Wright State University, Dayton, US
{zhai.6,xia.7,li.141,shaojun.wang}@wright.edu

Abstract
We introduce a semi-supervised boosting approach
(SSDBoost), which directly minimizes the classifi-
cation errors and maximizes the margins on both
labeled and unlabeled samples, without resorting
to any upper bounds or approximations. A two-
step algorithm based on coordinate descent/ascent
is proposed to implement SSDBoost. Experiments
on a number of UCI datasets and synthetic data
show that SSDBoost gives competitive or supe-
rior results over the state-of-the-art supervised and
semi-supervised boosting algorithms in the cases
that the labeled data is limited, and it is very robust
in noisy cases.

1 Introduction
In many applications of classifiers, labeled data is usually
limited while unlabeled data can often be much cheaper and
more plentiful than labeled data. Semi-supervised learning is
a way to employ a large amount of unlabeled data together
with a few labeled data to construct a classifier with good
generalization.

Boosting, as an ensemble learning framework, is one of the
most powerful classification algorithms in supervised learn-
ing. Based on the gradient descent view of boosting [Mason
et al., 2000], many semi-supervised boosting methods have
been proposed, such as SMarginBoost [d’Alché-Buc et al.,
2002], ASSEMBLE [Bennett et al., 2002], RegBoost [Chen
and Wang, 2007; Chen and Wang, 2011], SemiBoost [Mal-
lapragada et al., 2009], SERBoost [Saffari et al., 2008] and
information theoretic regularization based boosting [Zheng et
al., 2009], where a margin loss function is minimized over
both labeled and unlabeled data by the functional gradient
descent method. The effectiveness of these methods can be
ascribed to their tendency to produce large margin classifiers
with a small classification error. However, these algorithms
were not designed to directly maximize the margin (although
some of them have the effects of margin enforcing), and the
objective functions are not related to the margin in the sense
that one can minimize these loss functions while simultane-
ously achieving a bad margin [Rudin et al., 2004]. Therefore,
a natural goal is to construct classifiers that directly optimize
margins as measured on both labeled and unlabeled data.

In this paper, we propose a new semi-supervised direct
boosting method named SSDBoost that extends the work of
DirectBoost [Zhai et al., 2013] to semi-supervised classifica-
tion. The process of SSDBoost includes two steps: it first
directly minimizes a generalized classification error that ex-
tends the concept of classification error to both labeled and
unlabeled data, by iteratively adding base classifiers to the
ensemble classifier. Once the generalized classification er-
ror reaches a coordinatewise local minimum1, it continuously
adds base classifiers by directly maximizing a generalized av-
erage margin that consists of both labeled and unlabeled mar-
gins. The first step serves as an initialization method of the
second step, the motivation is that the margin maximization
algorithm often performs better when it starts with a low clas-
sification error.

Both SSDBoost and DirectBoost [Zhai et al., 2013] are co-
ordinate optimizations in the hypothesis space, where only
one coordinate is chosen and the corresponding parameter
is updated at each iteration. However, SSDBoost is a non-
trivial extension of DirectBoost to semi-supervised classifi-
cation, where we have to mathematically re-formulated the
semi-supervised boosting approach by extending the classifi-
cation error and margin function to unlabeled data. Since the
objectives in SSDBoost are more complicated, we designed
new optimization techniques and provide the rationales be-
hind our approach. We will show that SSDBoost is able to ex-
ploit easily-obtained unlabeled data to significantly improve
accuracy, especially in the noisy cases. Due to space limi-
tation, the proofs of properties and theorem are given in the
supplementary material.

2 SSDBoost Algorithm
Let H = {h1, ..., h|H|} denote the set of all possible weak
classifiers that can be produced by the weak learning algo-
rithm, where a weak classifier hj ∈ H is a mapping from
an instance space X to Y = {−1, 1}, and H is closed under
negation, i.e., both h and −h belong to H. In this study, we
use decision trees as the weak learning algorithm2, then |H|
is finite but can be extremely large.

1See the definition on page 479 in [Tseng, 2001].
2As the combination of boosting with decision trees is the state-

of-the-art approach [Appel et al., 2013].

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4025

Assume we are provided n labeled samples, Dl =
{(x1, y1), · · · , (xn, yn)} and m unlabeled samples, Du =
{xn+1, · · · , xN} (letN = n+m). Semi-supervised boosting
combines weak classifiers to form a highly accurate ensemble
classifier by using the combined training set D = Dl ∪ Du.
Formally, for binary classification, the ensemble classifier
is defined to be sign(f(x)), where f(x) =

∑
h∈H αhh(x),

αh ≥ 0 is the ensemble function. Our goal is to find an en-
semble classifier that has good generalization performance.
To this end, we developed a semi-supervised boosting ap-
proach through two steps. In the following, we will elaborate
the two steps respectively.

2.1 Minimize generalized classification error
For the labeled data, the classification error (or 0-1 loss) is
defined to be

error(f,Dl) = 1

n

n∑
i=1

1(yif(xi) ≤ 0) (1)

where 1(·) is an indicator function. While optimizing the
classification error is NP-hard, it is robust to noise [Nguyen
and Sanner, 2013] and is consistent under certain conditions
[Vapnik, 1998]. For Du, since the labels are unknown, a nat-
ural extension of the 0-1 loss is the expected classification
error

error(f,Du) = 1

m

N∑
i=n+1

∑
y∈Y

p(y|xi)1(yf(xi) ≤ 0) (2)

Minimizing (2) has the effects to push p(y|x) away from 0.5,
so that the uncertainty of the putative labels is reduced. For
binary classification tasks, the logistic (sigmoid) function of
yf(x), sigmoid(yf(xi)) = 1/(1+exp(−yf(xi))), is a good
estimation of p(y|xi) [Schapire and Freund, 2012], and then
the loss of the minimum entropy semi-supervised boosting
method [Zheng et al., 2009] is a surrogate upper bound of (2).
Combining (1) and (2), we have the generalized classification
error

error(f,D) = error(f,Dl) + γerror(f,Du) (3)

where γ is a trade-off parameter that controls the influence of
the unlabeled data.

Consider the tth iteration, the ensemble function is

ft(x) =
t∑

k=1

αkhk(x) =

t−1∑
k=1

αkhk(x) + αtht(x) (4)

where previous t− 1 weak classifiers hk(x) and correspond-
ing weights αk, k = 1, · · · , t − 1 have been selected and de-
termined. Then for a given weak classifier ht(x), the goal is
to choose its weight αt such that (3) is minimized. If we es-
timate p(y|xi) by sigmoid(yf(xi)), the second term of (3) is
a complex function of αt, and thus it is difficult to compute
the optimal αt. Instead, we estimate p(y|xi) by the logistic
function of f of the previous step, sigmoid(yft−1(xi)), and
update the estimation through an iterative scheme. We define
ˆerror(f,Du) to be 1

m

∑N
i=n+1

∑
y∈Y p̂(y|xi)1(yf(xi) ≤ 0)

Algorithm 1 Minimize the generalized 0-1 loss on D.
1: Initialize: t = 0, ft(xi) = 0, i = 1, · · · , N .
2: repeat
3: t← t+ 1.
4: p̂(y|xi) = sigmoid(yft−1(xi)) for xi ∈ Du.
5: Sort |ft−1(xi)|, xi ∈ D in an increasing order.
6: Pick a weak classifier ht by Algorithm 1-2.
7: Get the interval that has the minimum value of (5) by

calling Algorithm 1-1 with ht, and set αt to be the
value within this interval.

8: Update: ft(xi) = ft−1(xi) + αtht(xi).
9: until (5) reaches a local coordinatewise minimum.

10: Output: ft(xi).

Algorithm 1-1 Line search algorithm to find the interval with
the minimum generalized 0-1 loss.

1: Input: a weak classifier ht ∈ H.
2: for i = 1, · · · , N do
3: Compute the value of (5) at αt = 0.
4: Let ei = |ft−1(xi)|.
5: if (slope > 0 and intercept < 0), then error update

on the righthand side of ei is − 1
n for xi ∈ Dl or

−γ |p̂(+1|xi)−p̂(−1|xi)|
m for xi ∈ Du.

6: if (slope < 0 and intercept > 0), then error update
on the righthand side of ei is 1

n for xi ∈ Dl or
γ |p̂(+1|xi)−p̂(−1|xi)|

m for xi ∈ Du.
7: end for
8: Incrementally calculate (5) on intervals of ei’s.
9: Output: the interval with minimum generalized 0-1 loss.

by replacing p(y|xi) in error(f,Du) by p̂(y|xi). Therefore,
the estimation of (3) is to be

ˆerror(f,D) = error(f,Dl) + γ ˆerror(f,Du) (5)

which is a stepwise function of αt.
Algorithm 1 outlines a greedy coordinate descent algo-

rithm to directly minimize (5). The line search algorithm,
Algorithm 1-1, describes the way to find the optimal α for
any given hypothesis h ∈ H such that (5) is minimized. The
key is how to efficiently find the points that lead (5) changes.
Denoting the inference function of a sample xi to be

Ft(xi, y) = y ht(xi)αt + yft−1(xi) (6)

which is a linear function with slope yht(xi) and intercept
yft−1(xi). For a labeled sample (xi, yi), Ft(xi, yi) > 0
indicates this sample is correctly classified; otherwise, it is
misclassified. These two states exchange at the point αt =

− ft−1(xi)
ht(xi)

, we denote this point as a critical point ei. Thus,
the value of the generalized 0-1 loss (5) has 1

n differences
at ei. To compute the “classification error” of an unlabeled
sample, we use ŷi = sign(ft−1(xi)) to denote its pseudo la-
bel. Similarly, the sign of Ft(xi, ŷi) identifies xi ∈ Du is
“correctly classified” or “misclassified”. Again, the critical
point for xi ∈ Du is ei = − ft−1(xi)

ht(xi)
, and the value of (5) has

4026

Algorithm 1-2 Weak learning algorithm.
1: Input: a training set D, current tree depth `.
2: if ` ≤ max depth then
3: for a binary split do
4: SplitD intoDleft andDright, then a weak hypothe-

sis h ∈ H is generated which maps Dleft to +1 and
Dright to -1.

5: Call Algorithm 1-1 with h and its negation −h ∈ H
respectively.

6: end for
7: Choose the optimal binary split which partitionsD into

Dleft and Dright, update ht with the corresponding
labels on Dleft and Dright.

8: Call weak learning algorithm with Dleft and `+ 1.
9: Call weak learning algorithm with Dright and `+ 1.

10: end if
11: Output: a weak classifier ht ∈ H.

γ |p̂(+1|xi)−p̂(−1|xi)|
m differences at ei. Since H is closed un-

der negation, we only care about the case that ei is greater
than 0 (where ei = − ft−1(xi)

ht(xi)
= |ft−1(xi)|), that corre-

sponds to the two scenarios described at line 5 and 6. The
critical points divide αt into at most N + 1 intervals, each
interval has the value of a generalized 0-1 loss (5). Since we
visit each sample in an increasing order, the critical points are
also in an increasing order.

Algorithm 1-2 describes the weak learning algorithm,
where the decision trees with binary splits are used. We sim-
ply choose the attribute to split by minimizing (5), the whole
process to build trees is a top-down, greedy search approach.
Since ft−1 is used when building trees, Algorithm 1-2 will
not end up with the same tree though SSDBoost does not
maintain a distribution over training samples.

The complexity of Algorithm 1 is O(LN + N logN) for
each iteration when decision stumps are used as weak learn-
ers3, where L is the number of binary splits. It has the same
computational costs as the methods [Bennett et al., 2002;
Zheng et al., 2009] which optimize surrogate losses. Algo-
rithm 1 terminates at a coordinatewise local minimum of (5),
SSDBoost then switches to the margin maximization step.

2.2 Maximize the generalized average margin
The success of boosting can be ascribed to margin maximiza-
tion [Schapire et al., 1998], but most previous boosting ap-
proaches were not designed to explicitly optimize the mar-
gins [Schapire and Freund, 2012]. While some exceptions,
such as LPBoost [Demiriz et al., 2002], SoftBoost [War-
muth et al., 2007], and DirectBoost [Zhai et al., 2013], spe-
cially maximize a relaxed hard margin objective, they are
only designed for supervised classification. For the exist-
ing semi-supervised boosting methods [Bennett et al., 2002;
Chen and Wang, 2007; d’Alché-Buc et al., 2002; Mallapra-
gada et al., 2009; Saffari et al., 2008; Zheng et al., 2009],

3Decision stumps are the decision trees with a depth of 1. The
computational costs of Algorithm 1 has the same increasing rate as
the methods in [Bennett et al., 2002; Zheng et al., 2009] if large
trees are considered.

none of them has been shown to maximize the margins on
Dl ∪ Du, although some of them employ margin enforcing
loss functions. In this section, we introduce a generalized av-
erage margin on Dl ∪ Du, and propose a coordinate ascent
algorithm that directly maximizes this objective function.

The (normalized) margin of a labeled sample (xi, yi) w.r.t
ft(xi) is defined to be ϕli = yift(xi)∑t

k=1
αk

, which can be inter-

preted as a measure of how confidently this labeled sample is
correctly classified. For an unlabeled sample xi, it is natural
to define its margin as the expected margin:

ϕui =
∑
y∈Y

p(y|xi)
yft(xi)∑t
k=1 αk

(7)

By sorting ϕli and ϕui in an increasing order respectively, and
consider n′ worst labeled samples n′ ≤ n and m′ worst un-
labeled samples m′ ≤ m that have smaller margins, then the
generalized average margin over those samples is

ϕavg(n′,m′) =
1

n′

∑
i∈Bl

n′

ϕli + γ
1

m′

∑
i∈Bu

m′

ϕui (8)

where Bln′ denotes the set of n′ labeled samples having the
smallest margins, and Bum′ denotes the set of m′ unlabeled
samples having the smallest margins. The parameter n′ in-
dicates how much we relax the hard margin on labeled sam-
ples, and we often set n′ based on knowledge of the number
of noisy samples in Dl [Ratsch et al., 2000]. The higher the
noise rate, the larger the n′ should be used. The parameterm′
controls the relaxation of the margin distribution over the un-
labeled data. A smaller m′ makes the algorithm focus more
on the unlabeled samples close to the decision boundary.

For an unlabeled sample xi, again we estimate p(y|xi)
by p̂(y|xi) = sigmoid(yft−1(xi)). Denote ŷi =

2

1+e−(ft−1(xi))
− 1, then the estimated margin of xi is

ϕ̂ui = ŷi
ft−1(xi) + αtht(xi)∑t−1

k=1 αk + αt
, (9)

Thus, the objective function that we are working on in the
margin maximization step is

ϕ̂avg(n′,m′) =
1

n′

∑
i∈Bl

n′

ϕli + γ
1

m′

∑
i∈Bu

m′

ϕ̂ui (10)

The outline of the greedy coordinate ascent algorithm that
sequentially maximizes (10) is described in Algorithm 2. We
first sort ϕli=1,···,n and ϕ̂ui=n+1,···,N (line 5) in order to effi-
ciently compute the optimal solution of maximum (10) we
will explain later. At the iteration t, we select a weak clas-
sifier ht (line 6) and its weight αt (line 7) such that (10) is
maximized. We repeat this process until (10) reaches a local
coordinate maximum.

The key part in Algorithm 2 is the line search algorithm
which finds the value of αt that maximizes (10) for a given
weak classifier ht ∈ H. On the t-th iteration, let c =∑t−1
k=1 αk, then the derivative of ϕli with respect to αt is cal-

culated as,
∂ϕli
∂αt

=
yiht(xi)c− yift−1(xi)

(c+ αt)2
. (11)

4027

Algorithm 2 Maximize margins on Dl ∪ Du.
1: Initialize: t and ft from Algorithm 1.
2: repeat
3: t← t+ 1.
4: Update ŷi = 2

1+e−ft−1(xi)
− 1, i = n+ 1, · · · , N .

5: Sort ϕli=1,···,n and ϕ̂ui=n+1,···,N in increasing order at
αt = 0 respectively, determine Bln′ and Bum′ .

6: Pick a weak classifier ht by weak learning algorithm.
7: Compute q∗ by Algorithm 2-1 that maximizes (10)

along the coordinate ht. Set αt = q∗.
8: Update ft(xi) = ft−1(xi) + αtht(xi).
9: until ϕ̂avg(n′,m′) reaches a local coordinatewise maxi-

mum.
10: Output: ft(xi).

Since c ≥ yift−1(xi), depending on the sign of yiht(xi),
(11) is either positive or negative, which is irrelevant to the
value of αt. That is, if the labeled sample (xi, yi) ∈ Dl is
correctly classified by ht (yiht > 0), then ϕli is monotoni-
cally increasing with respect to αt. Otherwise, ϕli is mono-
tonically decreasing. Similarly, for an unlabeled sample xi,
the derivative of ϕ̂ui is either positive or negative depending
on the sign of ŷiht(xi), and which is irrelevant to the value of
αt. Hence for an interval of αt with the fixed Bln′ and Bum′ ,
the derivative of (10) is

∂ϕ̂avg(n′,m′)

∂αt
=

1
n′

∑
i∈Bl

n′
yi(ht(xi)ct−1 − ft−1(xi))

(ct−1 + αt)2
(12)

+
γ 1
m′

∑
i∈Bu

m′
ŷi(ht(xi)ct−1 − ft−1(xi))

(ct−1 + αt)2

which sign is irrelevant to the value of αt. Thus, with the
fixed Bln′ and Bum′ , ϕ̂avg(n′,m′) is a monotonic function of
αt, depending on the sign of the derivative in (12), it is maxi-
mized either on the left side or on the right side of the interval.

Along the ht coordinate,Bln′ andBum′ are not always fixed,
hence we need to check the values of αt that lead Bln′ or Bum′
to change. To address this, we first examine when the mar-
gins ϕli and ϕlj of two labeled samples (xi, yi) and (xj , yj)
intersect. Since H is closed under negation, it is not neces-
sary to consider the cases that their intersection is negative.
Obviously ϕli and ϕlj never intersect when they are both in-
creasing or decreasing4. Otherwise, ϕli and ϕlj intersect with
each other at

αt =
yjft−1(xj)− yift−1(xi)
yiht(xi)− yjht(xj)

(13)

As ϕli’s are sorted in advance (Algorithm 2, line 5), we can
compute the intersections that result in the change ofBln′ very
efficiently by Property 1.
Property 1 All the points that lead Bln′ to change can be de-
termined by computing the intersections of the jth highest in-
creasing margin in Bln′ and jth smallest decreasing margin
in the complementary set of Bln′ .

4If ϕl
i and ϕl

j are both increasing or decreasing, then the denom-
inator of (13) is 0, that indicates the intersection will never happen.

Proof : Let (ϕlj)inc denotes the jth highest increasing mar-
gin in Bln′ at αt = 0, and (ϕlj)dec denotes the jth smallest
decreasing margin in (Bln′)

c at αt = 0. Denoting qj to be the
intersection of (ϕlj)inc and (ϕlj)dec.

For j = 1, it is obviously that (ϕlj)dec is the first margin in
(Bln′)

c that intersects with (ϕl1)inc. Therefore, q1 leads Bln′
to change as (ϕlj)dec belongs to Bln′ and (ϕl1)inc belongs to
(Bln′)

c on the rightside of q1.
Suppose the conclusion holds for j = k − 1. For j = k,

since (ϕl1)dec, · · · , (ϕlk−1)dec belong to Bln′ already, the
intersections of (ϕlk)inc and those margins do not lead Bln′
to change. Hence (ϕlk)dec is the first margin in (Bln′)

c that
intersects with (ϕlk)inc, and the intersection qk leads Bln′ to
change.

In addition, the following properties indicate that we do not
need to consider the cases that the margins of two unlabeled
data are both increasing or decreasing.

Property 2 If ϕ̂ui and ϕ̂uj are both increasing, then they never
intersect when αt > 0.

Proof : For any unlabeled sample x ∈ Du, ŷ =
2

1+e−ft−1(x) −1 is a strictly monotonic function with ft−1(x),
and ft−1(x)ŷ ≥ 0 always holds.

Without loss of generality, we assume ft−1(xi) >
ft−1(xj), then ŷjft−1(xj) − ŷift−1(xi) < 0. Since ϕui
and ϕuj are both increasing, we have ht(xi)ft−1(xi) > 0,
ht(xj)ft−1(xj) > 0, and ht(xi)ŷi > ht(xj)ŷj > 0. Thus,

ŷjft−1(xj)− ŷift−1(xi)
ht(xi)ŷi − ht(xj)ŷj

< 0.

That indicates ϕui intersects ϕuj at αt < 0.

Property 3 If ϕ̂ui and ϕ̂uj are both decreasing, then they only
intersect each other after intersecting with all the increasing
margins.

Proof : For any decreasing marginsϕui andϕuj in (Bum′)
c, and

any increasing margin ϕuk inBum′ . If we assume ϕui intersects
ϕuk at qi,k, ϕuj intersects ϕuk at qj,k, and ϕui intersects ϕuj at
qi,j , it is suffices to show qi,j > qi,k and qi,j > qj,k.

Since ϕui > ϕuk and ϕuj > ϕuk , then ft−1(xj) > ft−1(xk).
Thus we have

qi,k =
ŷkft−1(xk)− ŷift−1(xi)

ht(xi)ŷi − ht(xk)ŷk

<
ŷjft−1(xj)− ŷift−1(xi)

ht(xi)ŷi − ht(xj)ŷj
= qi,j

We can prove the case qj,k < qi,j in the same way.

Thus, the points that lead Bum′ to change can be computed in
the similar way as described in Property 1.

Based on the above discussion, we are able to efficiently
compute all the intersections that lead Bln′ or Bum′ to change

4028

(denoting these points as qj’s), and we know that one of them
is the optimal value of αt that maximizes (10) along the ht
coordinate (denoting the optimal point as q∗). The next chal-
lenge is how to efficiently find q∗ among those qj’s. The com-
putational cost of the straightforward solution in worst case is
O((n′ +m′)2) since there are at most n′ +m′ intersections
and we have to compute (10) for each of them. Fortunately,
we can prove that (10) is a quasi-concave function for any
given weak hypothesis (in Theorem 1), that allows us to de-
termine q∗ by incrementally updating (12) and checking its
sign in O(n′ + m′). Specifically, if

∂ϕ̂avg(n′,m′)
∂qj

> 0 and
∂ϕ̂avg(n′,m′)

∂qj+1
< 0, then q∗ = qj .

Theorem 1 Denote the average margin of the bottom n′ la-
beled samples and m′ unlabeled samples as

ϕ̂avg(n′,m′)(αt) =
1

n′

∑
i∈{Bl

n′
|αt}

ϕli + γ
1

m′

∑
i∈{Bu

m′
|αt}

ϕ̂ui

where {Bln′ |αt} denotes the set of n′ labeled samples whose
margins are smallest for a fixed αt, and {Bum′ |αt} denotes
the set of m′ unlabeled samples whose margins are smallest
for a fixed αt. Then ϕ̂avg(n′,m′)(αt) is quasiconcave.

Proof (outline) : Let S = {αt : αt > 0}, which is a convex
set. By definition of quasiconcave, ϕ̂avg(n′,m′) is quasicon-
cave on S if and only if its upper contour sets are convex
sets on S. The µ-upper-contour set Sµ of ϕ̂avg(n′,m′) on S is
denoted as

Sµ = {αt : αt > 0, ϕ̂avg(n′,m′)(αt) ≥ µ}

We now prove that Sµ is a convex set. For ∀α(1)
t , α

(2)
t ∈ Sµ

and ∀λ ∈ [0, 1], letting θ = (1−λ)α(1)
t +λα

(2)
t then we have

1
n′

∑
i∈{Bl

n′
|θ} yi(ft−1(xi) + θht(xi))

+ 1
m′

∑
i∈{Bu

m′
|θ} ŷi(ft−1(xi) + θht(xi))

≥ (1− λ)µ(
∑t−1
k=1 αk + α

(1)
t) + λµ(

∑t−1
k=1 αk + α

(2)
t)

= µ(
∑t−1
k=1 αk + θ)

Therefore, θ ∈ Sµ. ϕ̂avg(n′,m′)(αt) is quasiconcave.

Formally, the line search algorithm to calculate the value of
q∗ is described in Algorithm 2-1. The way to select the weak
classifier is very similar to Algorithm 1-2, the only modifi-
cation is to replace the line search algorithm to Algorithm
2-1. Since ϕ̂avg(n′,m′) is bounded, apparently Algorithm 2
converges to a coordinatewise local maximum. If there are L
possible binary splits, the computational cost of Algorithm 2
is O(L(n′ +m′) +N logN) on each round.

Since ϕ̂avg(n′,m′) is non-differentiable at the intersections,
the coordinate ascent algorithm may get stuck at a corner
from which it is impossible to make progress along any co-
ordinate direction. To overcome this difficulty, we employ an
ε-relaxation method [Bertsekas, 1998]. The main idea is to
allow a single coordinate to change even if this worsens the
objective function. When a coordinate is changed, however,

Algorithm 2-1 Compute the q∗ that corresponds to the max-
imum of ϕ̂avg(n′,m′).

1: Input: a weak classifier ht ∈ H.
2: Compute the value of (12) at αt = 0.
3: j ← 0, k ← 0, qj+k ← 0.
4: Compute the intersection qlj+1 of the j + 1th highest in-

creasing margin in Bln′ and the j + 1th smallest decreas-
ing margin in (Bln′)

c.
5: Compute the intersection quk+1 of the k + 1th highest in-

creasing margin in Bum′ and the k+1th smallest decreas-
ing margin in (Bum′)

c.
6: qj+k+1 ← min(qlj+1, q

u
k+1).

7: if ∂ϕ̂avg(n′,m′)
∂qj+k+1

> 0 then
8: if qlj+1 < quk+1 then Incrementally update Bln′ and

(12) at αt = qj+k+1; j ← j + 1.
9: else Incrementally update Bum′ and (12) at αt =

qj+k+1; k ← k + 1.
10: Go back to line 4.
11: else
12: q∗ = qj+k, compute ϕ̂avg(n′,m′) at q∗.
13: end if
14: Output: q∗.

Figure 1: Mean error rates (in %) of ASSEMBLE, Entropy-
Boost and SSDBoost with 20 labeled and increasing number
of unlabeled samples on Mushroom dataset.

it is set to ε plus the value that maximizes the margin function
along that coordinate, where ε is a positive number. If ε is
small enough, the algorithm can eventually approach a small
neighborhood of the optimal solution.

3 Experiments
In this section, we first evaluate the performance of SSD-
Boost on 10 UCI datasets from the UCI repository [Frank
and Asuncion, 2010], then examine its noise robustness on
two datasets with random label noise. For comparison, we
also report the results of several existing supervised boosting
methods (AdaBoost [Freund and Schapire, 1997], LPBoost
[Demiriz et al., 2002], and DirectBoost [Zhai et al., 2013])
and semi-supervised boosting methods (ASSEMBLE [Ben-
nett et al., 2002] and semi-supervised entropy regularized
boosting [Zheng et al., 2009] (denoted as SERBoost)). For
all the algorithms in the comparison, we use decision trees as
the weak learners. Note that it is not our intention to show

4029

Data M D AdaBoost LPBoost DirectBoost ASSEMBLE EntropyBoost SSDBoost
Adult 48842 14 15.11 (0.7) 15.42 (1.0) 15.08 (1.0) 15.27 (0.9) 14.97 (0.7) 15.10 (0.8)

Australian 690 14 17.83 (2.7) 17.83 (2.5) 16.38 (2.5) 16.96 (2.2) 17.07 (2.6) 15.8 (2.6)
Kr-vs-kp 3196 36 3.98 (0.8) 4.01 (1.2) 3.89 (0.9) 3.45 (1.1) 3.39 (1.4) 3.39 (0.5)

Liver 345 7 36.76 (3.4) 38.53 (4.9) 36.65 (4.4) 36.18 (3.7) 36.35 (4.9) 33.24 (7.3)
Mushroom 8124 22 0.1 (0.1) 0.9 (0.5) 0.18 (0.2) 0.11 (0.1) 0.12 (0.1) 0.16 (0.2)

Sonar 208 60 33.33 (5.2) 32.22 (6.6) 31.11 (5.6) 28.33 (3.6) 28.89 (4.1) 28.44 (5.2)
Spambase 4601 57 7.5 (0.9) 7.52 (0.8) 7.35 (1.1) 7.48 (0.7) 7.87 (0.9) 7.09 (1.4)

Splice 3190 61 14.6 (2.7) 15.3 (2.2) 14.6 (2.8) 14.8 (2.7) 14.9 (2.7) 12.0 (1.7)
WDBC 569 31 6.55 (1.6) 6.94 (1.9) 6.94 (1.8) 7.54 (2.1) 7.73 (2.1) 6.15 (1.8)
WPBC 198 34 33.68 (4.8) 34.21 (6.0) 32.63 (3.7) 28.95 (4.4) 29.68 (5.7) 28.95 (3.8)

Table 1: # of samples (M), # of attributes (D), mean error rates (in %) and standard deviations of boosting methods on 10 UCI
datasets.

Data AdaBoost LPBoost DirectBoost ASSEMBLE EntropyBoost SSDBoost
Kr-vs-kp (50) 10.46 (2.2) 9.9 (2.4) 9.66 (2.4) 8.2 (2.2) 8.5 (2.1) 7.65 (2.0)

Mushroom (20) 8.81 (1.9) 9.7 (1.8) 7.38 (1.8) 5.05 (0.7) 5.1 (1.6) 2.2 (0.5)

Table 2: Mean error rates (in %) and standard deviations of boosting methods on Kr-vs-Kp (with 50 labeled samples) and
Mushroom (with 20 labeled samples) datasets.

that the proposed algorithm always outperforms a variety of
supervised and semi-supervised learning methods. Instead,
the empirical study is focused on whether the proposed SSD-
Boost is able to effectively improve the accuracy of the well-
known boosting algorithms with the same weak hypothesis
space H. Thus, same as the ways the authors did in [Ben-
nett et al., 2002; Chen and Wang, 2007; Demiriz et al., 2002;
Zheng et al., 2009], we restrict the comparison with only
boosting methods and the same weak learning algorithm,
rather than other related works, such as Semi-Supervised
Support Vector Machines (S3VM) [Chapelle et al., 2006;
Joachims, 1999; Sindhwani et al., 2006].

The classification error is estimated by 10-fold cross-
validation. For each dataset, we partition it into 10 parts
evenly. In each fold, we use eight parts for training, one part
for validation5, and the remaining part for testing. Within the
eight parts of training data, only one part is used as labeled

5We use the validation data to choose the optimal model for all
the methods. For each boosting method, the depth of decision trees
is chosen from 1, 2, and 3 by the validation set (for the datasets in
the experiments, decision trees with a depth of 1-3 are sufficient to
produce good results). For AdaBoost, ASSEMBLE, and SERBoost,
the validation data is also used to perform early stopping since over-
fitting is observed for these methods. We run these algorithms with
a maximum of 3000 iterations, and then choose the ensemble clas-
sifier from the round with minimal error on the validation data. For
ASSEMBLE, SERBoost, and SSDBoost, the trade-off parameters
that control the influence of unlabeled data are chosen from the val-
ues {0.001, 0.01, 0.1, 1} by the validation data. For LPBoost, Di-
rectBoost, and SSDBoost, the parameter n′ is chosen by the valida-
tion set from the values {n/10, n/5, n/3, n/2}. For SSDBoost, the
parameter m′ is chosen from the values {m/10,m/5,m/3,m/2},
and ε is fixed to be 0.01 since it does not significantly affect the
performance as long as its value was a small number. It is hard to
accurately estimate parameters over a small validation set, but we
found experimentally that it still has certain instructive effects on
the quality of the classifiers.

data, and the other parts are treated as unlabeled data (by sim-
ply discarding the labels). Since we concentrate on the cases
where the labeled data are limited while the unlabeled data
are adequate in the training process, the datasets we selected
include datasets of small or moderate sizes, and only a small
part (one tenth) is used as labeled data.

3.1 UCI datasets
Table 1 shows, as we expected, the semi-supervised boost-
ing algorithms (ASSEMBLE, EntropyBoost, and SSDBoost)
outperform the supervised methods (AdaBoost, LPBoost, and
DirectBoost) in general, the results indicate that the unlabeled
data does help to improve generalization performance. By
taking advantage of maximizing margins directly on both la-
beled and unlabeled data, SSDBoost gives the most accurate
results (highlighted in bold font) in 7 of the 10 datasets among
all the methods, and its results are close to the best results
produced by the other methods for the remaining 3 datasets.
We have also performed a significance test using the paired
t-test. When compared to AdaBoost, SSDBoost has statisti-
cally significant improvements (p-value is less than 0.05) on
Australian, Splice, and WPBC datasets.

We noticed that for some moderate size of datasets (such
as Adult, Mushroom, and Kr-vs-Kp), the semi-supervised
boosting methods do not provide much improvements. We
believe the reason that there was little improvement for those
datasets is that the numbers of labeled samples are enough to
get reasonable results, so there is little room in the classifica-
tion to improve accuracy further. We selected two datasets,
Kr-vs-kp and Mushrooms, and we tried to reduce their size in
order to show the power of semi-supervised learning. Table 2
shows the results of Kr-vs-kp and Mushroom datasets with 50
and 20 labeled samples respectively. When the labeled data
is extremely limited, semi-supervised methods show their ad-
vantage more clearly, and SSDBoost is very efficient at uti-
lizing the information of unlabeled data.

4030

Data η AdaBoost LPBoost DirectBoost ASSEMBLE EntropyBoost SSDBoost
Synthetic 0 13.12(1.6) 13.96(1.7) 12.6(1.2) 12.28(2.5) 11.8(1.0) 10.04(1.7)

0.05 19.52(3.9) 19.36(4.9) 16.56(3.7) 16.92(2.7) 17.88(3.9) 14(2.6)
0.2 29.08(3.1) 22.84(5.4) 22.12(4.6) 25.68(3.1) 25.52(5.5) 18(2.4)

Kr-vs-Kp 0 10.42(2.2) 9.96(3.1) 10.08(4.1) 8.2(2.8) 8.36(2.6) 7.72(2.2)
0.05 18.26(5.1) 18.0(9.4) 17.1(7.9) 16.66(5.8) 17.14(7.0) 13.42(6.3)
0.2 27.18(8.3) 25.58(7.2) 22.46(7.7) 20.84(7.7) 21.4(7.5) 16.06(7.4)

Table 3: Mean error rates (in %) and standard deviations of each boosting algorithm on synthetic and Kr-vs-Kp data with a
label noise rate η at 0%, 5%, and 20%.

Figure 2: Margins distribution of ASSEMBLE, EntropyBoost
and SSDBoost for labeled and unlabeled samples on synthetic
data with 20% label noise. For SSDBoost, the parameters n′
and m′ which we used to plot the figure were selected by the
validation set, they are n

2 and m
2 respectively.

Figure 1 shows the test errors on the Mushroom dataset
(with 20 labeled samples) using ASSEMBLE, EntropyBoost
and SSDBoost when we increase the size of unlabeled data.
This results indicate that the accuracy of semi-supervised
boosting tends to improve with the increment of unlabeled
data, but the effects become saturated when more unlabeled
samples are added. We also observed this phenomenon on
other datasets, and the same observation was made by the
authors of [Zheng et al., 2009]. Moreover, SSDBoost con-
sistently outperforms the other two in the cases that different
numbers of unlabeled data are added to the training set.

We now analyze the running times of the semi-supervised
boosting algorithms on Adult dataset, which has 4884 la-
beled and 34188 unlabeled training samples. We imple-
mented each semi-supervised boosting algorithm by C++,
and the decision trees with depth of 2 are used. ASSEM-
BLE and EntropyBoost take almost the same running time
(about 1.4s) on each round in training phase. For SSD-
Boost6, it takes about 1.7s on each round, which is slightly
slower than the other two but it is bearable on such a scale
dataset. When compared to ASSEMBLE and EntropyBoost,
SSDBoost has more parameters to tune. In practice, how-
ever, we used the following strategy to save the validation
time: we adjusted n′ and m′ together from the 4 candi-
dates {(n/10,m/10), (n/5,m/5), (n/3,m/3), (n/2,m/2)}
instead of 16 combinations. In test phase, all the boosting

6The running time includes both step 1 and step 2, which was
computed by (total running time) / (total # of iterations).

methods have a similar computational time.

3.2 Evaluation of Noise Robustness
In many real-world applications, robustness of a classifier is
quite desirable. In this section, we run each boosting al-
gorithm on the datasets with additional random label noise.
We first use synthetic data with 5 real valued features which
are generated by the model introduced in [Mease and Wyner,
2008]. In the experiments, we let the number of labeled, un-
labeled training, validation and testing data be 50, 500, 50,
500 respectively, and the labels of the labeled training data
are corrupted with a noise rate η at 0%, 5% and 20%. The
experiments are repeated 10 times. In addition, we use Kr-
vs-Kp dataset again, but this time we flip the labels of the la-
beled training data by a noise rate η. Table 3 shows the results
of each boosting algorithm. Similar to AdaBoost, ASSEM-
BLE and EntropyBoost are very sensitive to noise [Long and
Servedio, 2010], their accuracy is hurt even with a 5% noise
rate. In contrast, the algorithms that maximize the average
bottom samples (including LPBoost, DirectBoost, and SSD-
Boost) perform much better on the noisy cases. Particularly,
SSDBoost does very well by utilizing the unlabeled data.

Figure 2 shows the cumulative margin distributions on Dl
and Du respectively of semi-supervised boosting methods on
the synthetic data with 20% label noise, where the margins
of unlabeled data are measured in (8). For the margin dis-
tribution of labeled samples, as shown in the left panel, AS-
SEMBLE and EntropyBoost concentrate their resources on
a few difficult samples, but these samples are usually noisy.
SSDBoost allows some misclassifications to achieve a bet-
ter margin distribution as well as generalization performance.
For the margin distribution of unlabeled data, as shown in the
right panel, we observed a similar interesting phenomenon.
ASSEMBLE and EntropyBoost have slightly greater margins
when considering the bottom 20% unlabeled samples, but SS-
DBoost achieves a better margin distribution overall.

4 Conclusion
We have proposed a semi-supervised boosting method that
directly optimizes classification errors and margins on both
available labeled and unlabeled data. Coordinate de-
scent/ascent based optimization algorithms are proposed to
facilitate this idea. The results on both UCI datasets and a
synthetic noisy dataset demonstrate the feasibility and advan-
tages of this approach, and the observed robustness of SSD-
Boost suggests that it might be quite useful in practice.

4031

Acknowledgments
This research is supported in part by AFOSR under grant
FA9550-10-1-0335, NSF under grant IIS:RI-small 1218863,
DoD under grant FA2386-13-1-3023, and a Google research
award. We would like to thank the Ohio Supercomputer Cen-
ter for an allocation of computing time to make this research
possible.

References
[Appel et al., 2013] R. Appel, T. Fuchs, T. Dollar and P. Per-

ona. Quickly boosting decision trees - Pruning under-
achieving features early. International Conference on
Machine Learning (ICML), 594-602, 2013.

[Bennett et al., 2002] K. Bennett, A. Demiriz and R. Maclin.
Exploiting unlabeled data in ensemble methods. Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD), 289-296, 2002.

[Bertsekas, 1998] D. Bertsekas. Network Optimization:
Continuous and Discrete Models. Athena Scientific,
1998.

[Chapelle et al., 2006] O. Chapelle, V. Sindhwani and S.
Keerthi. Branch and bound for semi-supervised support
vector machines. Advances in Neural Information Pro-
cessing Systems (NIPS), 2006.

[Chen and Wang, 2007] K. Chen and S. Wang. Regularized
boost for semi-supervised learning. Advances in Neural
Information Processing Systems (NIPS), 512-518, 2007.

[Chen and Wang, 2011] K. Chen and S. Wang. Semi-
supervised learning via regularized boosting working on
multiple semi-supervised assumptions. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 33.1:
129-143, 2011.

[d’Alché-Buc et al., 2002] F. d’Alché-Buc, Y. Grandvalet
and C. Ambroise. Semi-supervised marginBoost. Ad-
vances in Neural Information Processing Systems (NIPS)
14, 553-560, 2002.

[Demiriz et al., 2002] A. Demiriz, K. Bennett and J. Shawe-
Taylor. Linear programming boosting via column gener-
ation, Machine Learning, 46:225-254, 2002.

[Frank and Asuncion, 2010] A. Frank and A. Asun-
cion. UCI Machine Learning Repository.
[http://archive.ics.uci.edu/ml], Irvine, CA: Univer-
sity of California, School of Information and Computer
Science, 2010.

[Freund and Schapire, 1997] Y. Freund and R. Schapire. A
decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and Sys-
tem Sciences, 55(1):119-139, 1997.

[Joachims, 1999] T. Joachims. Transductive inference for
text classification using support vector machines. Inter-
national Conference on Machine Learning (ICML), 200-
209, 1999.

[Long and Servedio, 2010] P. Long and R. Servedio. Ran-
dom classification noise defeats all convex potential
boosters. Machine Learning, 78:287-304, 2010.

[Mallapragada et al., 2009] P. Mallapragada, R. Jin, A. Jain
and Y. Liu. Semiboost: Boosting for semi-supervised
learning. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 31(11):2000-2014, 2009.

[Mason et al., 2000] L. Mason, J. Baxter, P. Bartlett and
M. Frean. Boosting algorithms as gradient descent.
Advances in Neural Information Processing Systems
(NIPS), 512-518, 2000.

[Mease and Wyner, 2008] D. Mease and A. Wyner. Evidence
contrary to the statistical view of boosting. Journal of
Machine Learning Research, 9:131-156, 2008.

[Nguyen and Sanner, 2013] T. Nguyen and S. Sanner. Algo-
rithms for direct 0-1 loss optimization in binary classifi-
cation. International Conference on Machine Learning
(ICML), 1085-1093, 2013.

[Ratsch et al., 2000] G. Ratsch, T. Onoda and R. Muller. Soft
margins for AdaBoost. Machine Learning, 1-35, 2000.

[Rudin et al., 2004] C. Rudin, I. Daubechies and R.
Schapire. The dynamics of AdaBoost: Cyclic behavior
and convergence of margins. Journal of Machine
Learning Research, 5:1557-1595, 2004.

[Saffari et al., 2008] A. Saffari, H. Grabner and H. Bischof.
SERBoost: Semi-supervised boosting with expectation
regularization. European Conference on Computer Vision
(ECCV), 588-601, 2008.

[Schapire et al., 1998] R. Schapire, Y. Freund, P. Bartlett and
W. Lee. Boosting the margin: A new explanation for the
effectiveness of voting methods. The Annals of Statistics,
26(5):1651-1686, 1998.

[Schapire and Freund, 2012] R. Schapire & Y. Freund.
Boosting: Foundations and Algorithms. MIT Press,
2012.

[Sindhwani et al., 2006] V. Sindhwani, S. Keerthi and O.
Chapelle. Deterministic annealing for semi-supervised
kernel machines. International Conference on Machine
Learning (ICML), 841-848, 2006.

[Tseng, 2001] P. Tseng. Convergence of block coordinate
descent method for nondifferentiable minimization. Jour-
nal of Optimization Theory and Applications, 475-494,
2001.

[Vapnik, 1998] V. Vapnik. Statistical Learning Theory. John
Wiley, 1998.

[Warmuth et al., 2007] M. Warmuth, K. Glocer and G.
Ratsch. Boosting algorithms for maximizing the soft
margin. Advances in Neural Information Processing Sys-
tems (NIPS), 1585-1592, 2007.

[Zhai et al., 2013] S. Zhai, T. Xia, M. Tan and S. Wang. Di-
rect 0-1 loss minimization and margin maximization with
boosting. Advances in Neural Information Processing
Systems (NIPS), 872-880, 2013.

[Zheng et al., 2009] L. Zheng, S. Wang, Y. Liu and C. Lee.
Information theoretic regularization for semi-supervised
boosting. International Conference on Knowledge Dis-
covery and Data Mining (KDD), 1017-1026, 2009.

4032

