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Abstract

In repeated stochastic games (RSGs), an agent must
quickly adapt to the behavior of previously un-
known associates, who may themselves be learn-
ing. This machine-learning problem is particularly
challenging due, in part, to the presence of multiple
(even infinite) equilibria and inherently large strat-
egy spaces. In this paper, we introduce a method
to reduce the strategy space of two-player general-
sum RSGs to a handful of expert strategies. This
process, called MEGA, effectually reduces an RSG
to a bandit problem. We show that the resulting
strategy space preserves several important proper-
ties of the original RSG, thus enabling a learner
to produce robust strategies within a reasonably
small number of interactions. To better estab-
lish strengths and weaknesses of this approach, we
empirically evaluate the resulting learning system
against other algorithms in three different RSGs.

1 Introduction

In repeated stochastic games (RSGs), an agent must learn ro-
bust strategies within a handful of interactions when associ-
ating with other (unknown) agents who may also be learn-
ing. This learning problem is challenging for several reasons.
First, strategy spaces of RSGs are inherently large, even for
simple scenarios. Second, the strategies used by other agents
are unknown and can change over time, which produces a
non-stationary environment. Finally, the existence of mul-
tiple (even infinite) equilibria in general-sum RSGs renders
rationality assumptions and equilibrium computation insuffi-
cient. As a result of these challenges, existing learning al-
gorithms (e.g., [Claus and Boutilier, 1998; Littman, 1994;
Hu and Wellman, 1998; Littman, 2001; Bowling and Veloso,
2002; Greenwald and Hall, 2003; Crandall, 2012]) often fail
to learn robust strategies within realistic time scales.

Game abstraction [Gilpin and Sandholm, 2006; Schnizlein
et al., 2009; Ganzfried et al., 2012; Sandholm and Singh,
2012] has emerged in recent years to address the first of these
challenges. Typically, the game is first reduced to a smaller
game. Next, an equilibrium strategy is computed for this
smaller game, which is then executed in the original game.
This approach is effective in large zero-sum RSGs due to the
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unique nature of equilibria in these games. Unfortunately, the
usefulness of this approach is limited, since it is unclear in
general-sum RSGs which equilibrium should be computed.

In this paper, we analyze an alternative form of strategy
reduction for two-player general-sum RSGs. Our approach,
called MEGA, reduces an RSG to a multi-armed bandit prob-
lem by computing a finite set of expert strategies (based on
equilibria computations and learning rules). This greatly sim-
plifies the learning problem such that simple expert algo-
rithms, such as Exp3 [Auer er al., 1995], UCB [Auer et al.,
20021, EEE [de Farias and Megiddo, 20041, or S++ [Crandall,
20141, can be used to learn on the reduced strategy space.

We make three contributions. First, we propose MEGA
as a potentially suitable method for learning in two-player
general-sum RSGs. Second, we show that the strategy space
computed by MEGA preserves several important theoreti-
cal properties of the original RSG. Finally, to better estab-
lish strengths and weaknesses of this approach, we empiri-
cally evaluate the robustness of the resulting learning system
against other algorithms in three RSGs.

2 Repeated Stochastic Games
We first formally define and motivate RSGs.

2.1 Notation

We consider two-player RSGs played by players ¢ and —i.
An RSG consists of a set of stage games S. In each stage
s € S, both players choose an action from a finite set. Let
A(s) = A;(s) x A_;(s) be the set of joint actions available
in s, where A,(s) and A_;(s) are the action sets of players
1 and —i, respectively. Each round of an RSG begins in the
start stage 5 € S and terminates when some goal stage s, €
G C S isreached. A new round then begins in stage S. The
game repeats for an unknown number of rounds.

When joint action a = (a;, a_;) is played in s, the players
receive the finite rewards ; (s, a) and r_;(s, a), respectively.
The world also transitions to some new stage s’ with proba-
bility defined by Pas(s, a,s"). We assume that Py, 7;(s, a),
and r_;(s, a) are known by both players a priori, and that the
players can observe s and each other’s actions.

Player #’s strategy, denoted 7;, defines how it will act in
each world state. In general-sum RSGs, it is often useful (and
necessary) to define state not only in terms of the stage, but
also in terms of the history of the players’ actions. Let H
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Figure 1: The Microgrid Scenario.

denote the set of possible joint-action histories. Then, the
set of states is given by ¥ = S x H. Let 1;(0) denote the
policy of player i in state 0 = (s, h) € X. Thatis, m;(0) is a
probability distribution over the action set A;(s).

2.2 Maetrics

The success of an algorithm in an RSG is measured by the
payoffs it receives. An ideal algorithm will maximize its pay-
offs against any associate. Because this is a difficult task to
achieve, measure, and guarantee, previous work has focused
on identifying algorithms that meet certain criteria, such as
convergence to Nash equilibria (NEs) [Hu and Wellman,
1998; Littman, 2001; Bowling and Veloso, 2002], Pareto opti-
mality [Powers and Shoham, 2005], and security [Fudenberg
and Levine, 1998; Powers and Shoham, 2005].

In this paper, we adopt a different, though related, metric
of success. We evaluate an algorithm based on the proportion
of a population that is willing to use it, as determined by evo-
lutionary simulations [Taylor and Jonker, 1978]. Success in
such simulations requires an algorithm to demonstrate many
of the previously mentioned attributes.

2.3 Illustrative Example: A Microgrid Scenario

Consider a microgrid in which two players share the lim-
ited electricity supply with per-hour generation characteris-
tics shown in Figure 1c. The players can store up to five units
of unused electricity, though unused storage is lost at the end
of the day. To gain utility, a player executes its tasks, each re-
quiring the specified electricity loads, within the stated time
windows (Figure 1a-b). A task is completed within a single
hour and can be executed no more than once a day. If the
players try to consume more electricity than is available, a
blackout occurs. In a blackout, the electricity storage emp-
ties, and the tasks that the players attempted to execute are
left unfinished. A cost of two utility units is incurred by each
player that attempted to execute tasks in that hour.
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A stage is defined by the current hour, the amount of stored
electricity, and the set of current tasks (unexecuted tasks
whose time windows correspond to the current hour). The
game has 2,033 unique stages. The start stage occurs in hour
0. The goal stages are all stages with hour 24. Each player’s
action set is the power set of its set of current tasks.

Insufficient electricity is generated each day for all tasks to
be executed. Furthermore, some high-valued tasks can only
be executed when the other player complies. For example,
there is only sufficient electricity for Player 2 to execute Task
12 if Player 1 refrains from executing Task 1 prior to hour 6.
Similarly, Player 1 can only successfully execute Task 10 if
Player 2 refrains from executing Task 20. Thus, the players
must coordinate and (likely) compromise to be successful.

To enforce a compromise, a player may need to punish
its associate for undesirable behavior. For example, to de-
ter player 2 from executing Task 20 in the future, player 1
should punish player 2 whenever player 2 executes Task 20
(perhaps by executing Task 1 prior to hour 6 the next day so
that player 2 cannot execute Task 12). However, this strategy
will only be successful if both players use a state space that
includes at least some aspects of H.

However, using H as a component of state makes a player’s
strategy space massive. Even if limited to pure strategies and
if |A;(s)| = 2forall s € S, the size of i’s strategy space is on
the order of 25171 Since only a small fraction of strategies
can be executed during most interactions, traditional learning
algorithms that operate on the full strategy space are unlikely
to be successful. Furthermore, it is unclear how traditional
methods for game abstraction can be used since this RSG has
an infinite number of NEs [Gintis, 2000].

Figure 1d compares three different algorithms in the Mi-
crogrid Scenario in self play, two of which are model-based
reinforcement learning (MBRL) (see Appendix A for details)
and CFR [Zinkevich et al., 2007; Johanson et al., 2012].
Since |S x H| is prohibitively large, H is discarded so that
> = S. Both algorithms converge to solutions in which
player 1 does not execute Task 10 and player 2 does not exe-
cute Task 12. Thus, both players achieve low utility.

CFR and MBRL cannot learn cooperative behavior in this
game because their representations (when discarding H) do
not allow them to see the value in doing so. Additionally,
they do not consider punishment strategies that enforce coop-
eration. On the other hand, because FolkEgal [de Cote and
Littman, 2008] computes and implements a trigger strategy
focused on the egalitarian (cooperative) solution, it performs
much better than MBRL and CFR in self play. However,
FolkEgal is ineffective when the associate does not play its
portion of the egalitarian solution — it does not learn.

3 Meta-Gaming

These latter results demonstrate how difficult it is to represent
and learn non-myopic solutions in general-sum RSGs. In this
section, we describe how meta-gaming (in the form of a new
algorithm called MEGA) can be used to reduce the strategy
space of the game so that a player can both model non-myopic
(cooperative) solutions and adapt to its associate’s behavior.



Algorithm 1 MEGA

Input: An expert algorithm A

Initialize: Compute a set ®; of experts

Run: In each round ¢
- Select an expert ¢+ € ®; using A
- Follow the strategy prescribed by ¢: throughout round ¢
- Update each ¢ € ®; and A as specified

MEGA (Algorithm 1) reduces the strategy space of an RSG
to a finite set ®; of strategies or algorithms. Each ¢ € &;
defines a policy for each state s € S. Thus, MEGA reduces an
RSG to a multi-armed bandit problem, where each arm is an
expert ¢ € ®;. Thus, rather than learning a separate policy
in each state s € S, the agent must learn which high-level
strategies or algorithms ¢ € ® are the most profitable.

MEGA has similarities to a method proposed by Elidrisi et
al. (2014), in which meta-analysis is used to reduced an RSG
to a normal-form game. This method relies on exploration
strategies, and clustering and thresholding algorithms to iden-
tify common sequences of actions (or paths) for each player.
MEGA, instead, uses a variety of game-theoretic valuations
(among other techniques) to define the set ®;. These valua-
tions can be used in any RSG of any complexity. Regardless
of the game’s complexity, MEGA produces a handful of high-
level strategies over which an expert algorithm learns.

MEGA makes the learning problem for RSGs similar in
nature to ensemble methods [Dietterich, 20001, which have
been used successfully in the machine learning and Al liter-
ature. However, we are unaware of previous work that uses
such methods for learning in general-sum RSGs. Determin-
ing how to effectively reduce the strategy space of an arbitrary
RSG to a small set of strategies is non-trivial.

To implement Algorithm 1, we must solve two technical
problems. First, we must identify an expert algorithm A that
learns effectively in repeated interactions with unknown as-
sociates. This problem has been well-studied in the litera-
ture [Auer et al., 1995; Bowling, 2004; Arora et al., 2012;
Crandall, 2014; Cesa-Bianchi et al., 2013]. Thus, we focus
on the second technical problem: defining an effective set of
experts ®;. Ideally, in any scenario that a player is likely to
encounter, at least one expert ¢ € ®; should perform well.
However, no single expert need be effective in all scenarios.

4 Experts

Our set ®; consists of three types of experts: leader strategies,
follower strategies, and preventative strategies. We introduce
preventative strategies in this paper. The idea of leader and
follower strategies was first identified by Littman and Stone
(2001) in the context of repeated normal-form games. We
define a set of such experts for RSGs.

4.1 Leader Strategies

A leader strategy encourages its associate to follow a target
solution, by playing its own portion of the target solution as
long as its associate plays its part. When the associate devi-
ates from the solution, the leader subsequently retaliates so
that the associate does not profit from the deviation.
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Figure 2: Joint payoffs of possible target solutions in the Mi-
crogrid Scenario. Red indicates selection by our method.

We define our leader experts by (1) identifying potential
target solutions, (2) selecting a subset of these solutions, one
corresponding to each leader in ®;, and (3) defining a punish-
ment (retaliatory) strategy.

Computing Target Solutions

Possible target solutions are computed by solving Markov de-
cision processes (MDPs) over the joint-action space of the
RSG. The MDPs are defined by P/, the joint-action set A,
and a payoff function that is a convex combination of the
players’ rewards [de Cote and Littman, 2008]. That is, for
w € [0, 1], the payoff function is y*(s,a) = wr;(s,a) + (1 —
w)r_;(s,a). Then, the value of joint-action a in state s is

Q“(s,a) =y“(s,a) + > _ Puls,a,s)V(s),
s'esS

where V¥(s) = maxXaca(s) Q“(5,a). The MDP can be
solved in polynomial time using linear programming [Pa-
padimitriou and Tsitsiklis, 1987; Littman et al., 1995].

Let MDP(w) denote the joint strategy produced by solving
an MDP for a particular w. Also, let V;*(s) be player i’s ex-
pected future payoff from stage s when MDP(w) is followed.
Then, the ordered pair (V(3),V*;(8)) is the joint payoff
vector for the target solution defined by MDP(w). This pay-
off vector is Pareto optimal [de Cote and Littman, 2008].

By varying w, we can compute a variety of possible target
solutions (called pure solutions). Additional possible target
solutions, or alternating solutions, are obtained by alternat-
ing between different pure solutions. For example, in the Mi-
crogrid Scenario, MDP(0.1) and MDP(0.3) produce the joint
payoffs (11.3,40.0) and (36.8, 32.7), respectively. Alternat-
ing between these solutions produces the average joint payoff
(24.05, 36.35). Since longer cycles are difficult for associates
to model, we only include cycles of length two.

Which Target Solutions?

Figure 2 shows the joint payoffs of possible pure and alternat-
ing target solutions in the Microgrid Scenario. In this RSG,
the one-shot NE is Pareto dominated by many possible target
solutions. Since any solution in which each player’s payoff
exceeds its maximin value can be sustained as NEs of the
repeated game [Gintis, 2000], these possible target solutions
offer a variety of potentially desirable equilibrium solutions.
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A larger @, provides more resolution, but makes the learn-
ing problem more difficult. In this work, we form leader ex-
perts for up to five solutions. We select the egalitarian so-
lution and the two solutions that give each player its highest
payoff subject to the other player getting its security level. We
then select two points that maximize the Euclidean distance
from the other selected solutions. This provides a variety of
different options for the players to agree to. Figure 2 shows
the selected points for the Microgrid Scenario in red.

Adding punishment

A typical leader punishes a deviation from the target solution
by playing an attack strategy (usually its minimax strategy).
In practice, we deviate slightly in this regard: player ¢ only
punishes deviations by —3 that substantially lower i’s payoffs.
Let s, be the 7th stage of the round. Player 7 begins punishing
—¢ when —¢ deviates from the target solution and

Condition 1: V¥ (s,) +7i(t — 1) < V¥(s,-1), 2

Condition 2: Z ri(§) + V¥ (s,) < al. 3)

J=1

Here, 7t(j) is 7’s payoff after the jth move of round ¢, af =
Ad™t 4+ (1 = NRL X € (0,1), and R! is 4’s total payoff
in round t. af is set to i’s payoff in the egalitarian solution.
In words, these two conditions identify when deviations by
the associate have lowered player ¢’s expected round payoffs
sufficiently to justify retaliation.

To punish player —:’s harmful deviations, player ¢ plays its
minimax strategy for the remainder of round ¢, and continues
to do so in subsequent rounds until —¢’s payoffs are at least
0 less than they would have been had —i not deviated. We
adopt this punishment mechanism since the associate’s pay-
offs are often uncertain, and rewards and transition functions
in RSGs can be non-deterministic. More leniency can some-
times eliminate cycles of unnecessary punishment.

4.2 Follower Strategies

Followers seek to maximize their payoffs against the strategy
they attribute to their associate. We include followers in ®;
that estimate their associate’s strategy in three ways. The first
set of followers assume the associate plays a leader strategy.
Against such associates, a player maximizes its payoffs by
following the corresponding target solution. We form a sep-
arate follower strategy for each selected target solution, each
of which follows the target solution unconditionally.

The set ®; also includes two other follower strategies:
MBRL (Appendix A) and the maximin expert ¢;"", which
plays a best response to an associate seeking to minimize its
payoffs. Formally, let u;(m;, m_;) be the expected utility in a
round to player ¢ when it follows strategy m; and player —¢
follows strategy m_;. Then, the strategy followed by ¢;*™ is

mm

™

—argmax min wi (g, m_4). “4)
4.3 Preventative Strategies

Due to their state representations, many algorithms have dif-
ficulty perceiving the punishment signals communicated by
leaders. In some cases, preventative strategies can be more

effective. Rather than punishing past deviations, preventa-
tive strategies seek to make deviations unprofitable in the first
place by anticipating deviations the associate might make,
and then acting to make these deviations unprofitable.

We include one preventative strategy in ®;, which we
refer to as BOUNCER. BOUNCER seeks to minimize the
difference between the players’ payoffs, without regard
for its own payoffs. Formally, Bouncer computes both
Qi(s,a) and Q_;(s,a) using SARSA [Rummery and Niran-
jan, 1994], where the players’ strategies are estimated using
the Fictitious-play assessment. It then selects action

Y—i(s,a-;)U(s, (ai,a—;)), (5)

af(s) = min >
a_; GAfi(S)

where U(s,a) = |Q;(s,a) — Q_;(s,a)|.

S Properties of the Strategy Reduction

Good strategy reductions for RSGs should maintain impor-
tant attributes of the original strategy space, such as NEs
[Hu and Wellman, 1998; Littman, 2001], Pareto optimality
[Powers and Shoham, 2005], best response [Bowling and
Veloso, 2002], and security [Fudenberg and Levine, 1998;
Powers and Shoham, 2005]. Maintaining these properties
helps to ensure that an algorithm confined to the reduced
strategy space can learn an effective strategy in the original
game. In this section, we show that the strategy set ®; main-
tains three important properties of the original RSG.

Property 1 (Security) The strategy set ®; has the same secu-
rity level as the strategy set of the original RSG.

Proof: Player ¢’s security level in the original RSG is its
maximin value, v = maxX,, e, MiNy_em_,; Ui (T, T—;).
That is, player ¢ can guarantee itself an expected payoff of
at least v per round if it plays ;"™ (Eq. 4). Given the
reduced strategy set ®;, however, player i’s security level is
O = maxe. o, Ming em_, ui(¢;, m—;). We know two
things about ®;. First, since ®; C II;, 9;""™ < v;*™. Second,
since m"™" = @' € ®;, we know that "™ > v;""™. These
two statements are only both true when ¢;"" = v;*™. [J

Property 2 (Best response) When the associate always fol-
lows a stationary strategy that is Markovian in S, the strategy
set ®,; eventually contains a best response with respect to the
strategy set of the original RSG.

Proof sketch: Strategy 7 is a best response to the associate’s
strategy m_; if Vm; € I, w;(n), m—;) > w;(m;, m—;). MBRL,
an expert in ®;, computes a best response with respect to its
assessment of its associate’s strategy. When the associate’s
strategy is stationary and Markovian with respect to S, this
assessment converges to the strategy used by the associate
given sufficient exploration and observation. Thus, MBRL
eventually converges to a best response in this case. [

Property 3 (Nash equilibria) ®; contains strategies that cor-
respond to Nash equilibria of the original RSG.

Proof sketch: The leader strategies in ®; are trigger strategies
in which the target solution gives both players at least their
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Figure 3: The SGPD (left) and a Block Game (right).

security levels. An associate’s best response to the trigger
strategy is to play its portion of that strategy’s target solu-
tion. Thus, when the associate plays a trigger strategy with
the same target solution, the result is a NE (each player is
playing a best response to the other’s strategy). Thus, each
leader strategy in ®; corresponds to player 7’s strategy in a
NE of the original RSG. O

Since MDP(w) produces a solution that is (approximately)
Pareto optimal [de Cote and Littman, 2008], each leader strat-
egy in the set ®; with a pure target solution corresponds to a
Pareto optimal NE of the original RSG. Alternating target so-
lutions involve alternations between Pareto optimal solutions,
but are not themselves guaranteed to be Pareto optimal.

6 Empirical Evaluations

We seek to identify how to quickly learn robust strategies in
general-sum RSGs played with arbitrary associates. We now
use empirical evaluations to determine how well MEGA helps
meet this goal. To do this, we paired MEGA with the expert
algorithms Exp3 [Auer et al., 1995] and S++ [Crandall, 2014]
to form MEGA-EXP3 and MEGA-S++.

We evaluated MEGA-EXP3 and MEGA-S++ against ten al-
gorithms in three RSGs: the Microgrid Scenario, the SGPD,
and a Block Game. The SGPD (a stochastic-game prisoners’
dilemma) and the Block Game are described by Oudah et al.
(2015). In the Block Game, two players share the block set
shown in Figure 3b. In each round, the players take turns se-
lecting blocks until each player has three blocks. If a player’s
blocks form a valid set (i.e., all blocks of the same color, all
blocks of the same shape, or none of the blocks have the same
color or shape), her payoff is the sum of the numbers on her
blocks. Otherwise, she loses the sum of the numbers divided
by 4. The sub-game perfect one-shot NEs of this game give
each player 18 points. However, these solutions are domi-
nated by the solution in which the players alternate between
taking all of the squares and all of the triangles (each player
averages 25 points). Even better, a player could potentially
bully its associate by insisting it always gets all the squares.

Each algorithm was paired with every other algorithm in
each game. The average of 25 trials was taken for each pair-
ing. In addition to the algorithms already mentioned, the ten
algorithms (Figure 4a) included Friend-VI [Littman, 20011,
utilitarian MBRL (u-MBRL), and Bully. u-MBRL is identi-
cal to MBRL except that it seeks to maximize the sum of the
two player’s payoffs (rather than just its own). Bully is the
leader expert that gives the agent its highest payoff.
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Figure 5: Percentage of rounds that each expert was selected
by MEGA-S++ and MEGA-EXP3 in the Microgrid Scenario.

6.1 Performance

The average per-round payoffs of each algorithm in each
RSG, averaged over all pairings, are shown in Figure 4a.
While some of the algorithms varied in their effectiveness
across games, a number of trends remained constant in each
game. First, in each RSG, MEGA-S++ had the highest aver-
age payoff in 500-round games. CFR had the second highest
average payoffs in the Microgrid Scenario and in the Block
Game, though it finished fourth in the SGPD.

Figure 4b shows the average payoffs of the agents over time
in the Microgrid Scenario. Results for the other two RSGs
(not shown) are similar. In each game, CFR had the highest
average payoff over the first 50 rounds. Thereafter, MEGA-
S++ substantially outperformed CFR. We have observed that
CFR tends to produce rather myopic solutions in general-sum
RSGs. These solutions are relatively easy to establish, which
leads to higher payoffs in early rounds. On the other hand,
the strategy reduction provided by MEGA allows S++ to learn
to establish cooperative solutions (when profitable) when as-
sociates are apt to cooperate. These compromises are more
difficult to establish, but have higher returns.

Though it learned on the same (reduced) strategy space,
MEGA-EXP3 was not as successful as MEGA-S++. The rea-
son for this is depicted in Figure 5, which shows the per-
centage of rounds that each expert was selected by the two
algorithms in the Microgrid Scenario. MEGA-S++ rarely
used some of the experts, while utilizing MBRL and Leader3
(FolkEgal) extensively. On the other hand, MEGA-EXP3 did
not distinguish among the experts as much over the first 500
rounds, and hence failed to learn effective strategies.
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Microgrid Scenario SGPD Block Game
Algorithm | Self Top Low | Self Top Low | Self Top Low
MEGA-S++ | 322 269 209 |[158 11.3 11.6 [ 233 172 280
CFR 176 234 201 | 70 84 114 |18.0 17.0 244
FOLKEGAL | 333 241 128 | 160 103 87 |249 153 14.6

Table 1: Average payoffs over 500 rounds in self play, against
Top-5 competition, and against Low-5 competition.

6.2 Evolutionary Robustness

While MEGA-S++ achieved higher average payoffs in games
lasting more than 50 rounds, this does not necessarily mean
that agents will want to use it. To help make this determina-
tion, we simulated populations of agents using the replicator
dynamic [Taylor and Jonker, 1978] over 100 generations, and
plotted the percentage of agents in the population that used
each algorithm. To be successful in such simulations, an al-
gorithm must be able to avoid being invaded and must be able
to associate effectively with other successful algorithms.

Figure 6 plots the average usage of each algorithm in the
Microgrid Scenario and the SGPD as a function of the length
of the interaction (results are similar in the Block Game).
When agents interacted for shorter periods of time, FolkEgal
and CFR (in the Microgrid Scenario and the Block Game)
were used the most. However, when interactions lasted
longer, MEGA-S++ was used the most in each RSG.

These latter results are interesting for several reasons.
First, they show the robustness of MEGA-S++, particularly
in long-term interactions. Second, while FolkEgal did not
perform exceptionally well over all pairings, it was used ex-
tensively by the agents in the population. Third, while CFR
had high per-round payoffs averaged over all pairings, it was
not used extensively in long-term interactions. Table 1 pro-
vides an explanation of these phenomena. The table shows
that both MEGA-S++ and FolkEgal were effective in self play,
whereas CFR was not. Additionally, CFR tended to perform
poorly against stronger algorithms, while FolkEgal tended to
not perform well against weaker algorithms. However, once
these weaker algorithms were eliminated, it performed quite
well. MEGA-S++ performed relatively well in each grouping.

6.3 Computation Time

To create the set ®;, MEGA solves a constant number of
MDPs a priori, each of which can be done in polynomial
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Microgrid Scenario SGPD Block Game
Algorithm | Init Run Total | Init Run Total | Init Run Total
MEGA-S++ | 93 09 102 | 131.5 583 189.7 | 0.8 0.9 1.7
CFR 0.1 038 1.0 19.0 911.0 9300 | 7.1 588 659
MBRL 0.1 1.7 1.8 117 797 914 | 0.2 1.1 1.3

Table 2: Initialize time, runtime, and total time to complete
a 500-round game in self play (averaged over 25 trials). All
times are in seconds. Simulations were run on a 2.6 GHz Intel
Core i7 processor with 16 GB 1600 MHZ DDR3 memory.

time using linear programming. To create the leader strate-
gies, MEGA computes its maximin and attack strategies, and
solves MDP(w) for various w. Only minimal computations
are required to maintain leader strategies thereafter (to up-
date guilt, etc.). On the other hand, both MBRL and Bouncer
(when selected) require an MDP to be solved after every
round. The other followers utilize computations performed
in the creation of the leader experts. Thus, ®; can be com-
puted and maintained in polynomial time.

In practice, the computation times for creating and main-
taining ®; are quite reasonable. Table 2 shows initialization-
and run-times for MEGA-S++, MBRL, and CFR in 500-
round games. Most of the computation time taken by MEGA-
S++ was during initialization. In fact, MEGA-S++ typi-
cally had shorter runtimes than both MBRL and CFR. CFR
tended to have the longest total execution time in these RSGs.

We caution that these results were obtained from code that
was not heavily optimized. For example, much of the time
required to initialize MEGA-S++ in the Microgrid Scenario
(and about half the initialization time in the SGPD) was spent
in an unoptimized routine for computing minimax.

7 Conclusion

Our goal is to identify how to quickly learn effective strate-
gies in general-sum RSGs played against arbitrary associates.
In this paper, we proposed MEGA, a meta-gaming technique
designed to reduce the strategy space of RSGs. MEGA main-
tains important attributes of the original strategy space, in-
cluding security, best response, and (some) NEs. As such,
learning algorithms that operate on this reduced strategy
space can quickly learn strategies that are effective in the orig-
inal RSG. In this way, MEGA facilitates fast and robust learn-
ing in general-sum RSGs played against arbitrary associates.

MEGA differs from previous game-abstraction methods
[Gilpin and Sandholm, 2006; Schnizlein er al, 2009;
Ganzfried et al., 2012; Sandholm and Singh, 2012]. Whereas
previous methods seek to reduce the number of states and
actions in the game (to make equilibrium computation fea-
sible), MEGA computes a handful of high-level strategies of
the game. These strategy-reduction methods can work in par-
allel. In particular, for games with large state spaces, tradi-
tional game-abstraction methods can be used to help solve
the MDPs that MEGA must solve when computing its experts.
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A MBRL

The version of model-based reinforcement learning (MBRL)
we used models the associate’s strategy using the fictitious-
play assessment [Fudenberg and Levine, 1998] conditioned
on the stage s € S. That is, in round ¢, player 7 estimates that
—i plays action a_; in stage s with probability v ;(s,a_;) =
kL i(s,a-4)
ZbeA,i(s) kL, (s,0)°
that —¢ has taken action a in s up to round ¢. For all @ and s,
MBRL computes the value for taking action a in s by solving

where ' (s, a) is the number of times

Qi(s,a) =

>

bEA_,;(s)

Y i(s,b) |ri(s,ab) + > Pu(s,ab, s )Vi(s) |
s'es

where ab is the joint action when ¢ plays a and —: plays b and
Vi(s) = maxge a,(s) Qi(s,a). We used e-greedy exploration.

References

[Arora et al., 2012] R. Arora, O. Dekel, and A. Tewari. Online ban-
dit learning against an adaptive adversary: from regret to policy
regret. In ICML, pages 1503-1510, 2012.

[Auer et al., 1995] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. Gambling in a rigged casino: the adversarial multi-
armed bandit problem. In Proc. of the 36th Symp. on the Foun-
dations of CS, pages 322-331, 1995.

[Auer et al., 2002] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-
time analysis of the multi-armed bandit problem. Machine Learn-
ing, 47:235-256, 2002.

[Bowling and Veloso, 2002] M. Bowling and M. Veloso. Multia-
gent learning using a variable learning rate. Artificial Intelli-
gence, 136(2):215-250, 2002.

[Bowling, 2004] M. Bowling. Convergence and no-regret in multi-
agent learning. In NIPS, pages 209-216, 2004.

[Cesa-Bianchi et al., 2013] N. Cesa-Bianchi, O. Dekel, and
O. Shamir. Online learning with switching costs and other
adaptive adversaries. In NIPS, pages 1160-1168, 2013.

[Claus and Boutilier, 1998] C. Claus and C. Boutilier. The dynam-
ics of reinforcement learning in cooperative multiagent systems.
In AAAI pages 746752, 1998.

[Crandall, 2012] J. W. Crandall. Just add Pepper: extending learn-
ing algorithms for repeated matrix games to repeated markov
games. In AAMAS, pages 399-406, 2012.

[Crandall, 2014] J. W. Crandall. Towards minimizing disappoint-
ment in repeated games. Journal of Artificial Intelligence Re-
search, 49:111-142, 2014.

[de Cote and Littman, 2008] E. de Cote and M. L. Littman.
A polynomial-time Nash equilibrium algorithm for repeated
stochastic games. In UAI pages 419-426, 2008.

[de Farias and Megiddo, 2004] D. de Farias and N. Megiddo.
Exploration-exploitation tradeoffs for expert algorithms in reac-
tive environments. In NIPS, pages 409—416, 2004.

[Dietterich, 2000] T. G. Dietterich. Ensemble methods in machine
learning. In Multiple Classifier Systems, LN in CS, vol 1857, pp.
1-15. Springer Berlin Heidelberg, 2000.

3422

[Elidrisi et al., 2014] M. Elidrisi, N. Johnson, M. Gini, and J. W.
Crandall. Fast adaptive learning in repeated stochastic games by
game abstraction. In AAMAS, 2014.

[Fudenberg and Levine, 1998] D. Fudenberg and D. Levine. The
Theory of Learning in Games. The MIT Press, 1998.

[Ganzfried er al., 2012] S. Ganzfried, T. Sandholm, and K. Waugh.
Strategy purification and thresholding: Effective non-
equilibrivam approaches for playing large games. In AAMAS,
2012.

[Gilpin and Sandholm, 2006] A. Gilpin and T. Sandholm. A com-
petitive Texas Hold’em poker player via automated abstraction
and real-time equilibrium computation. In AAAI, 2006.

[Gintis, 2000] Herbert Gintis. Game Theory Evolving: A Problem-
Centered Introduction to Modeling Strategic Behavior. Princeton
University Press, 2000.

[Greenwald and Hall, 2003] A. Greenwald and K. Hall. Correlated
Q-learning. In ICML, pages 242-249, 2003.

[Hu and Wellman, 1998] J. Hu and M. P. Wellman. Multiagent re-
inforcement learning: Theoretical framework and an algorithm.
In ICML, pages 242-250, 1998.

[Johanson et al., 2012] M. Johanson, N. Bard, M. Lanctot, R. Gib-
son, and M. Bowling. Evaluating state-space abstractions in
extensive-form games. In AAMAS, pages 837-846, 2012.

[Littman and Stone, 2001] M. L. Littman and P. Stone. Leading
best-response strategies in repeated games. In IJCAI workshop on
Economic Agents, Models, and Mechanisms, Seattle, WA, 2001.

[Littman et al., 1995] M. L. Littman, T. L. Dean, and L. P. Kael-
bling. On the complexity of solving markov decision problems.
In UAI, 1995.

[Littman, 1994] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In ICML, pages 157-163,
1994.

[Littman, 2001] M. L. Littman. Friend-or-foe: Q-learning in
general-sum games. In /CML, pages 322-328, 2001.

[Oudah et al., 2015] M. Oudah, V. Babushkin, T. Chenlinangjia,
and J. W. Crandall. Learning to interact with a human partner.
In HRI, 2015.

[Papadimitriou and Tsitsiklis, 1987] C. H. Papadimitriou and J. N.
Tsitsiklis. The complexity of Markov chain decision processes.
Mathematics of Operations Research, 12(2):441-450, 1987.

[Powers and Shoham, 2005] R. Powers and Y. Shoham. Learning
against opponents with bounded memory. In IJCAI, pages 817—
822, 2005.

[Rummery and Niranjan, 1994] G. A. Rummery and M. Niranjan.
On-line Q-learning using connectionist sytems. Technical Report
CUED/F-INFENG-TR 166, Cambridge University, UK, 1994.

[Sandholm and Singh, 2012] T. Sandholm and S. Singh. Lossy
stochastic game abstraction with bounds. In EC, pages 880-897,
2012.

[Schnizlein ef al., 2009] D. Schnizlein, M. Bowling, and
D Szafron. Probabilistic state translation in extensive games
with large action sets. In IJCAI, 2009.

[Taylor and Jonker, 1978] P. D. Taylor and L. Jonker. Evolution-
arily stable strategies and game dynamics. Mathematical Bio-
sciences, 40:145-156, 1978.

[Zinkevich et al., 2007] M. Zinkevich, M. Bowling, M. Johanson,
and C. Piccione. Regret minimization in games with incomplete
information. In NIPS, 2007.





