
Modular Systems with Preferences

Alireza Ensan and Eugenia Ternovska
Simon Fraser University

Canada
{aensan,ter}@sfu.ca

Abstract
We propose a versatile framework for combining
knowledge bases in modular systems with pref-
erences. In our formalism, each module (knowl-
edge base) can be specified in a different language.
We define the notion of a preference-based mod-
ular system that includes a formalization of meta-
preferences. We prove that our formalism is ro-
bust in the sense that the operations for combining
modules preserve the notion of a preference-based
modular system. Finally, we formally demon-
strate correspondences between our framework and
the related preference formalisms of cp-nets and
preference-based planning. Our framework allows
one to use these preference formalisms (and others)
in combination, in the same modular system.

1 Introduction
Combining knowledge bases (KBs) is very important when
common sense reasoning is involved. For example, in plan-
ning, we may want to combine temporal and spatial reason-
ing, or reasoning from the point of view of several agents.
Here, we focus on search problems, i.e., the problems where
some input is given, and we are looking for a solution (e.g.
a schedule, a trajectory, a business plan) according to a KB
or a combination of KBs. Search problems are formalized as
the task of Model Expansion (MX) [Mitchell and Ternovska,
2005], which is the task of expanding a given structure1 (that
represents an instance of the problem) with interpretations of
new relations and functions (that represent solutions) to sat-
isfy a specification in some logic, e.g. first-order logic, An-
swer Set Programming, etc. For example, consider the prob-
lem of constructing a trajectory of a falling ball. The input
structure represents the initial conditions, and it is expanded
with interpretation of a function (or a predicate) that repre-
sents spatial coordinates of the ball over a time interval, to
satisfy an axiomatization of the trajectory. Another exam-
ple is, given initial situation on the input, construct a plan of

1A structure, e.g. A = (A,RA
1 , ..., RA

n , fA
1 , ..., fA

m , cA1 , ..., cAl)
is a domain A together with an interpretation function I of relations
(R) such that RA = I(R) ⊆ An, function symbols (f) where
fA = I(f) : Am → A, and constants (c) where cA = I(c) ∈ A.

actions for an agent to satisfy a certain goal, by taking into
account action preconditions and effects.

Modular Systems (MS) [Tasharrofi and Ternovska, 2011]
is an extension to the MX framework. Each module (and a
combination of them) is an MX task. Modules are combined
through the operators of composition, union, projection, com-
plementation and feedback. The framework is able to specify
multi-component problems where their constituents are char-
acterized in different languages. An algorithm for solving
MSs was proposed in [Tasharrofi et al., 2011]. An improve-
ment of the algorithm, in the same paper, uses approximations
to reduce the search space. Connections to Satisfiability Mod-
ulo Theory and other systems were discussed in [Tasharrofi et
al., 2011].

An important aspect of knowledge representation systems
is the capability to represent preferences. The literature
presents a variety of approaches to formalize preferences, e.g.
[Brafman and Domshlak, 2009], [Santhanam et al., 2011],
[Delgrande et al., 2003], [Brewka et al., 2010], [Sohrabi et
al., 2008], [Boutilier et al., 2004a], [Delgrande et al., 2007],
[Wilson, 2004], and [Faber et al., 2013]. Several surveys have
appeared in recent years categorizing preference formalisms
from various perspectives. For example, in [Baier and McIl-
raith, 2008], a set of preference formalisms for planning have
been introduced. The authors of [Delgrande et al., 2004] clas-
sified preference frameworks in non-monotonic reasoning.

Preferences in database systems have been broadly inves-
tigated by different researchers such as [Kiessling, 2002],
[Borzsony et al., 2001] and [Stefanidis et al., 2011]. A
primary well-known preference language in database sys-
tems was proposed in [Kiessling, 2002]. In this language,
some preference constructors were introduced to express ba-
sic preference terms. For example, POS is a constructor that
given two n-arity tuples A = (a1, ..., an), B = (b1, ..., bn)
and a set called POS, A is preferred to B (notation A >P B)
with respect to ith attribute (column) in the database table if
and only if A[i] ∈ POS and B[i] /∈ POS. Logical connec-
tives can be also applied on basic preferences. This language
offers operators for combining preferences to construct com-
plex preference terms. Pareto and prioritized accumulation
are two operators broadly used in several frameworks. Pri-
oritized accumulation (notation &) gives priority to a prefer-
ence. Let A and B be tuples of the same relational schema
R. A is preferred to B (notation A >P1&P2 B) if and only if

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2940

A >P1 B ∨ (A ≯P1 B ∧ B ≯P1 A ∧ A <P2 B). Pareto
operator combines two preferences such thatA is preferred to
toB with respect to composition of P1 and P2 (P = P1⊗P2)
if and only if (A >P1

B ∧ ¬(B >P2
A) ∨ (A >P2

B ∧ ¬B >P1
A).

However, the main principles behind combinations of pref-
erence formalisms (possibly written in different languages)
have not been fully formalized yet. Here are some key chal-
lenges of current formalisms: First, they cannot combine
preferences in systems consisting of intricate interconnected
parts (see feedback connection in Example 1 below). Sec-
ond, preference terms are written in the same language such
as [Ross, 2007] or [Kiessling, 2002] that use first-order logic
to express preferences. They are not able to formalize prefer-
ence composition in heterogeneous data systems. The follow-
ing example clarifies the complexity of formalizing a modular
system with preferences.

Example 1. A Logistic Service Provider (LSP) is a modu-
lar system that can be used by a company such as Oracle. It
decides how to pack goods and deliver them. It solves two
NP-complete tasks interactively, – Multiple Knapsack (mod-
ule MK) and Travelling Salesman Problem (module MTSP).
The system takes orders from customers (items Items(i) to
deliver, their profits p(i), weights w(i)), and the capasity of
trucks available c(t), decides how to pack Pack(i, t) items in
trucks, and for each truck, solves a TSP problem. The feed-
back about solvability of TSP is sent back to MK . Module
MTSP takes a candidate solution from MK , together with
the graph of cities and routes with distances, allowable dis-
tance limit and destinations for each product. The output of
this module is the route, for each truck Route(t, n, c), where
t is a truck, n is the number in the sequence, and c is a city.
The Knapsack problem is written, in, e.g. Integer Linear Pro-
gramming (ILP), and TSP in Answer Set Programming (ASP).
The modulesMK andMTSP are composed in sequence, with
a feedback going from an output ofMTSP to an input ofMK .
A solution to the compound module,MLSP , to be acceptable,
must satisfy both sub-systems. The company may have pref-
erences for packing and delivery of products. E.g. if a frag-
ile item is packed in a truck, it may be preferred to exclude
heavy items. Among certain routes with equal costs, some
of them may be preferred to others. It is possible that pref-
erences in the Knapsack problem are formalized by cp-nets
[Boutilier et al., 2004a] and the TSP’s preferences are repre-
sented in preference-based Answer Set Programming frame-
work [Brewka et al., 2003]. In Figure 1, Pk denotes the
preferences of the knapsack module and PTSP denotes the
TSP module’s preferences. Formalizing this modular prob-
lem with preferences is not easy because: 1) the Knapsack
and the TSP are axiomatized in different languages, 2) pref-
erences of each module are represented by a different formal-
ism, 3) preference formalisms use different languages than
the axiomatizations of the modules themselves, 4) two mod-
ules communicate in a complex way that includes a feedback
loop from MTSP to MK .

Contributions
We propose model-theoretic foundations for combining KBs
with preferences in modular systems. On the logic level, each

MK (Pk) MTSP (Ptsp)

MLSP

RoutePack

Pack

E L
Dest

BB′

Item
p
w
c

Figure 1: Logistics Service Provider (MK BMTSP)[B = B′].

module is represented by a KB in some logic L2, and its
preferences (and meta-preferences) are represented by (strict)
partial orders on partial structures in a preference formalism
named P-MS. Different logics and preference formalisms
can be used for modules in the same system. Operations for
combining modules are generalized to combine preferences
of each module. We prove that our formalism is robust in the
sense that the operations for combining modules preserve the
notion of a preference-based modular system. Our formalism
is consistent with (and extends) the model-theoretic seman-
tics of modular systems [Tasharrofi and Ternovska, 2011].
In model theoretic semantics, an MX task is viewed as a
set of structures, where each input is expanded with solu-
tions. We also prove that our formalism represent cp-nets
and preference-based planning. Thus we can combine them
in one modular system.

Novelty
With our formalism, each module can be formalized in a dif-
ferent framework. To our knowledge, this is the first multi-
language preference formalism. This generality is achieved
through the model-theoretic semantics of modular systems.
Another novelty is the ability of handling preferences in com-
plexly structured systems. For instance, in Example 1, there
is a complex combination of Knapsack and TSP problems
(feedback from TSP to Knapsack). In contrast, these com-
plex systems were not representable in previous work. E.g.,
in [Kiessling, 2002].

2 Preliminaries
A vocabulary (denoted, e.g. τ, σ, ε) is a set of non-logical
(predicate and function) symbols. A τ -structure is a domain
(a set), and interpretation of vocabulary symbols in τ .

In [Tasharrofi and Ternovska, 2011], the authors formalize
combinatorial search problems as the task of model expansion
(MX), the logical task of expanding a given structure with
new relations. Formally, the user axiomatizes the problem
in some logic L. This axiomatization relates an instance of
the problem (a finite structure), and its solutions (expansions
of that structure with new relations or functions). Logic L
corresponds to a specification/modelling language. It could
be an ASP program, or a specification in a language from the
CP community, or even a Java program, as long as model-
theoretic semantics can be provided.

2Any logic with model-theoretic semantics can be used, includ-
ing logic programs.

2941

Definition 1 (Model Expansion task). Given: a formula φ
in logic L with a vocabulary σ ∪ ε, such that σ ∩ ε=∅ and
σ-structureA. Find: structure B that expandsA to σ ∪ ε and
satisfies φ. We call σ instance and ε expansion vocabularies.

Definition 2 (Module). A module is a set (class) of σ ∪ ε-
structures, where σ ∩ ε=∅.
A module can be given by any decision procedure, be a set of
models of a KB, be given by an inductive definition, a C or an
ASP program, or by an agent making decisions. Modules of
[Tasharrofi et al., 2011] were introduced as model expansion
tasks. The view of Definition 2 is equivalent. In modular sys-
tems, information propagation happens through vocabulary
symbols that are equal. Modules are combined using the fol-
lowing algebraic operations. Projection (πν(M)) hides some
vocabulary of a module. Composition (M1 BM2) connects
outputs of M1 to inputs of M2. Union (M1 ∪M2) models
choice. Complementation (M) does “the opposite” of what
M does. Feedback (M [R=S]) connects output S of M to
its input R and was inspired by feedbacks in logical circuits.
Intuitively, the operations correspond to conjunction, disjunc-
tion, negation and existential quantifier. Feedback represents
fixpoints (not necessarily minimal) of modules viewed as op-
erators. One can introduce other operations, e.g. least fix-
points or combinations of the operations above.

We now define the syntax of the algebra of modular sys-
tems. Following [Järvisalo et al., 2009], we say modules M1

and M2 are composable if εM1
∩ εM2

=∅ (no output interfer-
ence). Module M2 is independent from M1 if σM2

∩ εM1
=∅

(no cyclic dependencies). A module is primitive if the only
sub-module (algebraic sub-formula) of it is itself. Well-
formed modular systems MS(σ, ε), with instance (σ) and ex-
pansion (ε) vocabularies, are defined recursively.
• IfM is a primitive module with instance (input) vocabulary
σ and expansion (output) vocabulary ε, then M∈MS(σ, ε).
• If M∈MS(σ, ε), τ⊆σ∪ ε, then πτ (M)∈MS(σ∩ τ, ε∩ τ).
• If M∈MS(σ, ε), M ′∈MS(σ′, ε′), M is composable with
and independent from M ′, then (M BM ′)∈MS(σ ∪ (σ′ \
ε), ε ∪ ε′).
• If M∈MS(σ, ε), M ′∈MS(σ′, ε′), and they are indepen-
dent, then (M ∪M ′)∈MS(σ ∪ σ′, ε ∪ ε′).
• If M∈MS(σ, ε), R∈σ, S∈ε, and R and S are of the same
type and arity, then M [R=S]∈MS(σ \ {R}, ε ∪ {R}).
• If M∈MS(σ, ε) then M∈MS(σ, ε).
A modular system is given by an algebraic formula, with
input-output vocabulary specified for each primitive mod-
ule. Subsystems correspond to sub-formulas and are modules
themselves.
Model-theoretic semantics associates, with each modular
system, a set of structures. Each such structure is called a
model of the modular system. The semantics does not put any
finiteness restriction on the domains. Thus, the framework
works for modules with infinite structures. We assume that
the domains of all structures are included in a (potentially
infinite) universal domain U .
Definition 3 (Models of a Modular System). Let M∈
MS(σ, ε) be a modular system and B be a (σ ∪ ε)-structure.
We construct the set Mmt of models of module M by struc-
tural induction on the structure of a module.

Primitive Module:B is a model of M if B∈M .
Projection: B is a model of M :=π(σ∪ε)(M

′) (with M ′∈
MS(σ′, ε′)) if a (σ′ ∪ ε′)-structure B′ exists such that
B′ is a model of M ′ and B′ expands B.

Composition: B is a model of M :=M1 BM2 (with M1∈
MS(σ1, ε1) and M2∈MS(σ2, ε2)) if B|(σ1∪ε1) is a
model of M1 and B|(σ2∪ε2) is a model of M2.

Feedback: B is a model of M :=M ′[R=S] (with M ′∈
MS(σ′, ε′)) if RB=SB and B is model of M ′.

To save space, we skip union and complementation.

E.g. the Knapsack-TSP system in Example 1 is formalized as
MLSP =[MK . MTSP]B=B′ .

Partial structures allow interpretation of some vocabulary
symbols to be partially specified. The algorithm for solving
modular systems [Tasharrofi et al., 2011] constructs expan-
sions incrementally, by adding information to partial struc-
tures.

Definition 4. B is a τp-partial structure over vocabulary τ
if: (1) τp⊆τ , (2) B gives a total interpretation to symbols in
τ\τp, and (3) for each n− ary symbol R in τp , B interprets
R using two sets R+ and R− such that R+ ∩ R−=∅, and
R+ ∪R− 6=[dom(B)]n.

Definition 5. For two partial structures B and B′ over the
same vocabulary and domain, we say that B extends B′ if all
undefined symbols in B are also undefined in B′.
Notation 1. Let V ={a1, a2, ..., an} be a set of vocabulary
symbols. Let A be a partial structure that interprets a subset
X⊆V such that V -X is undefined. Each ai∈X can be inter-
preted as false, represented by a−i , or as true, represented by
ai or a+i . Suppose Y is a set of the form {aAi |ai∈X} where
aAi =a+i or a−i is interpretation of ai by A. We assume that
set Y is representation of partial structure A.

3 P-MS: Preference-based Modular Systems
In this section we introduce Preference-based Modular Sys-
tems (P-MS). To have a formalism compatible with model
theoretic semantics of modular systems, we define preference
statements based on the concept of structures. However, us-
ing structures to model preferences is not always practical.
Formally speaking, some interpreted symbols may be pre-
ferred to others, and there could not be enough information to
decide about the rest. Unlike structures, partial structures in-
terpret a subset of vocabulary symbols, while interpretation of
other symbols is unknown. The idea of partial structures orig-
inates from the notion of three-valued logic that a truth value
of a statement can be true, false, or unknown [Kleene, 1952].
In our formalism, a preference statement can be represented
by a partial order over a set of partial structures when certain
conditions hold. First, we explain the meaning of strict partial
order.

Definition 6. A strict partial order O over a set S is a pair
O :=(S,≺) such that ≺ is a binary relation over elements of
S that is anti-reflexive, asymmetric and transitive.

Now, we define one preference statement for a primitive
module (single model expansion task).

2942

Definition 7. Let M be a primitive module and vocab(M)=
τ . A τo-preference (or simply called preference) P=(O,Γ)
in M is a pair where O=(S,≺) is a strict partial order over
S that is the set of all τo-partial structures inM where τo⊆τ .
As well, Γ={C1, C2, ..., Cm} is a set of τpi-partial structures,
1≤i≤m, in M that τpi⊆τ .

In practical domains, preferences are usually represented
by conditional statements. In the above definition, we uti-
lize a set of partial structures Γ to express the premises of a
preference statement, and O represents the conclusion. Once
the preference has been defined, a preferred structure is intro-
duced as follows:

Definition 8. Let M be a primitive module, and B, B′ be two
structures in M . Given preference P=(O,Γ) in M , let ∆ be
a set of all structures in M that extend at least one member
of Γ. We say structure B is preferred to B′ with respect to
P (denoted by B�PB′) if 1) B,B′∈∆, 2) there are partial
structures Bi and Bj over vocab(M) that can be extended to
structures in M such that Bi�Bj , and B is an extension of
Bi, whereB′ extendsBj , and 3) there are no partial structures
Bk and Bm such that B and B′ extend them respectively and
Bm�Bk.

This definition states that when a part of B is preferred to B′,
if a condition specified by Γ is satisfied by both structures,
we can conclude that B is preferred to B′. It makes no differ-
ence how the rest of the vocabulary is interpreted because it
is irrelevant to P .

Example 2. In Example 1, consider that safety of deliver-
ing items is an important preference for the company. So, it
is preferred to avoid packing heavy and light items together
to reduce the risk of damage to the light items. Let Psafe=
(Osafe,Γsafe) be the safety preference where Osafe=(S,≺
) is a partial order over S that is the set of all items. Relation
”≺” is defined as {pack−(i)≺pack(i)|w(i)≤W}; it means
that for each item i that is lighter than a constant weight W ,
it is preferred to not put i in the pack. According to Notation
1, pack−(i) is representation of a partial structure that inter-
prets ground atom pack(i) as false. The premise of the con-
ditional statement is formalized by Γsafe={C1, C2, ..., Cm}
where Ci={item(i), w(i)} such that w(i)≥W ′. This states
when there is an item with weight not less than W ′, it is pre-
ferred to not include items lighter than W in the pack.

Definition 9. For two structuresB,B′∈M , if a) neitherB�P
B′ nor B′�PB, b) for any B′′∈M , if B′′�PB then B′′�P
B′, and c) if B�PB′′ then B′�PB′′, they are called equally
preferred with respect to P and are represented by B≈PB′.
If one of the conditions (b) or (c) do not hold, then, B and
B′ are incomparable and are represented by B∼PB′. Also,
B�PB′ means that B�PB′ or B≈PB′.

Considering that a module is defined as a set of structures,
we can conclude the following.

Proposition 1. Given a preference P=(O,Γ) in module M ,
the pair (M,≺P) is a strict partial order, ≈P is an equiva-
lence relation over structures of M , and �P is a transitive
and reflexive binary relation over structures of M .

Meta-Preferences
In practice, each module may have more than one preference.
Some of them may be preferred to others. The question then
arises how a preferred structure is defined in this case. The
notion of meta-preference addresses this question.
Definition 10. Given a module M and a set of preferences
Π={P1,P2, ...,Pn}, let Ωi :={Pj∈Π|(Pi�Pj) ∨ (Pj�
Pi)} be a subset of Π such that its elements have order rela-
tion with Pi. Assume OMP =(Π,≺) is a strict partial order
over elements of Π. Binary relation�MP∗ over structures of
M is defined as:
B�MP∗B′ if there is a preference Pi∈Π such that B�Pi

B′ and
• there does not exist Pj∈Ωi that Pj�Pi with respect to
OMP and B′�Pj B, and
• there is no a preference Pk∈Π\Ωi that B′�PkB.

Meta-preferenceMP is characterized asMP :=OMP . We
say structure B is preferred to B′ with respect to binary
relation �MP ⊆M × M (notation B�MPB′) whenever if
∃B′′∈M ;B′�MP∗B′′, then B′′�MP∗B.
This definition states that structure B is preferred to B′ with
respect to MP if we can find a preference such as Pi that
B�PiB′ and there is no preference that makes B′ preferred
to B. If there is a preference Pj such that B′�Pj B then B is
not preferred to B′ with respect to the meta-preference unless
Pi is preferred to Pj . Also, the definition prevents conflicts
may happen between a mix of preferences, though it does not
guarantee transitivity of �MP . If B is preferred to B′ with
respect toMP , and if B′ is preferred to B′′, then B′′ cannot
be preferred to B with respect toMP .
Example 3. In Example 1, assume that the company has
more than one preference. If an expensive item is selected
for delivery, it is not secure to have another precious item
in the pack that is specified by Psecurity. Assume we have a
meta-preferenceMP such that ΠK={Psafe,Psecurity} and
MP={Psafe≺Psecurity}. To have a preferred packing for
the Knapsack module, when there is a heavy and expensive
item in the pack, it is preferred to not include another heavy
item, but it is fine to have two expensive items in the pack.

Preference-based Modular Systems
Up to now, we defined a preference P in a single primitive
module. In what follows, we study how a preference in a
modular system is modelled when preferences of its compo-
nents are given.
Definition 11. Let M=M1 . M2 be a modular system,
vocab(M1)=τ1, and vocab(M2)=τ2. Given P1=(O1,Γ1)
in M1 and P2=(O2,Γ2) in M2, for B,B′∈M , B is pre-
ferred to B′ with respect to P1 and P2, and is represented by
B�P1.P2B′ when B|τ1�P1B′|τ1 and B|τ2�P2B′|τ2 , where
B|τi is restriction of B to τi.

Informally, B is preferred to B′ with respect to P=P1.P2,
if B is preferred to B′ with respect to P1 when they are re-
stricted to the vocabulary of M1 and with respect to P2 when
they are restricted to the vocabulary of M2.
Example 4. In Example 1, for module Mtsp, suppose that
if cities c1, c2, c3, c4 are in the set of destinations, there is

2943

a path from c1 to c4 through c2 that is preferred to the path
from c1 to c4 through c3. This can be formalized by preference
Ptsp=(Otsp,Γtsp) where Otsp=(Stsp,≺) is a partial order
over Stsp that is the set of all possible routes. For a positive
integer k and truck t,
{Route(k, c1, t), Route(k + 1, c2, t), Route(k + 2, c4, t)�
Route(k, c1, t), Route(k+1, c3, t), Route(k+2, c4, t)} and
Γtsp = {Dest(1, c1), Dest(2, c2), Dest(3, c3), Dest(4, c4)}.
A preferred plan of packing and delivery with respect to
Psafe . Ptsp is the one where heavy and light items are not
in the same pack and if the truck is supposed to visit cities
c1, c2, c3, c4, then taking road (c1, c2) is preferred to (c1, c3).
We now extend this notion to meta-preferences.
Definition 12. Let M=M1 . M2 and let’s assume that
vocab(M1)=τ1 and vocab(M2)=τ2. Assume that Π1 is a
set of preferences in M1 and MP1 is a meta-preference
over Π1. Similarly, Π2 and MP2 are a set of preferences
and a meta-preference respectively in M2. For B,B′∈M , B
is preferred to B′ with respect to MP1 and MP2, and is
represented by B�MP1.MP2B′ when B|τ1�MP1B′|τ1 and
B|τ2�MP2B′|τ2 .

We proceed to the union operator.
Definition 13. Let M=M1 ∪M2 be a modular system. Sup-
pose vocab(M1)=τ1 and vocab(M2)=τ2. Assume P1 and
P2 are preferences in M1 and M2 respectively. For B,B′∈
M , if B|τ1�P1B′|τ1 or B|τ2�P2B′|τ2 then B is preferred to
B′ with respect to P1 ∪ P2 and is denoted by B�P1∪P2B′.
For meta-preferences we have:
Definition 14. Let M=M1 ∪M2 be a modular system. Sup-
pose vocab(M1)=τ1 and vocab(M2)=τ2. Let Π1 be a set
of preferences in M1 and MP1 is a meta-preference over
Π1, and let Π2 be a set of preferences in M2 and MP2 a
meta-preference over Π2. For B,B′∈M , B is preferred to B′
with respect toMP1 andMP2 (notation B�MP1∪MP2

B′)
when B|τ1�MP1

B′|τ1 or B|τ2�MP2
B′|τ2 .

Let us comment briefly on the feedback operator. LetM be
a σ ∪ ε modular system, R∈σ, and S∈ε. If R and S are two
vocabulary symbols of the same type and arity, then M [R=
S] is a (σ \ {R})∪ (ε∪ {R}) modular system. The feedback
operator does not change the vocabulary of a module. Hence,
definition of a preference remains unchanged. When B�P
B′ holds in M , if B and B′ are also structures of M ′, we
conclude that B is preferred to B′ in M ′.
Definition 15. Let’s assume M ′=M [R=S] and P=(O,Γ)
are preferences in M . For B,B′∈M , whenever RB=SB and
RB
′
=SB

′
, if B�PB′, then for Bf ,B′f∈M ′, Bf�PB′f holds

where Bf=B and B′f=B′.
This definition says that if two structures B and B′ are in M ,
and B is preferred to B′ with respect to P then B remains pre-
ferred to B′ in module M ′ that is module M with feedback.

The following definition introduces meta-preferences in a
module with feedback operator.
Definition 16. Assume M ′=M [R=S], Π is a set of pref-
erences in M , and MP is a meta-preference over Π. As-
sume that B,B′∈M , and B,B′∈M ′. If B�MPB′ inM , then
B�MPB′ in M ′.

In the model expansion task, in a general sense, there are
vocabulary symbols (notation εh) that are hidden from outer
observers while they are interpreted by the structures of the
module. By considering the fact that projection operator
hides some visible vocabulary symbols of the module, we
present the following definition.

Definition 17. Let us assume M ′=πτ ′(M), where
vocab(M)=τ and vocab(M ′)=τ ′ (τ and τ ′ are visi-
ble vocabularies). For Bπ,B′π∈M ′, if there are structures
B and B′ in M such that B|τ ′=Bπ and B′|τ ′=B′π and
B�PB′, then we say Bπ�PB′π on the condition that for
all vocabulary symbols R∈(τ\τ ′)⊆ε′h the following holds:
RB=RBπ andRB′=RB′π .

Intuitively, given two structures Bπ and B′π in M ′, if we can
find two structures B and B′ in M such that they expand Bπ
and B′π , if B is preferred to B′ with respect toMP , we can
conclude that Bπ is also preferred to B′π . We proceed to meta-
preferences.

Definition 18. Let M ′=πτ ′(M), vocab(M)=τ , and
vocab(M ′)=τ ′ (τ and τ ′ are visible vocabularies). As-
sume Bπ,B′π∈M ′, if there are structures B and B′in M such
that B|τ ′=Bπ and B′|τ ′=B′π and B�MPB′, then we say
Bπ�MPB′π on the condition that for all vocabulary sym-
bols R∈(τ\τ ′)⊆ε′h the following holds: RB=RBπ and
RB′=RB′π .

A preferred modular system P-MS is a modular system
with a partial order over its preferences.

Definition 19. A modular system MS with a set of prefer-
ences Π is a preferred modular system, notation P-MS, if
it is specified by a pair (≺MP ,MS) whereMP is a meta-
preference in MS.

The following statement shows the robustness of our notions
and is proven by structural induction.

Theorem 1. Assume for some n, a modular systemMS is ob-
tained from M1,M2, ...,Mn , where Mis, 1≤i≤n are mod-
ular systems, by using operations in modular systems includ-
ing composition, union, feedback, and projection. For all
1≤i≤n, if Mi is P-MS then M is also P-MS.

4 Relation with Two Preference Formalisms
We now describe two preference formalisms and show how
they can be related to our formalism.

CP-Nets
Ceteris pairbus (cp) network is a graphical representation of
conditional preferences with reasoning capability [Boutilier
et al., 2004b]. The idea underlying cp-nets is to compare
different assignments to a set of variables as some of these
variables are conditionally dependent on each other. Each
node represents an attribute (variable) connected to its parents
through directed edges. A preference over domain values of
a variable is dependent on all of its parents value. The de-
pendency is shown by a Conditional Preference Table (CPT)
represented as an annotation for each node. There exists an
induced graph derived from each cp-net that shows ordering

2944

relation between a subset of outcomes. Each node in the in-
duced graph represents an outcome and each directed edge
exhibits ordering relation between nodes. An outcome o1 is
preferred to o2 if in the induced graph, there is a path from
o1 to o2. An induced graph comprises all information about
preferences over outcomes that can be derived from a cp-net.

From the syntactic point of view, P-MS is able to cap-
ture the notion of attributes in cp-nets. Each attribute can
be viewed as an interpreted predicate symbol in the context
of P-MS. Therefore, an outcome in a cp-net can be repre-
sented by a structure that interprets vocabulary symbols. The
relation between cp-nets and P-MS in this way implies that
the space of all outcomes in a cp-net can be modelled by a
set of structures interpreting vocabulary symbols in P-MS.
A preference statement visualized by a cp-net over a set of
variables V ={V1, ..., Vn} is an ordering over domain values
of a variable that may or may not be dependent on some other
variables, and a preference inP-MS is defined asP=(O,Γ)
where O is a partial order given a set of partial structures
Γ. In a sense, a partial structure in P-MS is a combina-
tion of some interpreted vocabulary symbols. Thus, a partial
structure can stipulate a value assigned to an attribute. Order-
ings over partial structures in our formalism are in fact order-
ings over attribute values in cp-nets when partial structures
in O are assumed to interpret only one vocabulary symbol.
Transforming the condition part of the preference statement
in a cp-net is straightforward. Order relation holds for partial
structures which extend Γ. Therefore, parents of each cp-net
attribute can be represented by Γ.

In order to establish the correspondence between the se-
mantic of cp-nets and P-MS, first we explain the concept of
flip-over in cp-nets. In an induced graph derived from a cp-
net, each outcome node has one attribute value preferred to its
child’s while other attributes are assumed to be fixed. There-
fore, by moving from a node to its children one attribute value
is changed that is called a flip-over. A path in an induced
graph is a chain of flip-overs between two outcomes. Hence,
an outcome is preferred to another when single or multiple
flip-over(s) exist between them. Now, we show how a flip-
over can be represented in P-MS. Consider two structures
B and B′; if B�MPB′ (�MP means that�MP or≈MP that
is an equivalence relation), we have enough information to
know that B is preferred to B′ at least at one vocabulary sym-
bol interpretation or they are equally preferred. The concept
of a single flip-over can be specified by�MP whenOMP =∅
(there is no meta-preference in cp-nets). In this case, �MP
has the transitivity property and a chain of flip-overs can be
modelled by P-MS as well. IfOMP is not empty,MP rep-
resents the notion of relative importance (meta-preference) in
TCP-net [Brafman et al., 2006] that is an extension of cp-nets
to model meta-preferences. This reasoning leads us to the fol-
lowing theorem, relating cp-nets and the P-MS formalism.

Theorem 2. Let G be a cp-net andMP be the representation
of G in the context of P-MS. If an outcome o1 is preferred
to outcome o2 in the induced graph of G, then, for o1 and o2
that are transformed into the P-MS, we have o1�MP o2.

Preference-based Planning
In what follows, we show how P-MS is able to assert pref-
erence statements expressed in PP [Son and Pontelli, 2004]
that is a preference language for planning problems. While
we do not discuss the full details of PP here, we recall the
main definitions found in [Son and Pontelli, 2004]. Given
a set of fluent symbols F and a set of actions A, a state
is defined as a subset of F . A planing problem is a triple
〈D, I,G〉 whereD indicates pre-conditions and effects of ac-
tions, I is the initial state, and G stands for the goal state.
A solution to a planing problem, that is called a plan, is a
chain of actions and states I, a1, ...an, G that starts from I
and ends to G. A basic desire φ is identified as one of the
following: 1) a certain action occurs in the plan denoted by
φ≡occ(a), 2) a set of certain fluents are satisfied that is de-
noted by φ≡(fi ∧ ... ∧ fi+n), 3) any combination of basic
desires by using classical logic connectives (e.g. ∧, ∨, and ¬)
or temporal connective stemmed from temporal logic such as
Next(φ1), Until(φ1, φ2), Always(φ), and Eventually(φ).

[Son and Pontelli, 2004] state that a planning problem
〈D, I,G〉 can be reduced to an Answer Set Programming
(ASP) problem Π(D, I,G) such that for a feasible plan pM
there is an answer set M in program Π. In the context of an-
swer set programming, a formula φ is satisfied in M if it is
a subset of vocabulary symbols that M makes true. For two
plans p1 and p2, we say p1 is preferred to p2 with respect to
a basic desire φ if φ is satisfied in p1 but not in p2. In the
context of ASP, if M1 and M2 are two answer sets of p1 and
p2 respectively, M1 satisfies φ but M2 does not.

To express basic desires in P-MS, it suffices to show that
answer sets can be translated to structures in the context of
modular systems. Consider a vocabulary {a1, ..., an} and an
answer set M={a1, ..., ak} (k≤n). As it can be observed
from the notion of answer sets, M can be viewed as a struc-
ture that interprets each atom ai, i≤k, as true and for all aj ,
k<j≤n, as false. Having the same argument, a basic desire
φ is a partial structure in modular systems such that a sub-
set of atoms in M is true. As a result, a planning problem
〈D, I,G〉 with preferences can be translated to answer sets
and then to modular systems. Assume that structure B repre-
sents plan p1 , structure B′ is translation of p2, and formula φ
is translated to partial structure Bφ. A plan p1 is preferred to
p2 with respect to φ when B is preferred to B′ with respect to
Bφ. This completely coincides with our definition of prefer-
ences in modular systems. The following result follows from
what we discussed.

Theorem 3. Let p1 and p2 be two feasible plans of a plan-
ning problem 〈D, I,G〉 that can be translated to ASP pro-
gram Π(D, I,G). Let Mp1 and Mp2 be ASP translation of
p1 and p2 respectively. Suppose that Mp1 is translated to
structure B and Mp2 to structure B′ in the context of P-MS.
Given a basic desire φ, if p1 is preferred to p2 with respect to
φ in language PP , then B�MPφB′ in P-MS whereMPφ
is translation of φ into P-MS.

5 Conclusion and Future Work
We proposed an abstract framework for unifying preference
languages in modular systems. We introduced the notion

2945

of preference-based modular systems (P-MS). We demon-
strated that a system obtained through combination of some
P-MS is also a P-MS. We studied how preferences ex-
pressed in other languages (two languages as examples) can
be translated to our framework. Examples included two com-
mon preference languages: cp-nets and planning with prefer-
ences (PP). Our future work will address expressivity and
computational issues of the framework. We will continue
our study of practical aspects of our framework in AI ap-
plications, in particular, Business Processes that have com-
plex modular structures and different users may communicate
through different formal languages.

References
[Baier and McIlraith, 2008] Jorge A. Baier and Sheila A.

McIlraith. Planning with preferences. AI Magazine,
29(4):25–36, 2008.

[Borzsony et al., 2001] Stephan Borzsony, Donald Koss-
mann, and Konrad Stocker. The skyline operator. In Data
Engineering, 2001. Proceedings. 17th International Con-
ference on IEEE, pages 421–430. IEEE, 2001.

[Boutilier et al., 2004a] Craig Boutilier, Ronen Brafman,
Carmel Domshlak, Holger Hoos, and David Poole. Cp-
nets: A tool for representing and reasoning with condi-
tional ceteris paribus preference statements. J. Artif. Intell.
Res.(JAIR), 21:135–191, 2004.

[Boutilier et al., 2004b] Craig Boutilier, Ronen Brafman,
Carmel Domshlak, Holger H. Hoos, and David Poole.
Preference-based constrained optimization with cp-nets.
Computational Intelligence, 20(2):137–157, 2004.

[Brafman and Domshlak, 2009] Ronen Brafman and Carmel
Domshlak. Preference handling-an introductory tutorial.
AI magazine, 30(1):58, 2009.

[Brafman et al., 2006] Ronen I. Brafman, Carmel Domsh-
lak, and Solomon Eyal Shimony. On graphical modeling
of preference and importance. J. Artif. Intell. Res. (JAIR),
25:389–424, 2006.

[Brewka et al., 2003] Gerhard Brewka, Ilkka Niemela, and
Mirosaw Truszczynski. Answer set optimization. In IJ-
CAI, volume 3, pages 867–872, 2003.

[Brewka et al., 2010] Gerhard Brewka, Miroslaw
Truszczynski, and Stefan Woltran. Representing
preferences among sets. In AAAI, 2010.

[Delgrande et al., 2003] James P. Delgrande, Torsten
Schaub, and Hans Tompits. A framework for compiling
preferences in logic programs. TPLP, 3(2):129–187,
2003.

[Delgrande et al., 2004] James Delgrande, Torsten Schaub,
Hans Tompits, and Kewen Wang. A classification and sur-
vey of preference handling approaches in nonmonotonic
reasoning. Computational Intelligence, 20(2):308–334,
2004.

[Delgrande et al., 2007] James P. Delgrande, Torsten
Schaub, and Hans Tompits. A general framework for
expressing preferences in causal reasoning and planning.
J. Log. Comput., 17(5):871–907, 2007.

[Faber et al., 2013] Wolfgang Faber, Mirosław
Truszczyński, and Stefan Woltran. Abstract preference
frameworksa unifying perspective on separability and
strong equivalence. In Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[Järvisalo et al., 2009] Matti Järvisalo, Emilia Oikarinen,
Tomi Janhunen, and Ilkka Niemelä. A module-based
framework for multi-language constraint modeling. In
Proceedings of the 10th International Conference on
Logic Programming and Non-monotonic Reasoning (LP-
NMR’09), volume 5753 of Lecture Notes in Computer Sci-
ence (LNCS), pages 155–168. Springer-Verlag, 2009.

[Kiessling, 2002] Werner Kiessling. Foundations of prefer-
ences in database systems. In Proceedings of the 28th in-
ternational conference on Very Large Data Bases, pages
311–322. VLDB Endowment, 2002.

[Kleene, 1952] Stephen Cole Kleene. Introduction to meta-
mathematics. North-Holland Publishing Company, 1952.

[Mitchell and Ternovska, 2005] David G. Mitchell and Eu-
genia Ternovska. A framework for representing and solv-
ing NP search problems. In Proceedings, The Twentieth
National Conference on Artificial Intelligence and the Sev-
enteenth Innovative Applications of Artificial Intelligence
Conference, Pittsburgh, Pennsylvania, USA, pages 430–
435, 2005.

[Ross, 2007] Kenneth Ross. On the adequacy of partial or-
ders for preference composition. In DBRank Workshop,
2007.

[Santhanam et al., 2011] Ganesh Ram Santhanam, Samik
Basu, and Vasant Honavar. Representing and reasoning
with qualitative preferences for compositional systems.
Journal of Artificial Intelligence Research, 42(1):211–274,
2011.

[Sohrabi et al., 2008] Shirin Sohrabi, Jorge A Baier, and
Sheila A McIlraith. Htn planning with preferences. In
Twenty-First International Joint Conference on Artificial
Intelligence, 2008.

[Son and Pontelli, 2004] Tran Cao Son and Enrico Pontelli.
Planning with preferences using logic programming. In
Logic Programming and Nonmonotonic Reasoning, pages
247–260. Springer, 2004.

[Stefanidis et al., 2011] Kostas Stefanidis, Georgia Koutrika,
and Evaggelia Pitoura. A survey on representation compo-
sition and application of preferences in database systems.
ACM Transactions on Database Systems (TODS), 36:19–
28, 2011.

[Tasharrofi and Ternovska, 2011] Shahab Tasharrofi and Eu-
genia Ternovska. A semantic account for modularity in
multi-language modelling of search problems. In Fron-
tiers of Combining Systems, 8th International Symposium,
FroCoS 2011, Germany, pages 259–274, 2011.

[Tasharrofi et al., 2011] Shahab Tasharrofi, Xiongnan Wu,
and Eugenia Ternovska. Solving modular model expan-
sion tasks. arXiv preprint arXiv:1109.0583, 2011.

2946

[Wilson, 2004] Nic Wilson. Consistency and constrained op-
timisation for conditional preferences. In Proceedings of
the 16th Eureopean Conference on Artificial Intelligence,
ECAI’2004, Valencia, Spain, pages 888–894, 2004.

2947

